Properties

Label 1800.4.f.t
Level $1800$
Weight $4$
Character orbit 1800.f
Analytic conductor $106.203$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1800.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(106.203438010\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 360)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta q^{7} + 34 q^{11} + 34 \beta q^{13} + 19 \beta q^{17} - 4 q^{19} + 76 \beta q^{23} - 46 q^{29} - 260 q^{31} - 156 \beta q^{37} - 48 q^{41} + 100 \beta q^{43} - 52 \beta q^{47} + 339 q^{49} - 207 \beta q^{53} - 2 q^{59} - 38 q^{61} - 122 \beta q^{67} - 708 q^{71} + 189 \beta q^{73} + 34 \beta q^{77} + 852 q^{79} + 422 \beta q^{83} - 1380 q^{89} - 136 q^{91} + 257 \beta q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 68 q^{11} - 8 q^{19} - 92 q^{29} - 520 q^{31} - 96 q^{41} + 678 q^{49} - 4 q^{59} - 76 q^{61} - 1416 q^{71} + 1704 q^{79} - 2760 q^{89} - 272 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1800\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1001\) \(1351\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
649.1
1.00000i
1.00000i
0 0 0 0 0 2.00000i 0 0 0
649.2 0 0 0 0 0 2.00000i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1800.4.f.t 2
3.b odd 2 1 1800.4.f.f 2
5.b even 2 1 inner 1800.4.f.t 2
5.c odd 4 1 360.4.a.d 1
5.c odd 4 1 1800.4.a.r 1
15.d odd 2 1 1800.4.f.f 2
15.e even 4 1 360.4.a.k yes 1
15.e even 4 1 1800.4.a.q 1
20.e even 4 1 720.4.a.g 1
60.l odd 4 1 720.4.a.x 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
360.4.a.d 1 5.c odd 4 1
360.4.a.k yes 1 15.e even 4 1
720.4.a.g 1 20.e even 4 1
720.4.a.x 1 60.l odd 4 1
1800.4.a.q 1 15.e even 4 1
1800.4.a.r 1 5.c odd 4 1
1800.4.f.f 2 3.b odd 2 1
1800.4.f.f 2 15.d odd 2 1
1800.4.f.t 2 1.a even 1 1 trivial
1800.4.f.t 2 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(1800, [\chi])\):

\( T_{7}^{2} + 4 \) Copy content Toggle raw display
\( T_{11} - 34 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 4 \) Copy content Toggle raw display
$11$ \( (T - 34)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 4624 \) Copy content Toggle raw display
$17$ \( T^{2} + 1444 \) Copy content Toggle raw display
$19$ \( (T + 4)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 23104 \) Copy content Toggle raw display
$29$ \( (T + 46)^{2} \) Copy content Toggle raw display
$31$ \( (T + 260)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 97344 \) Copy content Toggle raw display
$41$ \( (T + 48)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 40000 \) Copy content Toggle raw display
$47$ \( T^{2} + 10816 \) Copy content Toggle raw display
$53$ \( T^{2} + 171396 \) Copy content Toggle raw display
$59$ \( (T + 2)^{2} \) Copy content Toggle raw display
$61$ \( (T + 38)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 59536 \) Copy content Toggle raw display
$71$ \( (T + 708)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 142884 \) Copy content Toggle raw display
$79$ \( (T - 852)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 712336 \) Copy content Toggle raw display
$89$ \( (T + 1380)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 264196 \) Copy content Toggle raw display
show more
show less