Properties

Label 1805.2.a.f.1.2
Level $1805$
Weight $2$
Character 1805.1
Self dual yes
Analytic conductor $14.413$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1805,2,Mod(1,1805)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1805, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1805.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1805 = 5 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1805.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.4129975648\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 95)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.311108\) of defining polynomial
Character \(\chi\) \(=\) 1805.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.311108 q^{2} -2.90321 q^{3} -1.90321 q^{4} +1.00000 q^{5} +0.903212 q^{6} -4.42864 q^{7} +1.21432 q^{8} +5.42864 q^{9} -0.311108 q^{10} -2.62222 q^{11} +5.52543 q^{12} -0.474572 q^{13} +1.37778 q^{14} -2.90321 q^{15} +3.42864 q^{16} +5.05086 q^{17} -1.68889 q^{18} -1.90321 q^{20} +12.8573 q^{21} +0.815792 q^{22} -1.37778 q^{23} -3.52543 q^{24} +1.00000 q^{25} +0.147643 q^{26} -7.05086 q^{27} +8.42864 q^{28} +7.80642 q^{29} +0.903212 q^{30} -1.24443 q^{31} -3.49532 q^{32} +7.61285 q^{33} -1.57136 q^{34} -4.42864 q^{35} -10.3319 q^{36} -4.47457 q^{37} +1.37778 q^{39} +1.21432 q^{40} +5.05086 q^{41} -4.00000 q^{42} +12.0415 q^{43} +4.99063 q^{44} +5.42864 q^{45} +0.428639 q^{46} -4.42864 q^{47} -9.95407 q^{48} +12.6128 q^{49} -0.311108 q^{50} -14.6637 q^{51} +0.903212 q^{52} -7.52543 q^{53} +2.19358 q^{54} -2.62222 q^{55} -5.37778 q^{56} -2.42864 q^{58} +2.19358 q^{59} +5.52543 q^{60} +3.67307 q^{61} +0.387152 q^{62} -24.0415 q^{63} -5.76986 q^{64} -0.474572 q^{65} -2.36842 q^{66} +1.65878 q^{67} -9.61285 q^{68} +4.00000 q^{69} +1.37778 q^{70} -7.61285 q^{71} +6.59210 q^{72} -3.80642 q^{73} +1.39207 q^{74} -2.90321 q^{75} +11.6128 q^{77} -0.428639 q^{78} +13.4193 q^{79} +3.42864 q^{80} +4.18421 q^{81} -1.57136 q^{82} -10.6222 q^{83} -24.4701 q^{84} +5.05086 q^{85} -3.74620 q^{86} -22.6637 q^{87} -3.18421 q^{88} +12.6637 q^{89} -1.68889 q^{90} +2.10171 q^{91} +2.62222 q^{92} +3.61285 q^{93} +1.37778 q^{94} +10.1476 q^{96} -17.8938 q^{97} -3.92396 q^{98} -14.2351 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} - 2 q^{3} + q^{4} + 3 q^{5} - 4 q^{6} - 3 q^{8} + 3 q^{9} - q^{10} - 8 q^{11} + 10 q^{12} - 8 q^{13} + 4 q^{14} - 2 q^{15} - 3 q^{16} + 2 q^{17} - 5 q^{18} + q^{20} + 12 q^{21} + 16 q^{22}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.311108 −0.219986 −0.109993 0.993932i \(-0.535083\pi\)
−0.109993 + 0.993932i \(0.535083\pi\)
\(3\) −2.90321 −1.67617 −0.838085 0.545540i \(-0.816325\pi\)
−0.838085 + 0.545540i \(0.816325\pi\)
\(4\) −1.90321 −0.951606
\(5\) 1.00000 0.447214
\(6\) 0.903212 0.368735
\(7\) −4.42864 −1.67387 −0.836934 0.547304i \(-0.815654\pi\)
−0.836934 + 0.547304i \(0.815654\pi\)
\(8\) 1.21432 0.429327
\(9\) 5.42864 1.80955
\(10\) −0.311108 −0.0983809
\(11\) −2.62222 −0.790628 −0.395314 0.918546i \(-0.629364\pi\)
−0.395314 + 0.918546i \(0.629364\pi\)
\(12\) 5.52543 1.59505
\(13\) −0.474572 −0.131623 −0.0658114 0.997832i \(-0.520964\pi\)
−0.0658114 + 0.997832i \(0.520964\pi\)
\(14\) 1.37778 0.368228
\(15\) −2.90321 −0.749606
\(16\) 3.42864 0.857160
\(17\) 5.05086 1.22501 0.612506 0.790466i \(-0.290161\pi\)
0.612506 + 0.790466i \(0.290161\pi\)
\(18\) −1.68889 −0.398076
\(19\) 0 0
\(20\) −1.90321 −0.425571
\(21\) 12.8573 2.80569
\(22\) 0.815792 0.173927
\(23\) −1.37778 −0.287288 −0.143644 0.989629i \(-0.545882\pi\)
−0.143644 + 0.989629i \(0.545882\pi\)
\(24\) −3.52543 −0.719625
\(25\) 1.00000 0.200000
\(26\) 0.147643 0.0289552
\(27\) −7.05086 −1.35694
\(28\) 8.42864 1.59286
\(29\) 7.80642 1.44962 0.724808 0.688951i \(-0.241928\pi\)
0.724808 + 0.688951i \(0.241928\pi\)
\(30\) 0.903212 0.164903
\(31\) −1.24443 −0.223506 −0.111753 0.993736i \(-0.535647\pi\)
−0.111753 + 0.993736i \(0.535647\pi\)
\(32\) −3.49532 −0.617890
\(33\) 7.61285 1.32523
\(34\) −1.57136 −0.269486
\(35\) −4.42864 −0.748577
\(36\) −10.3319 −1.72198
\(37\) −4.47457 −0.735615 −0.367808 0.929902i \(-0.619891\pi\)
−0.367808 + 0.929902i \(0.619891\pi\)
\(38\) 0 0
\(39\) 1.37778 0.220622
\(40\) 1.21432 0.192001
\(41\) 5.05086 0.788811 0.394406 0.918936i \(-0.370951\pi\)
0.394406 + 0.918936i \(0.370951\pi\)
\(42\) −4.00000 −0.617213
\(43\) 12.0415 1.83631 0.918155 0.396222i \(-0.129679\pi\)
0.918155 + 0.396222i \(0.129679\pi\)
\(44\) 4.99063 0.752366
\(45\) 5.42864 0.809254
\(46\) 0.428639 0.0631994
\(47\) −4.42864 −0.645983 −0.322992 0.946402i \(-0.604689\pi\)
−0.322992 + 0.946402i \(0.604689\pi\)
\(48\) −9.95407 −1.43675
\(49\) 12.6128 1.80184
\(50\) −0.311108 −0.0439973
\(51\) −14.6637 −2.05333
\(52\) 0.903212 0.125253
\(53\) −7.52543 −1.03370 −0.516848 0.856077i \(-0.672895\pi\)
−0.516848 + 0.856077i \(0.672895\pi\)
\(54\) 2.19358 0.298508
\(55\) −2.62222 −0.353579
\(56\) −5.37778 −0.718637
\(57\) 0 0
\(58\) −2.42864 −0.318896
\(59\) 2.19358 0.285579 0.142790 0.989753i \(-0.454393\pi\)
0.142790 + 0.989753i \(0.454393\pi\)
\(60\) 5.52543 0.713330
\(61\) 3.67307 0.470289 0.235144 0.971960i \(-0.424444\pi\)
