Defining parameters
Level: | \( N \) | \(=\) | \( 1805 = 5 \cdot 19^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1805.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 23 \) | ||
Sturm bound: | \(380\) | ||
Trace bound: | \(4\) | ||
Distinguishing \(T_p\): | \(2\), \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1805))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 210 | 113 | 97 |
Cusp forms | 171 | 113 | 58 |
Eisenstein series | 39 | 0 | 39 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(5\) | \(19\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(23\) |
\(+\) | \(-\) | \(-\) | \(33\) |
\(-\) | \(+\) | \(-\) | \(33\) |
\(-\) | \(-\) | \(+\) | \(24\) |
Plus space | \(+\) | \(47\) | |
Minus space | \(-\) | \(66\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1805))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1805))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1805)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(95))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(361))\)\(^{\oplus 2}\)