Properties

Label 1805.2.b.a.1084.1
Level $1805$
Weight $2$
Character 1805.1084
Analytic conductor $14.413$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1805,2,Mod(1084,1805)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1805, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1805.1084");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1805 = 5 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1805.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.4129975648\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1084.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1805.1084
Dual form 1805.2.b.a.1084.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000i q^{2} -2.00000 q^{4} +(-1.00000 - 2.00000i) q^{5} -4.00000i q^{7} +3.00000 q^{9} +O(q^{10})\) \(q-2.00000i q^{2} -2.00000 q^{4} +(-1.00000 - 2.00000i) q^{5} -4.00000i q^{7} +3.00000 q^{9} +(-4.00000 + 2.00000i) q^{10} -1.00000 q^{11} -2.00000i q^{13} -8.00000 q^{14} -4.00000 q^{16} -2.00000i q^{17} -6.00000i q^{18} +(2.00000 + 4.00000i) q^{20} +2.00000i q^{22} -6.00000i q^{23} +(-3.00000 + 4.00000i) q^{25} -4.00000 q^{26} +8.00000i q^{28} +9.00000 q^{29} +7.00000 q^{31} +8.00000i q^{32} -4.00000 q^{34} +(-8.00000 + 4.00000i) q^{35} -6.00000 q^{36} -2.00000i q^{37} -2.00000 q^{41} -2.00000i q^{43} +2.00000 q^{44} +(-3.00000 - 6.00000i) q^{45} -12.0000 q^{46} +6.00000i q^{47} -9.00000 q^{49} +(8.00000 + 6.00000i) q^{50} +4.00000i q^{52} +4.00000i q^{53} +(1.00000 + 2.00000i) q^{55} -18.0000i q^{58} +9.00000 q^{59} -7.00000 q^{61} -14.0000i q^{62} -12.0000i q^{63} +8.00000 q^{64} +(-4.00000 + 2.00000i) q^{65} +10.0000i q^{67} +4.00000i q^{68} +(8.00000 + 16.0000i) q^{70} -1.00000 q^{71} -10.0000i q^{73} -4.00000 q^{74} +4.00000i q^{77} +1.00000 q^{79} +(4.00000 + 8.00000i) q^{80} +9.00000 q^{81} +4.00000i q^{82} +6.00000i q^{83} +(-4.00000 + 2.00000i) q^{85} -4.00000 q^{86} -11.0000 q^{89} +(-12.0000 + 6.00000i) q^{90} -8.00000 q^{91} +12.0000i q^{92} +12.0000 q^{94} +6.00000i q^{97} +18.0000i q^{98} -3.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{4} - 2 q^{5} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 4 q^{4} - 2 q^{5} + 6 q^{9} - 8 q^{10} - 2 q^{11} - 16 q^{14} - 8 q^{16} + 4 q^{20} - 6 q^{25} - 8 q^{26} + 18 q^{29} + 14 q^{31} - 8 q^{34} - 16 q^{35} - 12 q^{36} - 4 q^{41} + 4 q^{44} - 6 q^{45} - 24 q^{46} - 18 q^{49} + 16 q^{50} + 2 q^{55} + 18 q^{59} - 14 q^{61} + 16 q^{64} - 8 q^{65} + 16 q^{70} - 2 q^{71} - 8 q^{74} + 2 q^{79} + 8 q^{80} + 18 q^{81} - 8 q^{85} - 8 q^{86} - 22 q^{89} - 24 q^{90} - 16 q^{91} + 24 q^{94} - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1805\mathbb{Z}\right)^\times\).

\(n\) \(362\) \(1446\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(3\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(4\) −2.00000 −1.00000
\(5\) −1.00000 2.00000i −0.447214 0.894427i
\(6\) 0 0
\(7\) 4.00000i 1.51186i −0.654654 0.755929i \(-0.727186\pi\)
0.654654 0.755929i \(-0.272814\pi\)
\(8\) 0 0
\(9\) 3.00000 1.00000
\(10\) −4.00000 + 2.00000i −1.26491 + 0.632456i
\(11\) −1.00000 −0.301511 −0.150756 0.988571i \(-0.548171\pi\)
−0.150756 + 0.988571i \(0.548171\pi\)
\(12\) 0 0
\(13\) 2.00000i 0.554700i −0.960769 0.277350i \(-0.910544\pi\)
0.960769 0.277350i \(-0.0894562\pi\)
\(14\) −8.00000 −2.13809
\(15\) 0 0
\(16\) −4.00000 −1.00000
\(17\) 2.00000i 0.485071i −0.970143 0.242536i \(-0.922021\pi\)
0.970143 0.242536i \(-0.0779791\pi\)
\(18\) 6.00000i 1.41421i
\(19\) 0 0
\(20\) 2.00000 + 4.00000i 0.447214 + 0.894427i
\(21\) 0 0
\(22\) 2.00000i 0.426401i
\(23\) 6.00000i 1.25109i −0.780189 0.625543i \(-0.784877\pi\)
0.780189 0.625543i \(-0.215123\pi\)
\(24\) 0 0
\(25\) −3.00000 + 4.00000i −0.600000 + 0.800000i
\(26\) −4.00000 −0.784465
\(27\) 0 0
\(28\) 8.00000i 1.51186i
\(29\) 9.00000 1.67126 0.835629 0.549294i \(-0.185103\pi\)
0.835629 + 0.549294i \(0.185103\pi\)
\(30\) 0 0
\(31\) 7.00000 1.25724 0.628619 0.777714i \(-0.283621\pi\)