0.235144 + 0.971960i \(0.424444\pi\)
\(62\) 0.387152 0.0491684
\(63\) −24.0415 −3.02894
\(64\) −5.76986 −0.721232
\(65\) −0.474572 −0.0588635
\(66\) −2.36842 −0.291532
\(67\) 1.65878 0.202652 0.101326 0.994853i \(-0.467691\pi\)
0.101326 + 0.994853i \(0.467691\pi\)
\(68\) −9.61285 −1.16573
\(69\) 4.00000 0.481543
\(70\) 1.37778 0.164677
\(71\) −7.61285 −0.903479 −0.451739 0.892150i \(-0.649196\pi\)
−0.451739 + 0.892150i \(0.649196\pi\)
\(72\) 6.59210 0.776887
\(73\) −3.80642 −0.445508 −0.222754 0.974875i \(-0.571505\pi\)
−0.222754 + 0.974875i \(0.571505\pi\)
\(74\) 1.39207 0.161825
\(75\) −2.90321 −0.335234
\(76\) 0 0
\(77\) 11.6128 1.32341
\(78\) −0.428639 −0.0485339
\(79\) 13.4193 1.50979 0.754893 0.655848i \(-0.227689\pi\)
0.754893 + 0.655848i \(0.227689\pi\)
\(80\) 3.42864 0.383334
\(81\) 4.18421 0.464912
\(82\) −1.57136 −0.173528
\(83\) −10.6222 −1.16594 −0.582970 0.812494i \(-0.698109\pi\)
−0.582970 + 0.812494i \(0.698109\pi\)
\(84\) −24.4701 −2.66991
\(85\) 5.05086 0.547842
\(86\) −3.74620 −0.403963
\(87\) −22.6637 −2.42980
\(88\) −3.18421 −0.339438
\(89\) 12.6637 1.34235 0.671175 0.741299i \(-0.265790\pi\)
0.671175 + 0.741299i \(0.265790\pi\)
\(90\) −1.68889 −0.178025
\(91\) 2.10171 0.220319
\(92\) 2.62222 0.273385
\(93\) 3.61285 0.374635
\(94\) 1.37778 0.142108
\(95\) 0 0
\(96\) 10.1476 1.03569
\(97\) −17.8938 −1.81684 −0.908422 0.418054i \(-0.862712\pi\)
−0.908422 + 0.418054i \(0.862712\pi\)
\(98\) −3.92396 −0.396379
\(99\) −14.2351 −1.43068
\(100\) −1.90321 −0.190321
\(101\) −10.4286 −1.03769 −0.518844 0.854869i \(-0.673638\pi\)
−0.518844 + 0.854869i \(0.673638\pi\)
\(102\) 4.56199 0.451705
\(103\) 5.65878 0.557576 0.278788 0.960353i \(-0.410067\pi\)
0.278788 + 0.960353i \(0.410067\pi\)
\(104\) −0.576283 −0.0565092
\(105\) 12.8573 1.25474
\(106\) 2.34122 0.227399
\(107\) −6.90321 −0.667359 −0.333679 0.942687i \(-0.608290\pi\)
−0.333679 + 0.942687i \(0.608290\pi\)
\(108\) 13.4193 1.29127
\(109\) −5.61285 −0.537613 −0.268807 0.963194i \(-0.586629\pi\)
−0.268807 + 0.963194i \(0.586629\pi\)
\(110\) 0.815792 0.0777827
\(111\) 12.9906 1.23302
\(112\) −15.1842 −1.43477
\(113\) −13.8938 −1.30702 −0.653511 0.756917i \(-0.726705\pi\)
−0.653511 + 0.756917i \(0.726705\pi\)
\(114\) 0 0
\(115\) −1.37778 −0.128479
\(116\) −14.8573 −1.37946
\(117\) −2.57628 −0.238177
\(118\) −0.682439 −0.0628236
\(119\) −22.3684 −2.05051
\(120\) −3.52543 −0.321826
\(121\) −4.12399 −0.374908
\(122\) −1.14272 −0.103457
\(123\) −14.6637 −1.32218
\(124\) 2.36842 0.212690
\(125\) 1.00000 0.0894427
\(126\) 7.47949 0.666326
\(127\) 7.19850 0.638763 0.319382 0.947626i \(-0.396525\pi\)
0.319382 + 0.947626i \(0.396525\pi\)
\(128\) 8.78568 0.776552
\(129\) −34.9590 −3.07797
\(130\) 0.147643 0.0129492
\(131\) −2.10171 −0.183627 −0.0918136 0.995776i \(-0.529266\pi\)
−0.0918136 + 0.995776i \(0.529266\pi\)
\(132\) −14.4889 −1.26109
\(133\) 0 0
\(134\) −0.516060 −0.0445808
\(135\) −7.05086 −0.606841
\(136\) 6.13335 0.525931
\(137\) 1.70471 0.145644 0.0728218 0.997345i \(-0.476800\pi\)
0.0728218 + 0.997345i \(0.476800\pi\)
\(138\) −1.24443 −0.105933
\(139\) 8.72393 0.739954 0.369977 0.929041i \(-0.379366\pi\)
0.369977 + 0.929041i \(0.379366\pi\)
\(140\) 8.42864 0.712350
\(141\) 12.8573 1.08278
\(142\) 2.36842 0.198753
\(143\) 1.24443 0.104065
\(144\) 18.6128 1.55107
\(145\) 7.80642 0.648288
\(146\) 1.18421 0.0980058
\(147\) −36.6178 −3.02018
\(148\) 8.51606 0.700016
\(149\) −6.81579 −0.558371 −0.279186 0.960237i \(-0.590065\pi\)
−0.279186 + 0.960237i \(0.590065\pi\)
\(150\) 0.903212 0.0737469
\(151\) 5.80642 0.472520 0.236260 0.971690i \(-0.424078\pi\)
0.236260 + 0.971690i \(0.424078\pi\)
\(152\) 0 0
\(153\) 27.4193 2.21672
\(154\) −3.61285 −0.291132
\(155\) −1.24443 −0.0999551
\(156\) −2.62222 −0.209945
\(157\) 0.193576 0.0154491 0.00772453 0.999970i \(-0.497541\pi\)
0.00772453 + 0.999970i \(0.497541\pi\)
\(158\) −4.17484 −0.332132
\(159\) 21.8479 1.73265
\(160\) −3.49532 −0.276329
\(161\) 6.10171 0.480882
\(162\) −1.30174 −0.102274
\(163\) −8.42864 −0.660182 −0.330091 0.943949i \(-0.607079\pi\)
−0.330091 + 0.943949i \(0.607079\pi\)
\(164\) −9.61285 −0.750637
\(165\) 7.61285 0.592659
\(166\) 3.30465 0.256491
\(167\) −12.4429 −0.962863 −0.481431 0.876484i \(-0.659883\pi\)
−0.481431 + 0.876484i \(0.659883\pi\)
\(168\) 15.6128 1.20456
\(169\) −12.7748 −0.982675
\(170\) −1.57136 −0.120518
\(171\) 0 0
\(172\) −22.9175 −1.74744
\(173\) 22.1891 1.68701 0.843504 0.537123i \(-0.180489\pi\)
0.843504 + 0.537123i \(0.180489\pi\)
\(174\) 7.05086 0.534524
\(175\) −4.42864 −0.334774
\(176\) −8.99063 −0.677694
\(177\) −6.36842 −0.478679
\(178\) −3.93978 −0.295299
\(179\) 11.9081 0.890056 0.445028 0.895517i \(-0.353194\pi\)
0.445028 + 0.895517i \(0.353194\pi\)
\(180\) −10.3319 −0.770091
\(181\) −17.6128 −1.30915 −0.654576 0.755996i \(-0.727153\pi\)
−0.654576 + 0.755996i \(0.727153\pi\)
\(182\) −0.653858 −0.0484672
\(183\) −10.6637 −0.788284
\(184\) −1.67307 −0.123340
\(185\) −4.47457 −0.328977
\(186\) −1.12399 −0.0824146
\(187\) −13.2444 −0.968529
\(188\) 8.42864 0.614722
\(189\) 31.2257 2.27134
\(190\) 0 0
\(191\) −0.266706 −0.0192982 −0.00964909 0.999953i \(-0.503071\pi\)
