Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1800,4,Mod(649,1800)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1800, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1800.649");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 1800.f (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(106.203438010\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(i)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{2} + 1 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{13}]\) |
Coefficient ring index: | \( 2 \) |
Twist minimal: | no (minimal twist has level 120) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 649.1 | ||
Root | \(-1.00000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 1800.649 |
Dual form | 1800.4.f.r.649.2 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1800\mathbb{Z}\right)^\times\).
\(n\) | \(577\) | \(901\) | \(1001\) | \(1351\) |
\(\chi(n)\) | \(-1\) | \(1\) | \(1\) | \(1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | − 16.0000i | − 0.863919i | −0.901893 | − | 0.431959i | \(-0.857822\pi\) | ||||
0.901893 | − | 0.431959i | \(-0.142178\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 28.0000 | 0.767483 | 0.383742 | − | 0.923440i | \(-0.374635\pi\) | ||||
0.383742 | + | 0.923440i | \(0.374635\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 26.0000i | 0.554700i | 0.960769 | + | 0.277350i | \(0.0894562\pi\) | ||||
−0.960769 | + | 0.277350i | \(0.910544\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 62.0000i | 0.884542i | 0.896882 | + | 0.442271i | \(0.145827\pi\) | ||||
−0.896882 | + | 0.442271i | \(0.854173\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 68.0000 | 0.821067 | 0.410533 | − | 0.911846i | \(-0.365343\pi\) | ||||
0.410533 | + | 0.911846i | \(0.365343\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | − 208.000i | − 1.88570i | −0.333224 | − | 0.942848i | \(-0.608136\pi\) | ||||
0.333224 | − | 0.942848i | \(-0.391864\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | −58.0000 | −0.371391 | −0.185695 | − | 0.982607i | \(-0.559454\pi\) | ||||
−0.185695 | + | 0.982607i | \(0.559454\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 160.000 | 0.926995 | 0.463498 | − | 0.886098i | \(-0.346594\pi\) | ||||
0.463498 | + | 0.886098i | \(0.346594\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 270.000i | 1.19967i | 0.800124 | + | 0.599834i | \(0.204767\pi\) | ||||
−0.800124 | + | 0.599834i | \(0.795233\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −282.000 | −1.07417 | −0.537085 | − | 0.843528i | \(-0.680475\pi\) | ||||
−0.537085 | + | 0.843528i | \(0.680475\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | − 76.0000i | − 0.269532i | −0.990877 | − | 0.134766i | \(-0.956972\pi\) | ||||
0.990877 | − | 0.134766i | \(-0.0430283\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 280.000i | 0.868983i | 0.900676 | + | 0.434491i | \(0.143072\pi\) | ||||
−0.900676 | + | 0.434491i | \(0.856928\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 87.0000 | 0.253644 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | − 210.000i | − 0.544259i | −0.962261 | − | 0.272129i | \(-0.912272\pi\) | ||||
0.962261 | − | 0.272129i | \(-0.0877279\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 196.000 | 0.432492 | 0.216246 | − | 0.976339i | \(-0.430619\pi\) | ||||
0.216246 | + | 0.976339i | \(0.430619\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 742.000 | 1.55743 | 0.778716 | − | 0.627376i | \(-0.215871\pi\) | ||||
0.778716 | + | 0.627376i | \(0.215871\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 836.000i | 1.52438i | 0.647352 | + | 0.762191i | \(0.275877\pi\) | ||||
−0.647352 | + | 0.762191i | \(0.724123\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 504.000 | 0.842448 | 0.421224 | − | 0.906957i | \(-0.361601\pi\) | ||||
0.421224 | + | 0.906957i | \(0.361601\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 1062.00i | 1.70271i | 0.524591 | + | 0.851354i | \(0.324218\pi\) | ||||
−0.524591 | + | 0.851354i | \(0.675782\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | − 448.000i | − 0.663043i | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −768.000 | −1.09376 | −0.546878 | − | 0.837212i | \(-0.684184\pi\) | ||||
−0.546878 | + | 0.837212i | \(0.684184\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | − 1052.00i | − 1.39123i | −0.718415 | − | 0.695614i | \(-0.755132\pi\) | ||||
0.718415 | − | 0.695614i | \(-0.244868\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −726.000 | −0.864672 | −0.432336 | − | 0.901712i | \(-0.642311\pi\) | ||||
−0.432336 | + | 0.901712i | \(0.642311\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 416.000 | 0.479216 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | − 1406.00i | − 1.47173i | −0.677129 | − | 0.735864i | \(-0.736776\pi\) | ||||
0.677129 | − | 0.735864i | \(-0.263224\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | −990.000 | −0.975333 | −0.487667 | − | 0.873030i | \(-0.662152\pi\) | ||||
−0.487667 | + | 0.873030i | \(0.662152\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | − 736.000i | − 0.704080i | −0.935985 | − | 0.352040i | \(-0.885488\pi\) | ||||
0.935985 | − | 0.352040i | \(-0.114512\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | − 1212.00i | − 1.09503i | −0.836795 | − | 0.547516i | \(-0.815573\pi\) | ||||