0.628619 + 0.777714i \(0.283621\pi\)
\(32\) 8.00000i 1.41421i
\(33\) 0 0
\(34\) −4.00000 −0.685994
\(35\) −8.00000 + 4.00000i −1.35225 + 0.676123i
\(36\) −6.00000 −1.00000
\(37\) 2.00000i 0.328798i −0.986394 0.164399i \(-0.947432\pi\)
0.986394 0.164399i \(-0.0525685\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) 2.00000i 0.304997i −0.988304 0.152499i \(-0.951268\pi\)
0.988304 0.152499i \(-0.0487319\pi\)
\(44\) 2.00000 0.301511
\(45\) −3.00000 6.00000i −0.447214 0.894427i
\(46\) −12.0000 −1.76930
\(47\) 6.00000i 0.875190i 0.899172 + 0.437595i \(0.144170\pi\)
−0.899172 + 0.437595i \(0.855830\pi\)
\(48\) 0 0
\(49\) −9.00000 −1.28571
\(50\) 8.00000 + 6.00000i 1.13137 + 0.848528i
\(51\) 0 0
\(52\) 4.00000i 0.554700i
\(53\) 4.00000i 0.549442i 0.961524 + 0.274721i \(0.0885855\pi\)
−0.961524 + 0.274721i \(0.911414\pi\)
\(54\) 0 0
\(55\) 1.00000 + 2.00000i 0.134840 + 0.269680i
\(56\) 0 0
\(57\) 0 0
\(58\) 18.0000i 2.36352i
\(59\) 9.00000 1.17170 0.585850 0.810419i \(-0.300761\pi\)
0.585850 + 0.810419i \(0.300761\pi\)
\(60\) 0 0
\(61\) −7.00000 −0.896258 −0.448129 0.893969i \(-0.647910\pi\)
−0.448129 + 0.893969i \(0.647910\pi\)
\(62\) 14.0000i 1.77800i
\(63\) 12.0000i 1.51186i
\(64\) 8.00000 1.00000
\(65\) −4.00000 + 2.00000i −0.496139 + 0.248069i
\(66\) 0 0
\(67\) 10.0000i 1.22169i 0.791748 + 0.610847i \(0.209171\pi\)
−0.791748 + 0.610847i \(0.790829\pi\)
\(68\) 4.00000i 0.485071i
\(69\) 0 0
\(70\) 8.00000 + 16.0000i 0.956183 + 1.91237i
\(71\) −1.00000 −0.118678 −0.0593391 0.998238i \(-0.518899\pi\)
−0.0593391 + 0.998238i \(0.518899\pi\)
\(72\) 0 0
\(73\) 10.0000i 1.17041i −0.810885 0.585206i \(-0.801014\pi\)
0.810885 0.585206i \(-0.198986\pi\)
\(74\) −4.00000 −0.464991
\(75\) 0 0
\(76\) 0 0
\(77\) 4.00000i 0.455842i
\(78\) 0 0
\(79\) 1.00000 0.112509 0.0562544 0.998416i \(-0.482084\pi\)
0.0562544 + 0.998416i \(0.482084\pi\)
\(80\) 4.00000 + 8.00000i 0.447214 + 0.894427i
\(81\) 9.00000 1.00000
\(82\) 4.00000i 0.441726i
\(83\) 6.00000i 0.658586i 0.944228 + 0.329293i \(0.106810\pi\)
−0.944228 + 0.329293i \(0.893190\pi\)
\(84\) 0 0
\(85\) −4.00000 + 2.00000i −0.433861 + 0.216930i
\(86\) −4.00000 −0.431331
\(87\) 0 0
\(88\) 0 0
\(89\) −11.0000 −1.16600 −0.582999 0.812473i \(-0.698121\pi\)
−0.582999 + 0.812473i \(0.698121\pi\)
\(90\) −12.0000 + 6.00000i −1.26491 + 0.632456i
\(91\) −8.00000 −0.838628
\(92\) 12.0000i 1.25109i
\(93\) 0 0
\(94\) 12.0000 1.23771
\(95\) 0 0
\(96\) 0 0
\(97\) 6.00000i 0.609208i 0.952479 + 0.304604i \(0.0985241\pi\)
−0.952479 + 0.304604i \(0.901476\pi\)
\(98\) 18.0000i 1.81827i
\(99\) −3.00000 −0.301511
\(100\) 6.00000 8.00000i 0.600000 0.800000i
\(101\) 15.0000 1.49256 0.746278 0.665635i \(-0.231839\pi\)
0.746278 + 0.665635i \(0.231839\pi\)
\(102\) 0 0
\(103\) 16.0000i 1.57653i 0.615338 + 0.788263i \(0.289020\pi\)
−0.615338 + 0.788263i \(0.710980\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 8.00000 0.777029
\(107\) 10.0000i 0.966736i 0.875417 + 0.483368i \(0.160587\pi\)
−0.875417 + 0.483368i \(0.839413\pi\)
\(108\) 0 0
\(109\) 15.0000 1.43674 0.718370 0.695662i \(-0.244889\pi\)
0.718370 + 0.695662i \(0.244889\pi\)
\(110\) 4.00000 2.00000i 0.381385 0.190693i
\(111\) 0 0
\(112\) 16.0000i 1.51186i
\(113\) 12.0000i 1.12887i −0.825479 0.564433i \(-0.809095\pi\)
0.825479 0.564433i \(-0.190905\pi\)
\(114\) 0 0
\(115\) −12.0000 + 6.00000i −1.11901 + 0.559503i
\(116\) −18.0000 −1.67126
\(117\) 6.00000i 0.554700i
\(118\) 18.0000i 1.65703i
\(119\) −8.00000 −0.733359
\(120\) 0 0
\(121\) −10.0000 −0.909091
\(122\) 14.0000i 1.26750i
\(123\) 0 0
\(124\) −14.0000 −1.25724
\(125\) 11.0000 + 2.00000i 0.983870 + 0.178885i
\(126\) −24.0000 −2.13809
\(127\) 6.00000i 0.532414i 0.963916 + 0.266207i \(0.0857705\pi\)
−0.963916 + 0.266207i \(0.914230\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 4.00000 + 8.00000i 0.350823 + 0.701646i
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 20.0000 1.72774
\(135\) 0 0
\(136\) 0 0