−0.00964909 + 0.999953i \(0.503071\pi\)
\(192\) 16.7511 1.20891
\(193\) −2.66815 −0.192058 −0.0960288 0.995379i \(-0.530614\pi\)
−0.0960288 + 0.995379i \(0.530614\pi\)
\(194\) 5.56691 0.399681
\(195\) 1.37778 0.0986652
\(196\) −24.0049 −1.71464
\(197\) −5.34614 −0.380897 −0.190448 0.981697i \(-0.560994\pi\)
−0.190448 + 0.981697i \(0.560994\pi\)
\(198\) 4.42864 0.314730
\(199\) 17.1240 1.21389 0.606944 0.794745i \(-0.292395\pi\)
0.606944 + 0.794745i \(0.292395\pi\)
\(200\) 1.21432 0.0858654
\(201\) −4.81579 −0.339680
\(202\) 3.24443 0.228277
\(203\) −34.5718 −2.42647
\(204\) 27.9081 1.95396
\(205\) 5.05086 0.352767
\(206\) −1.76049 −0.122659
\(207\) −7.47949 −0.519861
\(208\) −1.62714 −0.112822
\(209\) 0 0
\(210\) −4.00000 −0.276026
\(211\) −13.1526 −0.905460 −0.452730 0.891648i \(-0.649550\pi\)
−0.452730 + 0.891648i \(0.649550\pi\)
\(212\) 14.3225 0.983672
\(213\) 22.1017 1.51438
\(214\) 2.14764 0.146810
\(215\) 12.0415 0.821223
\(216\) −8.56199 −0.582570
\(217\) 5.51114 0.374120
\(218\) 1.74620 0.118268
\(219\) 11.0509 0.746748
\(220\) 4.99063 0.336468
\(221\) −2.39700 −0.161239
\(222\) −4.04149 −0.271247
\(223\) 10.5161 0.704207 0.352104 0.935961i \(-0.385466\pi\)
0.352104 + 0.935961i \(0.385466\pi\)
\(224\) 15.4795 1.03427
\(225\) 5.42864 0.361909
\(226\) 4.32248 0.287527
\(227\) −6.90321 −0.458182 −0.229091 0.973405i \(-0.573575\pi\)
−0.229091 + 0.973405i \(0.573575\pi\)
\(228\) 0 0
\(229\) 18.0415 1.19222 0.596108 0.802905i \(-0.296713\pi\)
0.596108 + 0.802905i \(0.296713\pi\)
\(230\) 0.428639 0.0282637
\(231\) −33.7146 −2.21826
\(232\) 9.47949 0.622359
\(233\) −12.3684 −0.810282 −0.405141 0.914254i \(-0.632778\pi\)
−0.405141 + 0.914254i \(0.632778\pi\)
\(234\) 0.801502 0.0523958
\(235\) −4.42864 −0.288893
\(236\) −4.17484 −0.271759
\(237\) −38.9590 −2.53066
\(238\) 6.95899 0.451084
\(239\) 24.8573 1.60788 0.803942 0.594708i \(-0.202732\pi\)
0.803942 + 0.594708i \(0.202732\pi\)
\(240\) −9.95407 −0.642532
\(241\) −9.05086 −0.583017 −0.291508 0.956568i \(-0.594157\pi\)
−0.291508 + 0.956568i \(0.594157\pi\)
\(242\) 1.28300 0.0824746
\(243\) 9.00492 0.577666
\(244\) −6.99063 −0.447529
\(245\) 12.6128 0.805805
\(246\) 4.56199 0.290862
\(247\) 0 0
\(248\) −1.51114 −0.0959573
\(249\) 30.8385 1.95431
\(250\) −0.311108 −0.0196762
\(251\) −22.5718 −1.42472 −0.712361 0.701813i \(-0.752374\pi\)
−0.712361 + 0.701813i \(0.752374\pi\)
\(252\) 45.7560 2.88236
\(253\) 3.61285 0.227138
\(254\) −2.23951 −0.140519
\(255\) −14.6637 −0.918277
\(256\) 8.80642 0.550401
\(257\) −4.94470 −0.308442 −0.154221 0.988036i \(-0.549287\pi\)
−0.154221 + 0.988036i \(0.549287\pi\)
\(258\) 10.8760 0.677111
\(259\) 19.8163 1.23132
\(260\) 0.903212 0.0560148
\(261\) 42.3783 2.62315
\(262\) 0.653858 0.0403955
\(263\) 9.37778 0.578259 0.289129 0.957290i \(-0.406634\pi\)
0.289129 + 0.957290i \(0.406634\pi\)
\(264\) 9.24443 0.568955
\(265\) −7.52543 −0.462283
\(266\) 0 0
\(267\) −36.7654 −2.25001
\(268\) −3.15701 −0.192845
\(269\) −19.7146 −1.20202 −0.601009 0.799242i \(-0.705234\pi\)
−0.601009 + 0.799242i \(0.705234\pi\)
\(270\) 2.19358 0.133497
\(271\) −1.11108 −0.0674932 −0.0337466 0.999430i \(-0.510744\pi\)
−0.0337466 + 0.999430i \(0.510744\pi\)
\(272\) 17.3176 1.05003
\(273\) −6.10171 −0.369292
\(274\) −0.530350 −0.0320396
\(275\) −2.62222 −0.158126
\(276\) −7.61285 −0.458240
\(277\) 5.52098 0.331724 0.165862 0.986149i \(-0.446959\pi\)
0.165862 + 0.986149i \(0.446959\pi\)
\(278\) −2.71408 −0.162780
\(279\) −6.75557 −0.404445
\(280\) −5.37778 −0.321384
\(281\) 15.8064 0.942932 0.471466 0.881884i \(-0.343725\pi\)
0.471466 + 0.881884i \(0.343725\pi\)
\(282\) −4.00000 −0.238197
\(283\) 14.2351 0.846187 0.423093 0.906086i \(-0.360944\pi\)
0.423093 + 0.906086i \(0.360944\pi\)
\(284\) 14.4889 0.859756
\(285\) 0 0
\(286\) −0.387152 −0.0228928
\(287\) −22.3684 −1.32037
\(288\) −18.9748 −1.11810
\(289\) 8.51114 0.500655
\(290\) −2.42864 −0.142615
\(291\) 51.9496 3.04534
\(292\) 7.24443 0.423948
\(293\) −7.52543 −0.439640 −0.219820 0.975540i \(-0.570547\pi\)
−0.219820 + 0.975540i \(0.570547\pi\)
\(294\) 11.3921 0.664399
\(295\) 2.19358 0.127715
\(296\) −5.43356 −0.315819
\(297\) 18.4889 1.07283
\(298\) 2.12045 0.122834
\(299\) 0.653858 0.0378136
\(300\) 5.52543 0.319011
\(301\) −53.3274 −3.07374
\(302\) −1.80642 −0.103948
\(303\) 30.2766 1.73934
\(304\) 0 0
\(305\) 3.67307 0.210319
\(306\) −8.53035 −0.487648
\(307\) 2.81135 0.160452 0.0802260 0.996777i \(-0.474436\pi\)
0.0802260 + 0.996777i \(0.474436\pi\)
\(308\) −22.1017 −1.25936
\(309\) −16.4286 −0.934593
\(310\) 0.387152 0.0219888
\(311\) −13.8479 −0.785243 −0.392621 0.919700i \(-0.628432\pi\)
−0.392621 + 0.919700i \(0.628432\pi\)
\(312\) 1.67307 0.0947190
\(313\) 23.2444 1.31385 0.656926 0.753955i \(-0.271856\pi\)
0.656926 + 0.753955i \(0.271856\pi\)
\(314\) −0.0602231 −0.00339858
\(315\) −24.0415 −1.35458
\(316\) −25.5397 −1.43672
\(317\) −2.96343 −0.166443 −0.0832215 0.996531i \(-0.526521\pi\)
−0.0832215 + 0.996531i \(0.526521\pi\)
\(318\) −6.79706 −0.381160
\(319\) −20.4701 −1.14611
\(320\) −5.76986 −0.322545
\(321\) 20.0415 1.11861
\(322\) −1.89829 −0.105788
\(323\) 0 0
\(324\) −7.96343 −0.442413
