Properties

Label 1805.2.a.r
Level $1805$
Weight $2$
Character orbit 1805.a
Self dual yes
Analytic conductor $14.413$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1805,2,Mod(1,1805)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1805, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1805.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1805 = 5 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1805.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,2,4,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.4129975648\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.5822000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 8x^{4} + 5x^{3} + 14x^{2} + x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{3} - \beta_1 + 1) q^{2} + ( - \beta_{4} + \beta_{3} + 1) q^{3} + (\beta_{4} - \beta_{2} + 1) q^{4} - q^{5} + ( - \beta_{5} - \beta_{2} + \beta_1 + 1) q^{6} + (\beta_{5} - \beta_1 + 1) q^{7}+ \cdots + ( - 4 \beta_{5} - 6 \beta_{4} + \cdots + 10) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} + 4 q^{3} + 8 q^{4} - 6 q^{5} + 8 q^{6} + 7 q^{7} + 10 q^{9} - 2 q^{10} + 15 q^{11} - 20 q^{12} + 6 q^{13} + 20 q^{14} - 4 q^{15} + 20 q^{16} + 5 q^{17} - 8 q^{18} - 8 q^{20} + 7 q^{21} + 14 q^{22}+ \cdots + 58 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} - 8x^{4} + 5x^{3} + 14x^{2} + x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{4} - 5\nu^{2} - 1 ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{5} - \nu^{4} - 7\nu^{3} + 5\nu^{2} + 9\nu - 1 ) / 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{5} - 2\nu^{4} - 7\nu^{3} + 12\nu^{2} + 9\nu - 6 ) / 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{5} + \nu^{4} + 9\nu^{3} - 5\nu^{2} - 19\nu - 1 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{4} - \beta_{3} + \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} + \beta_{3} + 5\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 5\beta_{4} - 5\beta_{3} + 7\beta_{2} + 16 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 7\beta_{5} + 9\beta_{3} + 2\beta_{2} + 26\beta _1 + 9 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.03780
2.47848
−0.343361
0.228906
−2.31247
−1.08935
−2.65583 −2.41205 5.05344 −1.00000 6.40599 −2.14656 −8.10942 2.81796 2.65583
1.2 −0.860448 0.867394 −1.25963 −1.00000 −0.746348 −0.263921 2.80474 −2.24763 0.860448
1.3 −0.274673 3.09431 −1.92455 −1.00000 −0.849925 3.63772 1.07797 6.57477 0.274673
1.4 1.38913 3.31798 −0.0703236 −1.00000 4.60910 −1.97948 −2.87594 8.00899 −1.38913
1.5 1.69444 −0.918335 0.871115 −1.00000 −1.55606 3.12687 −1.91282 −2.15666 −1.69444
1.6 2.70739 0.0506943 5.32995 −1.00000 0.137249 4.62536 9.01547 −2.99743 −2.70739
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1805.2.a.r yes 6
5.b even 2 1 9025.2.a.bq 6
19.b odd 2 1 1805.2.a.q 6
95.d odd 2 1 9025.2.a.ca 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1805.2.a.q 6 19.b odd 2 1
1805.2.a.r yes 6 1.a even 1 1 trivial
9025.2.a.bq 6 5.b even 2 1
9025.2.a.ca 6 95.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1805))\):

\( T_{2}^{6} - 2T_{2}^{5} - 8T_{2}^{4} + 16T_{2}^{3} + 7T_{2}^{2} - 14T_{2} - 4 \) Copy content Toggle raw display
\( T_{3}^{6} - 4T_{3}^{5} - 6T_{3}^{4} + 28T_{3}^{3} + 4T_{3}^{2} - 20T_{3} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - 2 T^{5} + \cdots - 4 \) Copy content Toggle raw display
$3$ \( T^{6} - 4 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( (T + 1)^{6} \) Copy content Toggle raw display
$7$ \( T^{6} - 7 T^{5} + \cdots - 59 \) Copy content Toggle raw display
$11$ \( T^{6} - 15 T^{5} + \cdots - 4496 \) Copy content Toggle raw display
$13$ \( T^{6} - 6 T^{5} + \cdots + 304 \) Copy content Toggle raw display
$17$ \( T^{6} - 5 T^{5} + \cdots - 16 \) Copy content Toggle raw display
$19$ \( T^{6} \) Copy content Toggle raw display
$23$ \( T^{6} - 68 T^{4} + \cdots + 61 \) Copy content Toggle raw display
$29$ \( T^{6} + 20 T^{5} + \cdots - 17236 \) Copy content Toggle raw display
$31$ \( T^{6} - 12 T^{5} + \cdots - 16 \) Copy content Toggle raw display
$37$ \( T^{6} - 20 T^{5} + \cdots - 304 \) Copy content Toggle raw display
$41$ \( T^{6} - 8 T^{5} + \cdots + 149 \) Copy content Toggle raw display
$43$ \( T^{6} - 27 T^{5} + \cdots + 496 \) Copy content Toggle raw display
$47$ \( T^{6} + 8 T^{5} + \cdots + 29 \) Copy content Toggle raw display
$53$ \( T^{6} - 19 T^{5} + \cdots - 4544 \) Copy content Toggle raw display
$59$ \( T^{6} + 41 T^{5} + \cdots + 6416 \) Copy content Toggle raw display
$61$ \( T^{6} - 6 T^{5} + \cdots + 11584 \) Copy content Toggle raw display
$67$ \( T^{6} + 15 T^{5} + \cdots - 961 \) Copy content Toggle raw display
$71$ \( T^{6} - 2 T^{5} + \cdots - 114224 \) Copy content Toggle raw display
$73$ \( T^{6} - 8 T^{5} + \cdots + 496 \) Copy content Toggle raw display
$79$ \( T^{6} - 18 T^{5} + \cdots + 64 \) Copy content Toggle raw display
$83$ \( T^{6} + 10 T^{5} + \cdots + 24304 \) Copy content Toggle raw display
$89$ \( T^{6} - 17 T^{5} + \cdots - 4139 \) Copy content Toggle raw display
$97$ \( T^{6} + 4 T^{5} + \cdots - 198704 \) Copy content Toggle raw display
show more
show less