\(137\) 12.0000i 1.02523i 0.858619 + 0.512615i \(0.171323\pi\)
−0.858619 + 0.512615i \(0.828677\pi\)
\(138\) 0 0
\(139\) −20.0000 −1.69638 −0.848189 0.529694i \(-0.822307\pi\)
−0.848189 + 0.529694i \(0.822307\pi\)
\(140\) 16.0000 8.00000i 1.35225 0.676123i
\(141\) 0 0
\(142\) 2.00000i 0.167836i
\(143\) 2.00000i 0.167248i
\(144\) −12.0000 −1.00000
\(145\) −9.00000 18.0000i −0.747409 1.49482i
\(146\) −20.0000 −1.65521
\(147\) 0 0
\(148\) 4.00000i 0.328798i
\(149\) 1.00000 0.0819232 0.0409616 0.999161i \(-0.486958\pi\)
0.0409616 + 0.999161i \(0.486958\pi\)
\(150\) 0 0
\(151\) −9.00000 −0.732410 −0.366205 0.930534i \(-0.619343\pi\)
−0.366205 + 0.930534i \(0.619343\pi\)
\(152\) 0 0
\(153\) 6.00000i 0.485071i
\(154\) 8.00000 0.644658
\(155\) −7.00000 14.0000i −0.562254 1.12451i
\(156\) 0 0
\(157\) 4.00000i 0.319235i 0.987179 + 0.159617i \(0.0510260\pi\)
−0.987179 + 0.159617i \(0.948974\pi\)
\(158\) 2.00000i 0.159111i
\(159\) 0 0
\(160\) 16.0000 8.00000i 1.26491 0.632456i
\(161\) −24.0000 −1.89146
\(162\) 18.0000i 1.41421i
\(163\) 4.00000i 0.313304i −0.987654 0.156652i \(-0.949930\pi\)
0.987654 0.156652i \(-0.0500701\pi\)
\(164\) 4.00000 0.312348
\(165\) 0 0
\(166\) 12.0000 0.931381
\(167\) 12.0000i 0.928588i 0.885681 + 0.464294i \(0.153692\pi\)
−0.885681 + 0.464294i \(0.846308\pi\)
\(168\) 0 0
\(169\) 9.00000 0.692308
\(170\) 4.00000 + 8.00000i 0.306786 + 0.613572i
\(171\) 0 0
\(172\) 4.00000i 0.304997i
\(173\) 24.0000i 1.82469i −0.409426 0.912343i \(-0.634271\pi\)
0.409426 0.912343i \(-0.365729\pi\)
\(174\) 0 0
\(175\) 16.0000 + 12.0000i 1.20949 + 0.907115i
\(176\) 4.00000 0.301511
\(177\) 0 0
\(178\) 22.0000i 1.64897i
\(179\) 15.0000 1.12115 0.560576 0.828103i \(-0.310580\pi\)
0.560576 + 0.828103i \(0.310580\pi\)
\(180\) 6.00000 + 12.0000i 0.447214 + 0.894427i
\(181\) 6.00000 0.445976 0.222988 0.974821i \(-0.428419\pi\)
0.222988 + 0.974821i \(0.428419\pi\)
\(182\) 16.0000i 1.18600i
\(183\) 0 0
\(184\) 0 0
\(185\) −4.00000 + 2.00000i −0.294086 + 0.147043i
\(186\) 0 0
\(187\) 2.00000i 0.146254i
\(188\) 12.0000i 0.875190i
\(189\) 0 0
\(190\) 0 0
\(191\) −3.00000 −0.217072 −0.108536 0.994092i \(-0.534616\pi\)
−0.108536 + 0.994092i \(0.534616\pi\)
\(192\) 0 0
\(193\) 16.0000i 1.15171i 0.817554 + 0.575853i \(0.195330\pi\)
−0.817554 + 0.575853i \(0.804670\pi\)
\(194\) 12.0000 0.861550
\(195\) 0 0
\(196\) 18.0000 1.28571
\(197\) 18.0000i 1.28245i −0.767354 0.641223i \(-0.778427\pi\)
0.767354 0.641223i \(-0.221573\pi\)
\(198\) 6.00000i 0.426401i
\(199\) −13.0000 −0.921546 −0.460773 0.887518i \(-0.652428\pi\)
−0.460773 + 0.887518i \(0.652428\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 30.0000i 2.11079i
\(203\) 36.0000i 2.52670i
\(204\) 0 0
\(205\) 2.00000 + 4.00000i 0.139686 + 0.279372i
\(206\) 32.0000 2.22955
\(207\) 18.0000i 1.25109i
\(208\) 8.00000i 0.554700i
\(209\) 0 0
\(210\) 0 0
\(211\) −5.00000 −0.344214 −0.172107 0.985078i \(-0.555058\pi\)
−0.172107 + 0.985078i \(0.555058\pi\)
\(212\) 8.00000i 0.549442i
\(213\) 0 0
\(214\) 20.0000 1.36717
\(215\) −4.00000 + 2.00000i −0.272798 + 0.136399i
\(216\) 0 0
\(217\) 28.0000i 1.90076i
\(218\) 30.0000i 2.03186i
\(219\) 0 0
\(220\) −2.00000 4.00000i −0.134840 0.269680i
\(221\) −4.00000 −0.269069
\(222\) 0 0
\(223\) 2.00000i 0.133930i −0.997755 0.0669650i \(-0.978668\pi\)
0.997755 0.0669650i \(-0.0213316\pi\)
\(224\) 32.0000 2.13809
\(225\) −9.00000 + 12.0000i −0.600000 + 0.800000i
\(226\) −24.0000 −1.59646
\(227\) 14.0000i 0.929213i −0.885517 0.464606i \(-0.846196\pi\)
0.885517 0.464606i \(-0.153804\pi\)
\(228\) 0 0
\(229\) −17.0000 −1.12339 −0.561696 0.827344i \(-0.689851\pi\)
−0.561696 + 0.827344i \(0.689851\pi\)
\(230\) 12.0000 + 24.0000i 0.791257 + 1.58251i
\(231\) 0 0
\(232\) 0 0
\(233\) 8.00000i 0.524097i 0.965055 + 0.262049i \(0.0843981\pi\)
−0.965055 + 0.262049i \(0.915602\pi\)
\(234\) −12.0000 −0.784465
\(235\) 12.0000 6.00000i 0.782794 0.391397i
\(236\) −18.0000 −1.17170
\(237\) 0 0
\(238\) 16.0000i 1.03713i