\(325\) −0.474572 −0.0263245
\(326\) 2.62222 0.145231
\(327\) 16.2953 0.901131
\(328\) 6.13335 0.338658
\(329\) 19.6128 1.08129
\(330\) −2.36842 −0.130377
\(331\) 0.949145 0.0521697 0.0260849 0.999660i \(-0.491696\pi\)
0.0260849 + 0.999660i \(0.491696\pi\)
\(332\) 20.2163 1.10952
\(333\) −24.2908 −1.33113
\(334\) 3.87109 0.211817
\(335\) 1.65878 0.0906289
\(336\) 44.0830 2.40492
\(337\) −2.28100 −0.124254 −0.0621269 0.998068i \(-0.519788\pi\)
−0.0621269 + 0.998068i \(0.519788\pi\)
\(338\) 3.97433 0.216175
\(339\) 40.3368 2.19079
\(340\) −9.61285 −0.521330
\(341\) 3.26317 0.176710
\(342\) 0 0
\(343\) −24.8573 −1.34217
\(344\) 14.6222 0.788377
\(345\) 4.00000 0.215353
\(346\) −6.90321 −0.371119
\(347\) 12.3368 0.662273 0.331136 0.943583i \(-0.392568\pi\)
0.331136 + 0.943583i \(0.392568\pi\)
\(348\) 43.1338 2.31222
\(349\) −10.0000 −0.535288 −0.267644 0.963518i \(-0.586245\pi\)
−0.267644 + 0.963518i \(0.586245\pi\)
\(350\) 1.37778 0.0736457
\(351\) 3.34614 0.178604
\(352\) 9.16547 0.488521
\(353\) 2.56199 0.136361 0.0681806 0.997673i \(-0.478281\pi\)
0.0681806 + 0.997673i \(0.478281\pi\)
\(354\) 1.98126 0.105303
\(355\) −7.61285 −0.404048
\(356\) −24.1017 −1.27739
\(357\) 64.9403 3.43700
\(358\) −3.70471 −0.195800
\(359\) 24.3368 1.28445 0.642223 0.766518i \(-0.278012\pi\)
0.642223 + 0.766518i \(0.278012\pi\)
\(360\) 6.59210 0.347434
\(361\) 0 0
\(362\) 5.47949 0.287996
\(363\) 11.9728 0.628409
\(364\) −4.00000 −0.209657
\(365\) −3.80642 −0.199237
\(366\) 3.31756 0.173412
\(367\) −4.42864 −0.231173 −0.115587 0.993297i \(-0.536875\pi\)
−0.115587 + 0.993297i \(0.536875\pi\)
\(368\) −4.72393 −0.246252
\(369\) 27.4193 1.42739
\(370\) 1.39207 0.0723705
\(371\) 33.3274 1.73027
\(372\) −6.87601 −0.356505
\(373\) 23.7003 1.22715 0.613577 0.789635i \(-0.289730\pi\)
0.613577 + 0.789635i \(0.289730\pi\)
\(374\) 4.12045 0.213063
\(375\) −2.90321 −0.149921
\(376\) −5.37778 −0.277338
\(377\) −3.70471 −0.190802
\(378\) −9.71456 −0.499663
\(379\) −8.20342 −0.421381 −0.210691 0.977553i \(-0.567571\pi\)
−0.210691 + 0.977553i \(0.567571\pi\)
\(380\) 0 0
\(381\) −20.8988 −1.07068
\(382\) 0.0829744 0.00424534
\(383\) 20.9131 1.06861 0.534304 0.845293i \(-0.320574\pi\)
0.534304 + 0.845293i \(0.320574\pi\)
\(384\) −25.5067 −1.30163
\(385\) 11.6128 0.591846
\(386\) 0.830082 0.0422501
\(387\) 65.3689 3.32289
\(388\) 34.0558 1.72892
\(389\) −24.1017 −1.22201 −0.611003 0.791629i \(-0.709234\pi\)
−0.611003 + 0.791629i \(0.709234\pi\)
\(390\) −0.428639 −0.0217050
\(391\) −6.95899 −0.351931
\(392\) 15.3160 0.773576
\(393\) 6.10171 0.307791
\(394\) 1.66323 0.0837921
\(395\) 13.4193 0.675197
\(396\) 27.0923 1.36144
\(397\) 7.92687 0.397838 0.198919 0.980016i \(-0.436257\pi\)
0.198919 + 0.980016i \(0.436257\pi\)
\(398\) −5.32741 −0.267039
\(399\) 0 0
\(400\) 3.42864 0.171432
\(401\) 32.5718 1.62656 0.813280 0.581873i \(-0.197680\pi\)
0.813280 + 0.581873i \(0.197680\pi\)
\(402\) 1.49823 0.0747249
\(403\) 0.590573 0.0294185
\(404\) 19.8479 0.987470
\(405\) 4.18421 0.207915
\(406\) 10.7556 0.533790
\(407\) 11.7333 0.581598
\(408\) −17.8064 −0.881549
\(409\) −36.3684 −1.79830 −0.899151 0.437638i \(-0.855815\pi\)
−0.899151 + 0.437638i \(0.855815\pi\)
\(410\) −1.57136 −0.0776040
\(411\) −4.94914 −0.244123
\(412\) −10.7699 −0.530593
\(413\) −9.71456 −0.478022
\(414\) 2.32693 0.114362
\(415\) −10.6222 −0.521424
\(416\) 1.65878 0.0813284
\(417\) −25.3274 −1.24029
\(418\) 0 0
\(419\) −31.6958 −1.54844 −0.774221 0.632915i \(-0.781858\pi\)
−0.774221 + 0.632915i \(0.781858\pi\)
\(420\) −24.4701 −1.19402
\(421\) −37.4005 −1.82279 −0.911395 0.411532i \(-0.864994\pi\)
−0.911395 + 0.411532i \(0.864994\pi\)
\(422\) 4.09187 0.199189
\(423\) −24.0415 −1.16894
\(424\) −9.13828 −0.443794
\(425\) 5.05086 0.245002
\(426\) −6.87601 −0.333144
\(427\) −16.2667 −0.787201
\(428\) 13.1383 0.635063
\(429\) −3.61285 −0.174430
\(430\) −3.74620 −0.180658
\(431\) −4.94914 −0.238392 −0.119196 0.992871i \(-0.538032\pi\)
−0.119196 + 0.992871i \(0.538032\pi\)
\(432\) −24.1748 −1.16311
\(433\) −32.3827 −1.55621 −0.778107 0.628132i \(-0.783820\pi\)
−0.778107 + 0.628132i \(0.783820\pi\)
\(434\) −1.71456 −0.0823014
\(435\) −22.6637 −1.08664
\(436\) 10.6824 0.511596
\(437\) 0 0
\(438\) −3.43801 −0.164274
\(439\) −10.0731 −0.480764 −0.240382 0.970678i \(-0.577273\pi\)
−0.240382 + 0.970678i \(0.577273\pi\)
\(440\) −3.18421 −0.151801
\(441\) 68.4706 3.26050
\(442\) 0.745724 0.0354705
\(443\) −13.9684 −0.663657 −0.331828 0.943340i \(-0.607665\pi\)
−0.331828 + 0.943340i \(0.607665\pi\)
\(444\) −24.7239 −1.17335
\(445\) 12.6637 0.600317
\(446\) −3.27163 −0.154916
\(447\) 19.7877 0.935926
\(448\) 25.5526 1.20725
\(449\) −24.5718 −1.15962 −0.579808 0.814753i \(-0.696873\pi\)
−0.579808 + 0.814753i \(0.696873\pi\)
\(450\) −1.68889 −0.0796151
\(451\) −13.2444 −0.623656
\(452\) 26.4429 1.24377
\(453\) −16.8573 −0.792024
\(454\) 2.14764 0.100794
\(455\) 2.10171 0.0985297
\(456\) 0 0
\(457\) −3.51114 −0.164244 −0.0821220 0.996622i \(-0.526170\pi\)
−0.0821220 + 0.996622i \(0.526170\pi\)
\(458\) −5.61285 −0.262271
\(459\) −35.6128 −1.66227
\(460\) 2.62222 0.122261