0.836795 | − | 0.547516i | \(-0.184427\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 1834.00 | 1.61161 | 0.805804 | − | 0.592182i | \(-0.201733\pi\) | ||||
0.805804 | + | 0.592182i | \(0.201733\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | − 2046.00i | − 1.70329i | −0.524121 | − | 0.851644i | \(-0.675606\pi\) | ||||
0.524121 | − | 0.851644i | \(-0.324394\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 992.000 | 0.764172 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −547.000 | −0.410969 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 1176.00i | 0.821678i | 0.911708 | + | 0.410839i | \(0.134764\pi\) | ||||
−0.911708 | + | 0.410839i | \(0.865236\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | −12.0000 | −0.00800340 | −0.00400170 | − | 0.999992i | \(-0.501274\pi\) | ||||
−0.00400170 | + | 0.999992i | \(0.501274\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | − 1088.00i | − 0.709335i | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 790.000i | 0.492659i | 0.969186 | + | 0.246329i | \(0.0792245\pi\) | ||||
−0.969186 | + | 0.246329i | \(0.920775\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 924.000 | 0.563832 | 0.281916 | − | 0.959439i | \(-0.409030\pi\) | ||||
0.281916 | + | 0.959439i | \(0.409030\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 728.000i | 0.425723i | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 3022.00 | 1.66156 | 0.830778 | − | 0.556604i | \(-0.187896\pi\) | ||||
0.830778 | + | 0.556604i | \(0.187896\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 1736.00 | 0.935587 | 0.467794 | − | 0.883838i | \(-0.345049\pi\) | ||||
0.467794 | + | 0.883838i | \(0.345049\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | − 1322.00i | − 0.672020i | −0.941858 | − | 0.336010i | \(-0.890922\pi\) | ||||
0.941858 | − | 0.336010i | \(-0.109078\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | −3328.00 | −1.62909 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 908.000i | 0.436319i | 0.975913 | + | 0.218160i | \(0.0700054\pi\) | ||||
−0.975913 | + | 0.218160i | \(0.929995\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | − 1296.00i | − 0.600524i | −0.953857 | − | 0.300262i | \(-0.902926\pi\) | ||||
0.953857 | − | 0.300262i | \(-0.0970741\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 1521.00 | 0.692308 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 2134.00i | 0.937832i | 0.883243 | + | 0.468916i | \(0.155355\pi\) | ||||
−0.883243 | + | 0.468916i | \(0.844645\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 1612.00 | 0.673109 | 0.336555 | − | 0.941664i | \(-0.390738\pi\) | ||||
0.336555 | + | 0.941664i | \(0.390738\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 3086.00 | 1.26730 | 0.633648 | − | 0.773621i | \(-0.281557\pi\) | ||||
0.633648 | + | 0.773621i | \(0.281557\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 1736.00i | 0.678871i | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 4208.00 | 1.59414 | 0.797069 | − | 0.603889i | \(-0.206383\pi\) | ||||
0.797069 | + | 0.603889i | \(0.206383\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | − 2818.00i | − 1.05101i | −0.850792 | − | 0.525503i | \(-0.823877\pi\) | ||||
0.850792 | − | 0.525503i | \(-0.176123\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 418.000i | 0.151174i | 0.997139 | + | 0.0755870i | \(0.0240831\pi\) | ||||
−0.997139 | + | 0.0755870i | \(0.975917\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 3352.00 | 1.19406 | 0.597028 | − | 0.802221i | \(-0.296348\pi\) | ||||
0.597028 | + | 0.802221i | \(0.296348\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 928.000i | 0.320851i | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 1904.00 | 0.630155 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | −4276.00 | −1.39513 | −0.697564 | − | 0.716523i | \(-0.745733\pi\) | ||||
−0.697564 | + | 0.716523i | \(0.745733\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | − 2560.00i | − 0.800848i | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | −1612.00 | −0.490655 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | − 4712.00i | − 1.41497i | −0.706727 | − | 0.707486i | \(-0.749829\pi\) | ||||
0.706727 | − | 0.707486i | \(-0.250171\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 732.000i | 0.214029i | 0.994257 | + | 0.107014i | \(0.0341291\pi\) | ||||
−0.994257 | + | 0.107014i | \(0.965871\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 5186.00 | 1.49651 | 0.748254 | − | 0.663412i | \(-0.230892\pi\) | ||||
0.748254 | + | 0.663412i | \(0.230892\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | − 3798.00i | − 1.06788i | −0.845523 | − | 0.533938i | \(-0.820711\pi\) | ||||
0.845523 | − | 0.533938i | \(-0.179289\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | −3120.00 | −0.844419 | −0.422209 | − | 0.906498i | \(-0.638745\pi\) | ||||
−0.422209 | + | 0.906498i | \(0.638745\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 1490.00 | 0.398255 | 0.199127 | − | 0.979974i | \(-0.436189\pi\) | ||||
0.199127 | + | 0.979974i | \(0.436189\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 1768.00i | 0.455446i | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 5292.00 | 1.33079 | 0.665395 | − | 0.746492i | \(-0.268263\pi\) | ||||