\(239\) 19.0000 1.22901 0.614504 0.788914i \(-0.289356\pi\)
0.614504 + 0.788914i \(0.289356\pi\)
\(240\) 0 0
\(241\) −1.00000 −0.0644157 −0.0322078 0.999481i \(-0.510254\pi\)
−0.0322078 + 0.999481i \(0.510254\pi\)
\(242\) 20.0000i 1.28565i
\(243\) 0 0
\(244\) 14.0000 0.896258
\(245\) 9.00000 + 18.0000i 0.574989 + 1.14998i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 4.00000 22.0000i 0.252982 1.39140i
\(251\) 13.0000 0.820553 0.410276 0.911961i \(-0.365432\pi\)
0.410276 + 0.911961i \(0.365432\pi\)
\(252\) 24.0000i 1.51186i
\(253\) 6.00000i 0.377217i
\(254\) 12.0000 0.752947
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 6.00000i 0.374270i 0.982334 + 0.187135i \(0.0599201\pi\)
−0.982334 + 0.187135i \(0.940080\pi\)
\(258\) 0 0
\(259\) −8.00000 −0.497096
\(260\) 8.00000 4.00000i 0.496139 0.248069i
\(261\) 27.0000 1.67126
\(262\) 24.0000i 1.48272i
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 8.00000 4.00000i 0.491436 0.245718i
\(266\) 0 0
\(267\) 0 0
\(268\) 20.0000i 1.22169i
\(269\) 3.00000 0.182913 0.0914566 0.995809i \(-0.470848\pi\)
0.0914566 + 0.995809i \(0.470848\pi\)
\(270\) 0 0
\(271\) 3.00000 0.182237 0.0911185 0.995840i \(-0.470956\pi\)
0.0911185 + 0.995840i \(0.470956\pi\)
\(272\) 8.00000i 0.485071i
\(273\) 0 0
\(274\) 24.0000 1.44989
\(275\) 3.00000 4.00000i 0.180907 0.241209i
\(276\) 0 0
\(277\) 28.0000i 1.68236i −0.540758 0.841178i \(-0.681862\pi\)
0.540758 0.841178i \(-0.318138\pi\)
\(278\) 40.0000i 2.39904i
\(279\) 21.0000 1.25724
\(280\) 0 0
\(281\) −10.0000 −0.596550 −0.298275 0.954480i \(-0.596411\pi\)
−0.298275 + 0.954480i \(0.596411\pi\)
\(282\) 0 0
\(283\) 14.0000i 0.832214i −0.909316 0.416107i \(-0.863394\pi\)
0.909316 0.416107i \(-0.136606\pi\)
\(284\) 2.00000 0.118678
\(285\) 0 0
\(286\) 4.00000 0.236525
\(287\) 8.00000i 0.472225i
\(288\) 24.0000i 1.41421i
\(289\) 13.0000 0.764706
\(290\) −36.0000 + 18.0000i −2.11399 + 1.05700i
\(291\) 0 0
\(292\) 20.0000i 1.17041i
\(293\) 4.00000i 0.233682i 0.993151 + 0.116841i \(0.0372769\pi\)
−0.993151 + 0.116841i \(0.962723\pi\)
\(294\) 0 0
\(295\) −9.00000 18.0000i −0.524000 1.04800i
\(296\) 0 0
\(297\) 0 0
\(298\) 2.00000i 0.115857i
\(299\) −12.0000 −0.693978
\(300\) 0 0
\(301\) −8.00000 −0.461112
\(302\) 18.0000i 1.03578i
\(303\) 0 0
\(304\) 0 0
\(305\) 7.00000 + 14.0000i 0.400819 + 0.801638i
\(306\) −12.0000 −0.685994
\(307\) 16.0000i 0.913168i −0.889680 0.456584i \(-0.849073\pi\)
0.889680 0.456584i \(-0.150927\pi\)
\(308\) 8.00000i 0.455842i
\(309\) 0 0
\(310\) −28.0000 + 14.0000i −1.59029 + 0.795147i
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 30.0000i 1.69570i −0.530236 0.847850i \(-0.677897\pi\)
0.530236 0.847850i \(-0.322103\pi\)
\(314\) 8.00000 0.451466
\(315\) −24.0000 + 12.0000i −1.35225 + 0.676123i
\(316\) −2.00000 −0.112509
\(317\) 2.00000i 0.112331i 0.998421 + 0.0561656i \(0.0178875\pi\)
−0.998421 + 0.0561656i \(0.982113\pi\)
\(318\) 0 0
\(319\) −9.00000 −0.503903
\(320\) −8.00000 16.0000i −0.447214 0.894427i
\(321\) 0 0
\(322\) 48.0000i 2.67494i
\(323\) 0 0
\(324\) −18.0000 −1.00000
\(325\) 8.00000 + 6.00000i 0.443760 + 0.332820i
\(326\) −8.00000 −0.443079
\(327\) 0 0
\(328\) 0 0
\(329\) 24.0000 1.32316
\(330\) 0 0
\(331\) −20.0000 −1.09930 −0.549650 0.835395i \(-0.685239\pi\)
−0.549650 + 0.835395i \(0.685239\pi\)
\(332\) 12.0000i 0.658586i
\(333\) 6.00000i 0.328798i
\(334\) 24.0000 1.31322
\(335\) 20.0000 10.0000i 1.09272 0.546358i
\(336\) 0 0
\(337\) 34.0000i 1.85210i −0.377403 0.926049i \(-0.623183\pi\)
0.377403 0.926049i \(-0.376817\pi\)
\(338\) 18.0000i 0.979071i
\(339\) 0 0
\(340\) 8.00000 4.00000i 0.433861 0.216930i
\(341\) −7.00000 −0.379071
\(342\) 0 0
\(343\) 8.00000i 0.431959i
\(344\) 0 0
\(345\) 0 0
\(346\) −48.0000 −2.58050
\(347\) 12.0000i 0.644194i −0.946707 0.322097i \(-0.895612\pi\)
0.946707 0.322097i \(-0.104388\pi\)
\(348\) 0 0
\(349\) −14.0000 −0.749403 −0.374701 0.927146i \(-0.622255\pi\)
−0.374701 + 0.927146i \(0.622255\pi\)