\(461\) 10.2034 0.475221 0.237610 0.971361i \(-0.423636\pi\)
0.237610 + 0.971361i \(0.423636\pi\)
\(462\) 10.4889 0.487986
\(463\) 8.33677 0.387443 0.193721 0.981057i \(-0.437944\pi\)
0.193721 + 0.981057i \(0.437944\pi\)
\(464\) 26.7654 1.24255
\(465\) 3.61285 0.167542
\(466\) 3.84791 0.178251
\(467\) −42.7052 −1.97616 −0.988080 0.153940i \(-0.950804\pi\)
−0.988080 + 0.153940i \(0.950804\pi\)
\(468\) 4.90321 0.226651
\(469\) −7.34614 −0.339213
\(470\) 1.37778 0.0635525
\(471\) −0.561993 −0.0258953
\(472\) 2.66370 0.122607
\(473\) −31.5754 −1.45184
\(474\) 12.1204 0.556711
\(475\) 0 0
\(476\) 42.5718 1.95128
\(477\) −40.8528 −1.87052
\(478\) −7.73329 −0.353713
\(479\) 41.4608 1.89439 0.947195 0.320658i \(-0.103904\pi\)
0.947195 + 0.320658i \(0.103904\pi\)
\(480\) 10.1476 0.463174
\(481\) 2.12351 0.0968237
\(482\) 2.81579 0.128256
\(483\) −17.7146 −0.806040
\(484\) 7.84882 0.356764
\(485\) −17.8938 −0.812518
\(486\) −2.80150 −0.127079
\(487\) −30.0370 −1.36111 −0.680554 0.732698i \(-0.738261\pi\)
−0.680554 + 0.732698i \(0.738261\pi\)
\(488\) 4.46028 0.201907
\(489\) 24.4701 1.10658
\(490\) −3.92396 −0.177266
\(491\) 15.3461 0.692562 0.346281 0.938131i \(-0.387444\pi\)
0.346281 + 0.938131i \(0.387444\pi\)
\(492\) 27.9081 1.25820
\(493\) 39.4291 1.77580
\(494\) 0 0
\(495\) −14.2351 −0.639819
\(496\) −4.26671 −0.191581
\(497\) 33.7146 1.51230
\(498\) −9.59411 −0.429922
\(499\) −25.8479 −1.15711 −0.578556 0.815643i \(-0.696383\pi\)
−0.578556 + 0.815643i \(0.696383\pi\)
\(500\) −1.90321 −0.0851142
\(501\) 36.1245 1.61392
\(502\) 7.02227 0.313419
\(503\) −4.40006 −0.196189 −0.0980945 0.995177i \(-0.531275\pi\)
−0.0980945 + 0.995177i \(0.531275\pi\)
\(504\) −29.1941 −1.30041
\(505\) −10.4286 −0.464068
\(506\) −1.12399 −0.0499672
\(507\) 37.0879 1.64713
\(508\) −13.7003 −0.607851
\(509\) 27.2355 1.20719 0.603597 0.797290i \(-0.293734\pi\)
0.603597 + 0.797290i \(0.293734\pi\)
\(510\) 4.56199 0.202008
\(511\) 16.8573 0.745722
\(512\) −20.3111 −0.897633
\(513\) 0 0
\(514\) 1.53833 0.0678530
\(515\) 5.65878 0.249356
\(516\) 66.5344 2.92901
\(517\) 11.6128 0.510732
\(518\) −6.16500 −0.270874
\(519\) −64.4197 −2.82771
\(520\) −0.576283 −0.0252717
\(521\) −38.5531 −1.68904 −0.844521 0.535522i \(-0.820115\pi\)
−0.844521 + 0.535522i \(0.820115\pi\)
\(522\) −13.1842 −0.577057
\(523\) −18.1575 −0.793971 −0.396986 0.917825i \(-0.629944\pi\)
−0.396986 + 0.917825i \(0.629944\pi\)
\(524\) 4.00000 0.174741
\(525\) 12.8573 0.561138
\(526\) −2.91750 −0.127209
\(527\) −6.28544 −0.273798
\(528\) 26.1017 1.13593
\(529\) −21.1017 −0.917466
\(530\) 2.34122 0.101696
\(531\) 11.9081 0.516769
\(532\) 0 0
\(533\) −2.39700 −0.103825
\(534\) 11.4380 0.494971
\(535\) −6.90321 −0.298452
\(536\) 2.01429 0.0870041
\(537\) −34.5718 −1.49188
\(538\) 6.13335 0.264428
\(539\) −33.0736 −1.42458
\(540\) 13.4193 0.577474
\(541\) −13.7748 −0.592224 −0.296112 0.955153i \(-0.595690\pi\)
−0.296112 + 0.955153i \(0.595690\pi\)
\(542\) 0.345665 0.0148476
\(543\) 51.1338 2.19436
\(544\) −17.6543 −0.756923
\(545\) −5.61285 −0.240428
\(546\) 1.89829 0.0812393
\(547\) −42.9862 −1.83796 −0.918978 0.394308i \(-0.870984\pi\)
−0.918978 + 0.394308i \(0.870984\pi\)
\(548\) −3.24443 −0.138595
\(549\) 19.9398 0.851009
\(550\) 0.815792 0.0347855
\(551\) 0 0
\(552\) 4.85728 0.206740
\(553\) −59.4291 −2.52718
\(554\) −1.71762 −0.0729747
\(555\) 12.9906 0.551422
\(556\) −16.6035 −0.704144
\(557\) 14.2953 0.605711 0.302855 0.953037i \(-0.402060\pi\)
0.302855 + 0.953037i \(0.402060\pi\)
\(558\) 2.10171 0.0889725
\(559\) −5.71456 −0.241700
\(560\) −15.1842 −0.641650
\(561\) 38.4514 1.62342
\(562\) −4.91750 −0.207432
\(563\) −29.9541 −1.26241 −0.631207 0.775615i \(-0.717440\pi\)
−0.631207 + 0.775615i \(0.717440\pi\)
\(564\) −24.4701 −1.03038
\(565\) −13.8938 −0.584518
\(566\) −4.42864 −0.186150
\(567\) −18.5303 −0.778202
\(568\) −9.24443 −0.387888
\(569\) 10.0000 0.419222 0.209611 0.977785i \(-0.432780\pi\)
0.209611 + 0.977785i \(0.432780\pi\)
\(570\) 0 0
\(571\) −38.2351 −1.60009 −0.800044 0.599942i \(-0.795190\pi\)
−0.800044 + 0.599942i \(0.795190\pi\)
\(572\) −2.36842 −0.0990285
\(573\) 0.774305 0.0323470
\(574\) 6.95899 0.290463
\(575\) −1.37778 −0.0574576
\(576\) −31.3225 −1.30510
\(577\) −16.5718 −0.689895 −0.344947 0.938622i \(-0.612103\pi\)
−0.344947 + 0.938622i \(0.612103\pi\)
\(578\) −2.64788 −0.110137
\(579\) 7.74620 0.321921
\(580\) −14.8573 −0.616915
\(581\) 47.0420 1.95163
\(582\) −16.1619 −0.669934
\(583\) 19.7333 0.817270
\(584\) −4.62222 −0.191269
\(585\) −2.57628 −0.106516
\(586\) 2.34122 0.0967149
\(587\) 7.94962 0.328116 0.164058 0.986451i \(-0.447542\pi\)
0.164058 + 0.986451i \(0.447542\pi\)
\(588\) 69.6914 2.87402
\(589\) 0 0
\(590\) −0.682439 −0.0280956
\(591\) 15.5210 0.638448
\(592\) −15.3417 −0.630540
\(593\) −17.0794 −0.701368 −0.350684 0.936494i \(-0.614051\pi\)
−0.350684 + 0.936494i \(0.614051\pi\)
\(594\) −5.75203 −0.236009
\(595\) −22.3684 −0.917016
\(596\) 12.9719 0.531350
\(597\) −49.7146 −2.03468
\(598\) −0.203420 −0.00831848
\(599\) −5.68598 −0.232323 −0.116161 0.993230i \(-0.537059\pi\)
−0.116161 + 0.993230i \(0.537059\pi\)
\(600\) −3.52543 −0.143925
\(601\) 33.2543 1.35647 0.678235 0.734845i \(-0.262745\pi\)
0.678235 + 0.734845i \(0.262745\pi\)
\(602\) 16.5906 0.676181
\(603\) 9.00492 0.366709
\(604\) −11.0509 −0.449653
\(605\) −4.12399 −0.167664
\(606\) −9.41927 −0.382632
\(607\) 10.9032 0.442548 0.221274 0.975212i \(-0.428979\pi\)
0.221274 + 0.975212i \(0.428979\pi\)
\(608\) 0 0
\(609\) 100.369 4.06717
\(610\) −1.14272 −0.0462674
\(611\) 2.10171 0.0850261
\(612\) −52.1847 −2.10944
\(613\) −47.6227 −1.92346 −0.961731 0.273995i \(-0.911655\pi\)
−0.961731 + 0.273995i \(0.911655\pi\)
\(614\) −0.874632 −0.0352973
\(615\) −14.6637 −0.591298
\(616\) 14.1017 0.568174
\(617\) −46.6450 −1.87786 −0.938928 0.344114i \(-0.888179\pi\)
−0.938928 + 0.344114i \(0.888179\pi\)
\(618\) 5.11108 0.205598
\(619\) −32.2163 −1.29488 −0.647442 0.762115i \(-0.724161\pi\)
−0.647442 + 0.762115i \(0.724161\pi\)
\(620\) 2.36842 0.0951179
\(621\) 9.71456 0.389832
\(622\) 4.30819 0.172743
\(623\) −56.0830 −2.24692
\(624\) 4.72393 0.189108
\(625\) 1.00000 0.0400000
\(626\) −7.23152 −0.289030
\(627\) 0 0
\(628\) −0.368416 −0.0147014
\(629\) −22.6004 −0.901138
\(630\) 7.47949 0.297990
\(631\) −30.9719 −1.23297 −0.616486 0.787366i \(-0.711444\pi\)
−0.616486 + 0.787366i \(0.711444\pi\)
\(632\) 16.2953 0.648192
\(633\) 38.1847 1.51770
\(634\) 0.921948 0.0366152
\(635\) 7.19850 0.285664
\(636\) −41.5812 −1.64880
\(637\) −5.98571 −0.237162
\(638\) 6.36842 0.252128
\(639\) −41.3274 −1.63489
\(640\) 8.78568 0.347285
\(641\) 22.1748 0.875854 0.437927 0.899011i \(-0.355713\pi\)
0.437927 + 0.899011i \(0.355713\pi\)
\(642\) −6.23506 −0.246078
\(643\) −6.23506 −0.245887 −0.122943 0.992414i \(-0.539233\pi\)
−0.122943 + 0.992414i \(0.539233\pi\)
\(644\) −11.6128 −0.457610
\(645\) −34.9590 −1.37651
\(646\) 0 0
\(647\) −1.29481 −0.0509042 −0.0254521 0.999676i \(-0.508103\pi\)
−0.0254521 + 0.999676i \(0.508103\pi\)
\(648\) 5.08097 0.199599
\(649\) −5.75203 −0.225787
\(650\) 0.147643 0.00579104
\(651\) −16.0000 −0.627089
\(652\) 16.0415 0.628233
\(653\) 30.2953 1.18555 0.592773 0.805370i \(-0.298033\pi\)
0.592773 + 0.805370i \(0.298033\pi\)
\(654\) −5.06959 −0.198237
\(655\) −2.10171 −0.0821206
\(656\) 17.3176 0.676137
\(657\) −20.6637 −0.806168
\(658\) −6.10171 −0.237869
\(659\) 4.17484 0.162629 0.0813143 0.996689i \(-0.474088\pi\)
0.0813143 + 0.996689i \(0.474088\pi\)
\(660\) −14.4889 −0.563978
\(661\) 6.56199 0.255232 0.127616 0.991824i \(-0.459268\pi\)
0.127616 + 0.991824i \(0.459268\pi\)
\(662\) −0.295286 −0.0114766
\(663\) 6.95899 0.270265
\(664\) −12.8988 −0.500569
\(665\) 0 0
\(666\) 7.55707 0.292831
\(667\) −10.7556 −0.416457
\(668\) 23.6815 0.916266
\(669\) −30.5303 −1.18037
\(670\) −0.516060 −0.0199371
\(671\) −9.63158 −0.371823
\(672\) −44.9403 −1.73361
\(673\) −12.7413 −0.491140 −0.245570 0.969379i \(-0.578975\pi\)
−0.245570 + 0.969379i \(0.578975\pi\)
\(674\) 0.709636 0.0273341
\(675\) −7.05086 −0.271388
\(676\) 24.3131 0.935120
\(677\) 30.9260 1.18858 0.594291 0.804250i \(-0.297433\pi\)
0.594291 + 0.804250i \(0.297433\pi\)
\(678\) −12.5491 −0.481945
\(679\) 79.2454 3.04116
\(680\) 6.13335 0.235203
\(681\) 20.0415 0.767991
\(682\) −1.01520 −0.0388739
\(683\) −34.3412 −1.31403 −0.657015 0.753877i \(-0.728181\pi\)
−0.657015 + 0.753877i \(0.728181\pi\)
\(684\) 0 0
\(685\) 1.70471 0.0651338
\(686\) 7.73329 0.295259
\(687\) −52.3783 −1.99836
\(688\) 41.2859 1.57401
\(689\) 3.57136 0.136058
\(690\) −1.24443 −0.0473747
\(691\) 24.2163 0.921233 0.460616 0.887599i \(-0.347628\pi\)
0.460616 + 0.887599i \(0.347628\pi\)
\(692\) −42.2306 −1.60537
\(693\) 63.0420 2.39477
\(694\) −3.83807 −0.145691
\(695\) 8.72393 0.330917
\(696\) −27.5210 −1.04318
\(697\) 25.5111 0.966303
\(698\) 3.11108 0.117756
\(699\) 35.9081 1.35817
\(700\) 8.42864 0.318573
\(701\) 11.4064 0.430812 0.215406 0.976525i \(-0.430892\pi\)
0.215406 + 0.976525i \(0.430892\pi\)
\(702\) −1.04101 −0.0392904
\(703\) 0 0
\(704\) 15.1298 0.570226
\(705\) 12.8573 0.484233
\(706\) −0.797056 −0.0299976
\(707\) 46.1847 1.73695
\(708\) 12.1204 0.455514
\(709\) −13.0223 −0.489062 −0.244531 0.969642i \(-0.578634\pi\)
−0.244531 + 0.969642i \(0.578634\pi\)
\(710\) 2.36842 0.0888851
\(711\) 72.8484 2.73203
\(712\) 15.3778 0.576307
\(713\) 1.71456 0.0642107
\(714\) −20.2034 −0.756094
\(715\) 1.24443 0.0465391
\(716\) −22.6637 −0.846982
\(717\) −72.1659 −2.69509
\(718\) −7.57136 −0.282561
\(719\) 52.2163 1.94734 0.973670 0.227961i \(-0.0732059\pi\)
0.973670 + 0.227961i \(0.0732059\pi\)
\(720\) 18.6128 0.693660
\(721\) −25.0607 −0.933309
\(722\) 0 0
\(723\) 26.2766 0.977235
\(724\) 33.5210 1.24580
\(725\) 7.80642 0.289923
\(726\) −3.72483 −0.138242
\(727\) 14.0602 0.521465 0.260732 0.965411i \(-0.416036\pi\)
0.260732 + 0.965411i \(0.416036\pi\)
\(728\) 2.55215 0.0945889
\(729\) −38.6958 −1.43318
\(730\) 1.18421 0.0438295
\(731\) 60.8198 2.24950
\(732\) 20.2953 0.750135
\(733\) −4.48886 −0.165800 −0.0829000 0.996558i \(-0.526418\pi\)
−0.0829000 + 0.996558i \(0.526418\pi\)
\(734\) 1.37778 0.0508549
\(735\) −36.6178 −1.35067
\(736\) 4.81579 0.177512
\(737\) −4.34968 −0.160223
\(738\) −8.53035 −0.314007
\(739\) −20.0000 −0.735712 −0.367856 0.929883i \(-0.619908\pi\)