\(350\) 24.0000 32.0000i 1.28285 1.71047i
\(351\) 0 0
\(352\) 8.00000i 0.426401i
\(353\) 8.00000i 0.425797i 0.977074 + 0.212899i \(0.0682904\pi\)
−0.977074 + 0.212899i \(0.931710\pi\)
\(354\) 0 0
\(355\) 1.00000 + 2.00000i 0.0530745 + 0.106149i
\(356\) 22.0000 1.16600
\(357\) 0 0
\(358\) 30.0000i 1.58555i
\(359\) 20.0000 1.05556 0.527780 0.849381i \(-0.323025\pi\)
0.527780 + 0.849381i \(0.323025\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 12.0000i 0.630706i
\(363\) 0 0
\(364\) 16.0000 0.838628
\(365\) −20.0000 + 10.0000i −1.04685 + 0.523424i
\(366\) 0 0
\(367\) 16.0000i 0.835193i −0.908633 0.417597i \(-0.862873\pi\)
0.908633 0.417597i \(-0.137127\pi\)
\(368\) 24.0000i 1.25109i
\(369\) −6.00000 −0.312348
\(370\) 4.00000 + 8.00000i 0.207950 + 0.415900i
\(371\) 16.0000 0.830679
\(372\) 0 0
\(373\) 12.0000i 0.621336i −0.950518 0.310668i \(-0.899447\pi\)
0.950518 0.310668i \(-0.100553\pi\)
\(374\) 4.00000 0.206835
\(375\) 0 0
\(376\) 0 0
\(377\) 18.0000i 0.927047i
\(378\) 0 0
\(379\) −29.0000 −1.48963 −0.744815 0.667271i \(-0.767462\pi\)
−0.744815 + 0.667271i \(0.767462\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 6.00000i 0.306987i
\(383\) 6.00000i 0.306586i 0.988181 + 0.153293i \(0.0489878\pi\)
−0.988181 + 0.153293i \(0.951012\pi\)
\(384\) 0 0
\(385\) 8.00000 4.00000i 0.407718 0.203859i
\(386\) 32.0000 1.62876
\(387\) 6.00000i 0.304997i
\(388\) 12.0000i 0.609208i
\(389\) 33.0000 1.67317 0.836583 0.547840i \(-0.184550\pi\)
0.836583 + 0.547840i \(0.184550\pi\)
\(390\) 0 0
\(391\) −12.0000 −0.606866
\(392\) 0 0
\(393\) 0 0
\(394\) −36.0000 −1.81365
\(395\) −1.00000 2.00000i −0.0503155 0.100631i
\(396\) 6.00000 0.301511
\(397\) 8.00000i 0.401508i −0.979642 0.200754i \(-0.935661\pi\)
0.979642 0.200754i \(-0.0643393\pi\)
\(398\) 26.0000i 1.30326i
\(399\) 0 0
\(400\) 12.0000 16.0000i 0.600000 0.800000i
\(401\) −3.00000 −0.149813 −0.0749064 0.997191i \(-0.523866\pi\)
−0.0749064 + 0.997191i \(0.523866\pi\)
\(402\) 0 0
\(403\) 14.0000i 0.697390i
\(404\) −30.0000 −1.49256
\(405\) −9.00000 18.0000i −0.447214 0.894427i
\(406\) −72.0000 −3.57330
\(407\) 2.00000i 0.0991363i
\(408\) 0 0
\(409\) −5.00000 −0.247234 −0.123617 0.992330i \(-0.539449\pi\)
−0.123617 + 0.992330i \(0.539449\pi\)
\(410\) 8.00000 4.00000i 0.395092 0.197546i
\(411\) 0 0
\(412\) 32.0000i 1.57653i
\(413\) 36.0000i 1.77144i
\(414\) −36.0000 −1.76930
\(415\) 12.0000 6.00000i 0.589057 0.294528i
\(416\) 16.0000 0.784465
\(417\) 0 0
\(418\) 0 0
\(419\) −9.00000 −0.439679 −0.219839 0.975536i \(-0.570553\pi\)
−0.219839 + 0.975536i \(0.570553\pi\)
\(420\) 0 0
\(421\) 15.0000 0.731055 0.365528 0.930800i \(-0.380889\pi\)
0.365528 + 0.930800i \(0.380889\pi\)
\(422\) 10.0000i 0.486792i
\(423\) 18.0000i 0.875190i
\(424\) 0 0
\(425\) 8.00000 + 6.00000i 0.388057 + 0.291043i
\(426\) 0 0
\(427\) 28.0000i 1.35501i
\(428\) 20.0000i 0.966736i
\(429\) 0 0
\(430\) 4.00000 + 8.00000i 0.192897 + 0.385794i
\(431\) −21.0000 −1.01153 −0.505767 0.862670i \(-0.668791\pi\)
−0.505767 + 0.862670i \(0.668791\pi\)
\(432\) 0 0
\(433\) 4.00000i 0.192228i −0.995370 0.0961139i \(-0.969359\pi\)
0.995370 0.0961139i \(-0.0306413\pi\)
\(434\) −56.0000 −2.68809
\(435\) 0 0
\(436\) −30.0000 −1.43674
\(437\) 0 0
\(438\) 0 0
\(439\) −13.0000 −0.620456 −0.310228 0.950662i \(-0.600405\pi\)
−0.310228 + 0.950662i \(0.600405\pi\)
\(440\) 0 0
\(441\) −27.0000 −1.28571
\(442\) 8.00000i 0.380521i
\(443\) 4.00000i 0.190046i −0.995475 0.0950229i \(-0.969708\pi\)
0.995475 0.0950229i \(-0.0302924\pi\)
\(444\) 0 0
\(445\) 11.0000 + 22.0000i 0.521450 + 1.04290i
\(446\) −4.00000 −0.189405
\(447\) 0 0
\(448\) 32.0000i 1.51186i
\(449\) 31.0000 1.46298 0.731490 0.681852i \(-0.238825\pi\)
0.731490 + 0.681852i \(0.238825\pi\)
\(450\) 24.0000 + 18.0000i 1.13137 + 0.848528i
\(451\) 2.00000 0.0941763
\(452\) 24.0000i 1.12887i
\(453\) 0 0
\(454\) −28.0000 −1.31411
\(455\) 8.00000 + 16.0000i 0.375046 + 0.750092i
\(456\) 0 0