−0.367856 + 0.929883i \(0.619908\pi\)
\(740\) 8.51606 0.313057
\(741\) 0 0
\(742\) −10.3684 −0.380637
\(743\) 37.5669 1.37820 0.689098 0.724668i \(-0.258007\pi\)
0.689098 + 0.724668i \(0.258007\pi\)
\(744\) 4.38715 0.160841
\(745\) −6.81579 −0.249711
\(746\) −7.37334 −0.269957
\(747\) −57.6642 −2.10982
\(748\) 25.2070 0.921658
\(749\) 30.5718 1.11707
\(750\) 0.903212 0.0329806
\(751\) −52.5817 −1.91873 −0.959366 0.282163i \(-0.908948\pi\)
−0.959366 + 0.282163i \(0.908948\pi\)
\(752\) −15.1842 −0.553711
\(753\) 65.5308 2.38808
\(754\) 1.15257 0.0419740
\(755\) 5.80642 0.211317
\(756\) −59.4291 −2.16142
\(757\) 5.73329 0.208380 0.104190 0.994557i \(-0.466775\pi\)
0.104190 + 0.994557i \(0.466775\pi\)
\(758\) 2.55215 0.0926982
\(759\) −10.4889 −0.380722
\(760\) 0 0
\(761\) −32.7338 −1.18660 −0.593299 0.804982i \(-0.702175\pi\)
−0.593299 + 0.804982i \(0.702175\pi\)
\(762\) 6.50177 0.235534
\(763\) 24.8573 0.899894
\(764\) 0.507598 0.0183643
\(765\) 27.4193 0.991346
\(766\) −6.50622 −0.235079
\(767\) −1.04101 −0.0375887
\(768\) −25.5669 −0.922567
\(769\) 10.1619 0.366449 0.183224 0.983071i \(-0.441347\pi\)
0.183224 + 0.983071i \(0.441347\pi\)
\(770\) −3.61285 −0.130198
\(771\) 14.3555 0.517001
\(772\) 5.07805 0.182763
\(773\) 36.0785 1.29765 0.648827 0.760936i \(-0.275260\pi\)
0.648827 + 0.760936i \(0.275260\pi\)
\(774\) −20.3368 −0.730990
\(775\) −1.24443 −0.0447013
\(776\) −21.7288 −0.780020
\(777\) −57.5308 −2.06391
\(778\) 7.49823 0.268825
\(779\) 0 0
\(780\) −2.62222 −0.0938904
\(781\) 19.9625 0.714315
\(782\) 2.16500 0.0774201
\(783\) −55.0420 −1.96704
\(784\) 43.2449 1.54446
\(785\) 0.193576 0.00690903
\(786\) −1.89829 −0.0677098
\(787\) 30.5446 1.08880 0.544399 0.838826i \(-0.316758\pi\)
0.544399 + 0.838826i \(0.316758\pi\)
\(788\) 10.1748 0.362464
\(789\) −27.2257 −0.969260
\(790\) −4.17484 −0.148534
\(791\) 61.5308 2.18778
\(792\) −17.2859 −0.614228
\(793\) −1.74314 −0.0619007
\(794\) −2.46611 −0.0875190
\(795\) 21.8479 0.774866
\(796\) −32.5906 −1.15514
\(797\) 27.9037 0.988399 0.494200 0.869348i \(-0.335461\pi\)
0.494200 + 0.869348i \(0.335461\pi\)
\(798\) 0 0
\(799\) −22.3684 −0.791338
\(800\) −3.49532 −0.123578
\(801\) 68.7467 2.42904
\(802\) −10.1334 −0.357821
\(803\) 9.98126 0.352231
\(804\) 9.16547 0.323241
\(805\) 6.10171 0.215057
\(806\) −0.183732 −0.00647168
\(807\) 57.2355 2.01479
\(808\) −12.6637 −0.445508
\(809\) −25.6128 −0.900500 −0.450250 0.892903i \(-0.648665\pi\)
−0.450250 + 0.892903i \(0.648665\pi\)
\(810\) −1.30174 −0.0457385
\(811\) 6.01874 0.211346 0.105673 0.994401i \(-0.466300\pi\)
0.105673 + 0.994401i \(0.466300\pi\)
\(812\) 65.7975 2.30904
\(813\) 3.22570 0.113130
\(814\) −3.65032 −0.127944
\(815\) −8.42864 −0.295242
\(816\) −50.2766 −1.76003
\(817\) 0 0
\(818\) 11.3145 0.395602
\(819\) 11.4094 0.398678
\(820\) −9.61285 −0.335695
\(821\) −6.20342 −0.216501 −0.108250 0.994124i \(-0.534525\pi\)
−0.108250 + 0.994124i \(0.534525\pi\)
\(822\) 1.53972 0.0537038
\(823\) 1.75605 0.0612119 0.0306059 0.999532i \(-0.490256\pi\)
0.0306059 + 0.999532i \(0.490256\pi\)
\(824\) 6.87157 0.239382
\(825\) 7.61285 0.265045
\(826\) 3.02227 0.105158
\(827\) 53.2083 1.85024 0.925118 0.379680i \(-0.123966\pi\)
0.925118 + 0.379680i \(0.123966\pi\)
\(828\) 14.2351 0.494703
\(829\) 26.9777 0.936975 0.468488 0.883470i \(-0.344799\pi\)
0.468488 + 0.883470i \(0.344799\pi\)
\(830\) 3.30465 0.114706
\(831\) −16.0286 −0.556025
\(832\) 2.73822 0.0949306
\(833\) 63.7057 2.20727
\(834\) 7.87955 0.272847
\(835\) −12.4429 −0.430605
\(836\) 0 0
\(837\) 8.77430 0.303284
\(838\) 9.86082 0.340636
\(839\) −46.9501 −1.62090 −0.810449 0.585810i \(-0.800777\pi\)
−0.810449 + 0.585810i \(0.800777\pi\)
\(840\) 15.6128 0.538694
\(841\) 31.9403 1.10139
\(842\) 11.6356 0.400989
\(843\) −45.8894 −1.58051
\(844\) 25.0321 0.861641
\(845\) −12.7748 −0.439466
\(846\) 7.47949 0.257150
\(847\) 18.2636 0.627546
\(848\) −25.8020 −0.886044
\(849\) −41.3274 −1.41835
\(850\) −1.57136 −0.0538972
\(851\) 6.16500 0.211333
\(852\) −42.0642 −1.44110
\(853\) −46.4701 −1.59111 −0.795553 0.605883i \(-0.792820\pi\)
−0.795553 + 0.605883i \(0.792820\pi\)
\(854\) 5.06070 0.173174
\(855\) 0 0
\(856\) −8.38271 −0.286515
\(857\) 7.79213 0.266174 0.133087 0.991104i \(-0.457511\pi\)
0.133087 + 0.991104i \(0.457511\pi\)
\(858\) 1.12399 0.0383722
\(859\) −37.4479 −1.27770 −0.638852 0.769330i \(-0.720590\pi\)
−0.638852 + 0.769330i \(0.720590\pi\)
\(860\) −22.9175 −0.781480
\(861\) 64.9403 2.21316
\(862\) 1.53972 0.0524430
\(863\) −47.7605 −1.62579 −0.812893 0.582413i \(-0.802109\pi\)
−0.812893 + 0.582413i \(0.802109\pi\)
\(864\) 24.6450 0.838439
\(865\) 22.1891 0.754453
\(866\) 10.0745 0.342346
\(867\) −24.7096 −0.839183
\(868\) −10.4889 −0.356015
\(869\) −35.1882 −1.19368
\(870\) 7.05086 0.239046
\(871\) −0.787212 −0.0266736
\(872\) −6.81579 −0.230812
\(873\) −97.1392 −3.28766
\(874\) 0 0
\(875\) −4.42864 −0.149715
\(876\) −21.0321 −0.710609
\(877\) 22.5763 0.762347 0.381173 0.924504i \(-0.375520\pi\)
0.381173 + 0.924504i \(0.375520\pi\)
\(878\) 3.13383 0.105762
\(879\) 21.8479 0.736912
\(880\) −8.99063 −0.303074
\(881\) −10.8988 −0.367189 −0.183594 0.983002i \(-0.558773\pi\)