\(457\) 34.0000i 1.59045i 0.606313 + 0.795226i \(0.292648\pi\)
−0.606313 + 0.795226i \(0.707352\pi\)
\(458\) 34.0000i 1.58872i
\(459\) 0 0
\(460\) 24.0000 12.0000i 1.11901 0.559503i
\(461\) −25.0000 −1.16437 −0.582183 0.813058i \(-0.697801\pi\)
−0.582183 + 0.813058i \(0.697801\pi\)
\(462\) 0 0
\(463\) 4.00000i 0.185896i 0.995671 + 0.0929479i \(0.0296290\pi\)
−0.995671 + 0.0929479i \(0.970371\pi\)
\(464\) −36.0000 −1.67126
\(465\) 0 0
\(466\) 16.0000 0.741186
\(467\) 10.0000i 0.462745i 0.972865 + 0.231372i \(0.0743216\pi\)
−0.972865 + 0.231372i \(0.925678\pi\)
\(468\) 12.0000i 0.554700i
\(469\) 40.0000 1.84703
\(470\) −12.0000 24.0000i −0.553519 1.10704i
\(471\) 0 0
\(472\) 0 0
\(473\) 2.00000i 0.0919601i
\(474\) 0 0
\(475\) 0 0
\(476\) 16.0000 0.733359
\(477\) 12.0000i 0.549442i
\(478\) 38.0000i 1.73808i
\(479\) −15.0000 −0.685367 −0.342684 0.939451i \(-0.611336\pi\)
−0.342684 + 0.939451i \(0.611336\pi\)
\(480\) 0 0
\(481\) −4.00000 −0.182384
\(482\) 2.00000i 0.0910975i
\(483\) 0 0
\(484\) 20.0000 0.909091
\(485\) 12.0000 6.00000i 0.544892 0.272446i
\(486\) 0 0
\(487\) 38.0000i 1.72194i 0.508652 + 0.860972i \(0.330144\pi\)
−0.508652 + 0.860972i \(0.669856\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 36.0000 18.0000i 1.62631 0.813157i
\(491\) 13.0000 0.586682 0.293341 0.956008i \(-0.405233\pi\)
0.293341 + 0.956008i \(0.405233\pi\)
\(492\) 0 0
\(493\) 18.0000i 0.810679i
\(494\) 0 0
\(495\) 3.00000 + 6.00000i 0.134840 + 0.269680i
\(496\) −28.0000 −1.25724
\(497\) 4.00000i 0.179425i
\(498\) 0 0
\(499\) −28.0000 −1.25345 −0.626726 0.779240i \(-0.715605\pi\)
−0.626726 + 0.779240i \(0.715605\pi\)
\(500\) −22.0000 4.00000i −0.983870 0.178885i
\(501\) 0 0
\(502\) 26.0000i 1.16044i
\(503\) 26.0000i 1.15928i 0.814872 + 0.579641i \(0.196807\pi\)
−0.814872 + 0.579641i \(0.803193\pi\)
\(504\) 0 0
\(505\) −15.0000 30.0000i −0.667491 1.33498i
\(506\) 12.0000 0.533465
\(507\) 0 0
\(508\) 12.0000i 0.532414i
\(509\) 18.0000 0.797836 0.398918 0.916987i \(-0.369386\pi\)
0.398918 + 0.916987i \(0.369386\pi\)
\(510\) 0 0
\(511\) −40.0000 −1.76950
\(512\) 32.0000i 1.41421i
\(513\) 0 0
\(514\) 12.0000 0.529297
\(515\) 32.0000 16.0000i 1.41009 0.705044i
\(516\) 0 0
\(517\) 6.00000i 0.263880i
\(518\) 16.0000i 0.703000i
\(519\) 0 0
\(520\) 0 0
\(521\) −15.0000 −0.657162 −0.328581 0.944476i \(-0.606570\pi\)
−0.328581 + 0.944476i \(0.606570\pi\)
\(522\) 54.0000i 2.36352i
\(523\) 16.0000i 0.699631i 0.936819 + 0.349816i \(0.113756\pi\)
−0.936819 + 0.349816i \(0.886244\pi\)
\(524\) −24.0000 −1.04844
\(525\) 0 0
\(526\) 0 0
\(527\) 14.0000i 0.609850i
\(528\) 0 0
\(529\) −13.0000 −0.565217
\(530\) −8.00000 16.0000i −0.347498 0.694996i
\(531\) 27.0000 1.17170
\(532\) 0 0
\(533\) 4.00000i 0.173259i
\(534\) 0 0
\(535\) 20.0000 10.0000i 0.864675 0.432338i
\(536\) 0 0
\(537\) 0 0
\(538\) 6.00000i 0.258678i
\(539\) 9.00000 0.387657
\(540\) 0 0
\(541\) 23.0000 0.988847 0.494424 0.869221i \(-0.335379\pi\)
0.494424 + 0.869221i \(0.335379\pi\)
\(542\) 6.00000i 0.257722i
\(543\) 0 0
\(544\) 16.0000 0.685994
\(545\) −15.0000 30.0000i −0.642529 1.28506i
\(546\) 0 0
\(547\) 22.0000i 0.940652i −0.882493 0.470326i \(-0.844136\pi\)
0.882493 0.470326i \(-0.155864\pi\)
\(548\) 24.0000i 1.02523i
\(549\) −21.0000 −0.896258
\(550\) −8.00000 6.00000i −0.341121 0.255841i
\(551\) 0 0
\(552\) 0 0
\(553\) 4.00000i 0.170097i
\(554\) −56.0000 −2.37921
\(555\) 0 0
\(556\) 40.0000 1.69638
\(557\) 14.0000i 0.593199i 0.955002 + 0.296600i \(0.0958526\pi\)
−0.955002 + 0.296600i \(0.904147\pi\)
\(558\) 42.0000i 1.77800i
\(559\) −4.00000 −0.169182
\(560\) 32.0000 16.0000i 1.35225 0.676123i
\(561\) 0 0
\(562\) 20.0000i 0.843649i
\(563\) 24.0000i 1.01148i −0.862686 0.505740i \(-0.831220\pi\)
0.862686 0.505740i \(-0.168780\pi\)
\(564\) 0 0
\(565\) −24.0000 + 12.0000i −1.00969 + 0.504844i
\(566\) −28.0000 −1.17693
\(567\) 36.0000i 1.51186i
\(568\) 0 0
\(569\) 15.0000 0.628833 0.314416 0.949285i \(-0.398191\pi\)
0.314416 + 0.949285i \(0.398191\pi\)
\(570\) 0 0
\(571\) 13.0000 0.544033 0.272017 0.962293i \(-0.412309\pi\)
0.272017 + 0.962293i \(0.412309\pi\)
\(572\) 4.00000i 0.167248i
\(573\) 0 0
\(574\) 16.0000 0.667827
\(575\) 24.0000 + 18.0000i 1.00087 + 0.750652i
\(576\) 24.0000 1.00000
\(577\) 6.00000i 0.249783i 0.992170 + 0.124892i \(0.0398583\pi\)
−0.992170 + 0.124892i \(0.960142\pi\)
\(578\) 26.0000i 1.08146i
\(579\) 0 0
\(580\) 18.0000 + 36.0000i 0.747409 + 1.49482i
\(581\) 24.0000 0.995688
\(582\) 0 0
\(583\) 4.00000i 0.165663i
\(584\) 0 0
\(585\) −12.0000 + 6.00000i −0.496139 + 0.248069i
\(586\) 8.00000 0.330477
\(587\) 24.0000i 0.990586i −0.868726 0.495293i \(-0.835061\pi\)
0.868726 0.495293i \(-0.164939\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −36.0000 + 18.0000i −1.48210 + 0.741048i
\(591\) 0 0
\(592\) 8.00000i 0.328798i
\(593\) 32.0000i 1.31408i 0.753855 + 0.657041i \(0.228192\pi\)
−0.753855 + 0.657041i \(0.771808\pi\)
\(594\) 0 0
\(595\) 8.00000 + 16.0000i 0.327968 + 0.655936i
\(596\) −2.00000 −0.0819232
\(597\) 0 0
\(598\) 24.0000i 0.981433i
\(599\) −12.0000 −0.490307 −0.245153 0.969484i \(-0.578838\pi\)
−0.245153 + 0.969484i \(0.578838\pi\)
\(600\) 0 0
\(601\) −17.0000 −0.693444 −0.346722 0.937968i \(-0.612705\pi\)
−0.346722 + 0.937968i \(0.612705\pi\)
\(602\) 16.0000i 0.652111i
\(603\) 30.0000i 1.22169i
\(604\) 18.0000 0.732410
\(605\) 10.0000 + 20.0000i 0.406558 + 0.813116i
\(606\) 0 0
\(607\) 14.0000i 0.568242i 0.958788 + 0.284121i \(0.0917018\pi\)
−0.958788 + 0.284121i \(0.908298\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 28.0000 14.0000i 1.13369 0.566843i
\(611\) 12.0000 0.485468
\(612\) 12.0000i 0.485071i
\(613\) 24.0000i 0.969351i −0.874694 0.484675i \(-0.838938\pi\)
0.874694 0.484675i \(-0.161062\pi\)
\(614\) −32.0000 −1.29141
\(615\) 0 0
\(616\) 0 0
\(617\) 18.0000i 0.724653i 0.932051 + 0.362326i \(0.118017\pi\)
−0.932051 + 0.362326i \(0.881983\pi\)
\(618\) 0 0
\(619\) −4.00000 −0.160774 −0.0803868 0.996764i \(-0.525616\pi\)
−0.0803868 + 0.996764i \(0.525616\pi\)
\(620\) 14.0000 + 28.0000i 0.562254 + 1.12451i
\(621\) 0 0
\(622\) 0 0
\(623\) 44.0000i 1.76282i
\(624\) 0 0
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) −60.0000 −2.39808
\(627\) 0 0
\(628\) 8.00000i 0.319235i
\(629\) −4.00000 −0.159490
\(630\) 24.0000 + 48.0000i 0.956183 + 1.91237i
\(631\) 1.00000 0.0398094 0.0199047 0.999802i \(-0.493664\pi\)
0.0199047 + 0.999802i \(0.493664\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 4.00000 0.158860
\(635\) 12.0000 6.00000i 0.476205 0.238103i
\(636\) 0 0
\(637\) 18.0000i 0.713186i
\(638\) 18.0000i 0.712627i
\(639\) −3.00000 −0.118678
\(640\) 0 0
\(641\) −21.0000 −0.829450 −0.414725 0.909947i \(-0.636122\pi\)
−0.414725 + 0.909947i \(0.636122\pi\)
\(642\) 0 0
\(643\) 46.0000i 1.81406i 0.421063 + 0.907031i \(0.361657\pi\)
−0.421063 + 0.907031i \(0.638343\pi\)
\(644\) 48.0000 1.89146
\(645\) 0 0
\(646\) 0 0
\(647\) 6.00000i 0.235884i −0.993020 0.117942i \(-0.962370\pi\)
0.993020 0.117942i \(-0.0376297\pi\)
\(648\) 0 0
\(649\) −9.00000 −0.353281
\(650\) 12.0000 16.0000i 0.470679 0.627572i
\(651\) 0 0
\(652\) 8.00000i 0.313304i
\(653\) 10.0000i 0.391330i −0.980671 0.195665i \(-0.937313\pi\)
0.980671 0.195665i \(-0.0626866\pi\)
\(654\) 0 0
\(655\) −12.0000 24.0000i −0.468879 0.937758i
\(656\) 8.00000 0.312348
\(657\) 30.0000i 1.17041i
\(658\) 48.0000i 1.87123i
\(659\) 20.0000 0.779089 0.389545 0.921008i \(-0.372632\pi\)
0.389545 + 0.921008i \(0.372632\pi\)
\(660\) 0 0
\(661\) 15.0000 0.583432 0.291716 0.956505i \(-0.405774\pi\)
0.291716 + 0.956505i \(0.405774\pi\)
\(662\) 40.0000i 1.55464i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −12.0000 −0.464991
\(667\) 54.0000i 2.09089i
\(668\) 24.0000i 0.928588i
\(669\) 0 0
\(670\) −20.0000 40.0000i −0.772667 1.54533i
\(671\) 7.00000 0.270232
\(672\) 0 0
\(673\) 20.0000i 0.770943i −0.922720 0.385472i \(-0.874039\pi\)
0.922720 0.385472i \(-0.125961\pi\)
\(674\) −68.0000 −2.61926