−0.183594 + 0.983002i \(0.558773\pi\)
\(882\) −21.3017 −0.717267
\(883\) −39.9782 −1.34537 −0.672687 0.739927i \(-0.734860\pi\)
−0.672687 + 0.739927i \(0.734860\pi\)
\(884\) 4.56199 0.153436
\(885\) −6.36842 −0.214072
\(886\) 4.34567 0.145995
\(887\) −49.6785 −1.66804 −0.834020 0.551734i \(-0.813966\pi\)
−0.834020 + 0.551734i \(0.813966\pi\)
\(888\) 15.7748 0.529367
\(889\) −31.8796 −1.06921
\(890\) −3.93978 −0.132062
\(891\) −10.9719 −0.367572
\(892\) −20.0143 −0.670128
\(893\) 0 0
\(894\) −6.15610 −0.205891
\(895\) 11.9081 0.398045
\(896\) −38.9086 −1.29985
\(897\) −1.89829 −0.0633821
\(898\) 7.64449 0.255100
\(899\) −9.71456 −0.323999
\(900\) −10.3319 −0.344395
\(901\) −38.0098 −1.26629
\(902\) 4.12045 0.137196
\(903\) 154.821 5.15211
\(904\) −16.8716 −0.561140
\(905\) −17.6128 −0.585471
\(906\) 5.24443 0.174235
\(907\) 18.2779 0.606909 0.303454 0.952846i \(-0.401860\pi\)
0.303454 + 0.952846i \(0.401860\pi\)
\(908\) 13.1383 0.436009
\(909\) −56.6133 −1.87775
\(910\) −0.653858 −0.0216752
\(911\) 44.7654 1.48314 0.741572 0.670873i \(-0.234080\pi\)
0.741572 + 0.670873i \(0.234080\pi\)
\(912\) 0 0
\(913\) 27.8537 0.921824
\(914\) 1.09234 0.0361315
\(915\) −10.6637 −0.352531
\(916\) −34.3368 −1.13452
\(917\) 9.30772 0.307368
\(918\) 11.0794 0.365676
\(919\) −33.6316 −1.10940 −0.554702 0.832049i \(-0.687168\pi\)
−0.554702 + 0.832049i \(0.687168\pi\)
\(920\) −1.67307 −0.0551595
\(921\) −8.16193 −0.268945
\(922\) −3.17436 −0.104542
\(923\) 3.61285 0.118918
\(924\) 64.1659 2.11090
\(925\) −4.47457 −0.147123
\(926\) −2.59364 −0.0852321
\(927\) 30.7195 1.00896
\(928\) −27.2859 −0.895704
\(929\) 13.0223 0.427247 0.213623 0.976916i \(-0.431473\pi\)
0.213623 + 0.976916i \(0.431473\pi\)
\(930\) −1.12399 −0.0368569
\(931\) 0 0
\(932\) 23.5397 0.771069
\(933\) 40.2034 1.31620
\(934\) 13.2859 0.434729
\(935\) −13.2444 −0.433139
\(936\) −3.12843 −0.102256
\(937\) 28.5433 0.932468 0.466234 0.884662i \(-0.345611\pi\)
0.466234 + 0.884662i \(0.345611\pi\)
\(938\) 2.28544 0.0746223
\(939\) −67.4835 −2.20224
\(940\) 8.42864 0.274912
\(941\) −13.2257 −0.431145 −0.215573 0.976488i \(-0.569162\pi\)
−0.215573 + 0.976488i \(0.569162\pi\)
\(942\) 0.174840 0.00569660
\(943\) −6.95899 −0.226616
\(944\) 7.52098 0.244787
\(945\) 31.2257 1.01577
\(946\) 9.82335 0.319385
\(947\) 3.66323 0.119039 0.0595194 0.998227i \(-0.481043\pi\)
0.0595194 + 0.998227i \(0.481043\pi\)
\(948\) 74.1472 2.40819
\(949\) 1.80642 0.0586390
\(950\) 0 0
\(951\) 8.60348 0.278987
\(952\) −27.1624 −0.880339
\(953\) −12.1704 −0.394238 −0.197119 0.980380i \(-0.563158\pi\)
−0.197119 + 0.980380i \(0.563158\pi\)
\(954\) 12.7096 0.411490
\(955\) −0.266706 −0.00863041
\(956\) −47.3087 −1.53007
\(957\) 59.4291 1.92107
\(958\) −12.8988 −0.416740
\(959\) −7.54956 −0.243788
\(960\) 16.7511 0.540640
\(961\) −29.4514 −0.950045
\(962\) −0.660640 −0.0212999
\(963\) −37.4750 −1.20762
\(964\) 17.2257 0.554802
\(965\) −2.66815 −0.0858907
\(966\) 5.51114 0.177318
\(967\) 8.52051 0.274001 0.137000 0.990571i \(-0.456254\pi\)
0.137000 + 0.990571i \(0.456254\pi\)
\(968\) −5.00784 −0.160958
\(969\) 0 0
\(970\) 5.56691 0.178743
\(971\) 2.67259 0.0857676 0.0428838 0.999080i \(-0.486345\pi\)
0.0428838 + 0.999080i \(0.486345\pi\)
\(972\) −17.1383 −0.549710
\(973\) −38.6351 −1.23859
\(974\) 9.34476 0.299425
\(975\) 1.37778 0.0441244
\(976\) 12.5936 0.403112
\(977\) 20.3827 0.652101 0.326050 0.945352i \(-0.394282\pi\)
0.326050 + 0.945352i \(0.394282\pi\)
\(978\) −7.61285 −0.243432
\(979\) −33.2070 −1.06130
\(980\) −24.0049 −0.766809
\(981\) −30.4701 −0.972836
\(982\) −4.77430 −0.152354
\(983\) −10.3126 −0.328922 −0.164461 0.986384i \(-0.552588\pi\)
−0.164461 + 0.986384i \(0.552588\pi\)
\(984\) −17.8064 −0.567648
\(985\) −5.34614 −0.170342
\(986\) −12.2667 −0.390652
\(987\) −56.9403 −1.81243
\(988\) 0 0
\(989\) −16.5906 −0.527550
\(990\) 4.42864 0.140751
\(991\) −20.0919 −0.638239 −0.319120 0.947714i \(-0.603387\pi\)
−0.319120 + 0.947714i \(0.603387\pi\)
\(992\) 4.34968 0.138102
\(993\) −2.75557 −0.0874453
\(994\) −10.4889 −0.332687
\(995\) 17.1240 0.542867
\(996\) −58.6923 −1.85974
\(997\) 25.0509 0.793369 0.396684 0.917955i \(-0.370161\pi\)
0.396684 + 0.917955i \(0.370161\pi\)
\(998\) 8.04149 0.254549
\(999\) 31.5496 0.998184
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1805.2.a.f.1.2 3
5.4 even 2 9025.2.a.bb.1.2 3
19.18 odd 2 95.2.a.a.1.2 3
57.56 even 2 855.2.a.i.1.2 3
76.75 even 2 1520.2.a.p.1.1 3
95.18 even 4 475.2.b.d.324.3 6
95.37 even 4 475.2.b.d.324.4 6
95.94 odd 2 475.2.a.f.1.2 3
133.132 even 2 4655.2.a.u.1.2 3
152.37 odd 2 6080.2.a.bo.1.1 3
152.75 even 2 6080.2.a.by.1.3 3
285.284 even 2 4275.2.a.bk.1.2 3
380.379 even 2 7600.2.a.bx.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.a.a.1.2 3 19.18 odd 2
475.2.a.f.1.2 3 95.94 odd 2
475.2.b.d.324.3 6 95.18 even 4
475.2.b.d.324.4 6 95.37 even 4
855.2.a.i.1.2 3 57.56 even 2
1520.2.a.p.1.1 3 76.75 even 2
1805.2.a.f.1.2 3 1.1 even 1 trivial
4275.2.a.bk.1.2 3 285.284 even 2
4655.2.a.u.1.2 3 133.132 even 2
6080.2.a.bo.1.1 3 152.37 odd 2
6080.2.a.by.1.3 3 152.75 even 2
7600.2.a.bx.1.3 3 380.379 even 2
9025.2.a.bb.1.2 3 5.4 even 2