\(675\) 0 0
\(676\) −18.0000 −0.692308
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 24.0000 0.921035
\(680\) 0 0
\(681\) 0 0
\(682\) 14.0000i 0.536088i
\(683\) 30.0000i 1.14792i 0.818884 + 0.573959i \(0.194593\pi\)
−0.818884 + 0.573959i \(0.805407\pi\)
\(684\) 0 0
\(685\) 24.0000 12.0000i 0.916993 0.458496i
\(686\) 16.0000 0.610883
\(687\) 0 0
\(688\) 8.00000i 0.304997i
\(689\) 8.00000 0.304776
\(690\) 0 0
\(691\) 3.00000 0.114125 0.0570627 0.998371i \(-0.481827\pi\)
0.0570627 + 0.998371i \(0.481827\pi\)
\(692\) 48.0000i 1.82469i
\(693\) 12.0000i 0.455842i
\(694\) −24.0000 −0.911028
\(695\) 20.0000 + 40.0000i 0.758643 + 1.51729i
\(696\) 0 0
\(697\) 4.00000i 0.151511i
\(698\) 28.0000i 1.05982i
\(699\) 0 0
\(700\) −32.0000 24.0000i −1.20949 0.907115i
\(701\) 6.00000 0.226617 0.113308 0.993560i \(-0.463855\pi\)
0.113308 + 0.993560i \(0.463855\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −8.00000 −0.301511
\(705\) 0 0
\(706\) 16.0000 0.602168
\(707\) 60.0000i 2.25653i
\(708\) 0 0
\(709\) −25.0000 −0.938895 −0.469447 0.882960i \(-0.655547\pi\)
−0.469447 + 0.882960i \(0.655547\pi\)
\(710\) 4.00000 2.00000i 0.150117 0.0750587i
\(711\) 3.00000 0.112509
\(712\) 0 0
\(713\) 42.0000i 1.57291i
\(714\) 0 0
\(715\) 4.00000 2.00000i 0.149592 0.0747958i
\(716\) −30.0000 −1.12115
\(717\) 0 0
\(718\) 40.0000i 1.49279i
\(719\) 21.0000 0.783168 0.391584 0.920142i \(-0.371927\pi\)
0.391584 + 0.920142i \(0.371927\pi\)
\(720\) 12.0000 + 24.0000i 0.447214 + 0.894427i
\(721\) 64.0000 2.38348
\(722\) 0 0
\(723\) 0 0
\(724\) −12.0000 −0.445976
\(725\) −27.0000 + 36.0000i −1.00275 + 1.33701i
\(726\) 0 0
\(727\) 8.00000i 0.296704i 0.988935 + 0.148352i \(0.0473968\pi\)
−0.988935 + 0.148352i \(0.952603\pi\)
\(728\) 0 0
\(729\) 27.0000 1.00000
\(730\) 20.0000 + 40.0000i 0.740233 + 1.48047i
\(731\) −4.00000 −0.147945
\(732\) 0 0
\(733\) 6.00000i 0.221615i 0.993842 + 0.110808i \(0.0353437\pi\)
−0.993842 + 0.110808i \(0.964656\pi\)
\(734\) −32.0000 −1.18114
\(735\) 0 0
\(736\) 48.0000 1.76930
\(737\) 10.0000i 0.368355i
\(738\) 12.0000i 0.441726i
\(739\) 29.0000 1.06678 0.533391 0.845869i \(-0.320917\pi\)
0.533391 + 0.845869i \(0.320917\pi\)
\(740\) 8.00000 4.00000i 0.294086 0.147043i
\(741\) 0 0
\(742\) 32.0000i 1.17476i
\(743\) 50.0000i 1.83432i 0.398517 + 0.917161i \(0.369525\pi\)
−0.398517 + 0.917161i \(0.630475\pi\)
\(744\) 0 0
\(745\) −1.00000 2.00000i −0.0366372 0.0732743i
\(746\) −24.0000 −0.878702
\(747\) 18.0000i 0.658586i
\(748\) 4.00000i 0.146254i
\(749\) 40.0000 1.46157
\(750\) 0 0
\(751\) −41.0000 −1.49611 −0.748056 0.663636i \(-0.769012\pi\)
−0.748056 + 0.663636i \(0.769012\pi\)
\(752\) 24.0000i 0.875190i
\(753\) 0 0
\(754\) −36.0000 −1.31104
\(755\) 9.00000 + 18.0000i 0.327544 + 0.655087i
\(756\) 0 0
\(757\) 26.0000i 0.944986i 0.881334 + 0.472493i \(0.156646\pi\)
−0.881334 + 0.472493i \(0.843354\pi\)
\(758\) 58.0000i 2.10665i
\(759\) 0 0
\(760\) 0 0
\(761\) −18.0000 −0.652499 −0.326250 0.945284i \(-0.605785\pi\)
−0.326250 + 0.945284i \(0.605785\pi\)
\(762\) 0 0
\(763\) 60.0000i 2.17215i
\(764\) 6.00000 0.217072
\(765\) −12.0000 + 6.00000i −0.433861 + 0.216930i
\(766\) 12.0000 0.433578
\(767\) 18.0000i 0.649942i
\(768\) 0 0
\(769\) −5.00000 −0.180305 −0.0901523 0.995928i \(-0.528735\pi\)
−0.0901523 + 0.995928i \(0.528735\pi\)
\(770\) −8.00000 16.0000i −0.288300 0.576600i
\(771\) 0 0
\(772\) 32.0000i 1.15171i
\(773\) 34.0000i 1.22290i 0.791285 + 0.611448i \(0.209412\pi\)
−0.791285 + 0.611448i \(0.790588\pi\)
\(774\) −12.0000 −0.431331
\(775\) −21.0000 + 28.0000i −0.754342 + 1.00579i
\(776\) 0 0
\(777\) 0 0
\(778\) 66.0000i 2.36621i
\(779\) 0 0
\(780\) 0 0
\(781\) 1.00000 0.0357828
\(782\) 24.0000i 0.858238i
\(783\) 0 0
\(784\) 36.0000 1.28571
\(785\) 8.00000 4.00000i 0.285532 0.142766i
\(786\) 0 0
\(787\) 22.0000i 0.784215i −0.919919 0.392108i \(-0.871746\pi\)
0.919919 0.392108i \(-0.128254\pi\)
\(788\) 36.0000i 1.28245i
\(789\) 0 0
\(790\)