0.665395 | + | 0.746492i | \(0.268263\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | − 5824.00i | − 1.44724i | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 3918.00i | 0.950965i | 0.879725 | + | 0.475483i | \(0.157727\pi\) | ||||
−0.879725 | + | 0.475483i | \(0.842273\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 4320.00 | 1.03642 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 6624.00i | 1.55305i | 0.630084 | + | 0.776527i | \(0.283021\pi\) | ||||
−0.630084 | + | 0.776527i | \(0.716979\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −2954.00 | −0.669549 | −0.334774 | − | 0.942298i | \(-0.608660\pi\) | ||||
−0.334774 | + | 0.942298i | \(0.608660\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −6576.00 | −1.47404 | −0.737018 | − | 0.675874i | \(-0.763767\pi\) | ||||
−0.737018 | + | 0.675874i | \(0.763767\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 4478.00i | 0.971325i | 0.874146 | + | 0.485662i | \(0.161422\pi\) | ||||
−0.874146 | + | 0.485662i | \(0.838578\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 6358.00 | 1.34977 | 0.674887 | − | 0.737921i | \(-0.264192\pi\) | ||||
0.674887 | + | 0.737921i | \(0.264192\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | − 860.000i | − 0.180642i | −0.995913 | − | 0.0903210i | \(-0.971211\pi\) | ||||
0.995913 | − | 0.0903210i | \(-0.0287893\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 4512.00i | 0.927996i | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 1069.00 | 0.217586 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | − 5794.00i | − 1.15525i | −0.816301 | − | 0.577626i | \(-0.803979\pi\) | ||||
0.816301 | − | 0.577626i | \(-0.196021\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 5408.00 | 1.04600 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | −1216.00 | −0.232854 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | − 6860.00i | − 1.27531i | −0.770321 | − | 0.637656i | \(-0.779904\pi\) | ||||
0.770321 | − | 0.637656i | \(-0.220096\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 6248.00 | 1.13920 | 0.569601 | − | 0.821922i | \(-0.307098\pi\) | ||||
0.569601 | + | 0.821922i | \(0.307098\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | − 11018.0i | − 1.98969i | −0.101388 | − | 0.994847i | \(-0.532328\pi\) | ||||
0.101388 | − | 0.994847i | \(-0.467672\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 954.000i | 0.169028i | 0.996422 | + | 0.0845142i | \(0.0269338\pi\) | ||||
−0.996422 | + | 0.0845142i | \(0.973066\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | −1624.00 | −0.285036 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 4216.00i | 0.726268i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 4480.00 | 0.750731 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 9396.00 | 1.56027 | 0.780137 | − | 0.625608i | \(-0.215149\pi\) | ||||
0.780137 | + | 0.625608i | \(0.215149\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 5074.00i | 0.820173i | 0.912047 | + | 0.410087i | \(0.134502\pi\) | ||||
−0.912047 | + | 0.410087i | \(0.865498\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 4480.00 | 0.711453 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | − 6880.00i | − 1.08305i | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | − 3916.00i | − 0.605827i | −0.953018 | − | 0.302913i | \(-0.902041\pi\) | ||||
0.953018 | − | 0.302913i | \(-0.0979593\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 1818.00 | 0.278840 | 0.139420 | − | 0.990233i | \(-0.455476\pi\) | ||||
0.139420 | + | 0.990233i | \(0.455476\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | − 7118.00i | − 1.07324i | −0.843825 | − | 0.536619i | \(-0.819701\pi\) | ||||
0.843825 | − | 0.536619i | \(-0.180299\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 5304.00 | 0.779762 | 0.389881 | − | 0.920865i | \(-0.372516\pi\) | ||||
0.389881 | + | 0.920865i | \(0.372516\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −2235.00 | −0.325849 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 5672.00i | 0.806747i | 0.915036 | + | 0.403373i | \(0.132162\pi\) | ||||
−0.915036 | + | 0.403373i | \(0.867838\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | −3360.00 | −0.470195 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | − 7774.00i | − 1.07915i | −0.841938 | − | 0.539574i | \(-0.818585\pi\) | ||||
0.841938 | − | 0.539574i | \(-0.181415\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | − 1508.00i | − 0.206010i | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 5516.00 | 0.747593 | 0.373797 | − | 0.927511i | \(-0.378056\pi\) | ||||
0.373797 | + | 0.927511i | \(0.378056\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | − 7128.00i | − 0.950976i | −0.879722 | − | 0.475488i | \(-0.842272\pi\) | ||||
0.879722 | − | 0.475488i | \(-0.157728\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | −10722.0 | −1.39750 | −0.698749 | − | 0.715367i | \(-0.746260\pi\) | ||||
−0.698749 | + | 0.715367i | \(0.746260\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 12896.0 | 1.66798 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | − 12122.0i | − 1.53246i | −0.642568 | − | 0.766229i | \(-0.722131\pi\) | ||||
0.642568 | − | 0.766229i | \(-0.277869\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −10482.0 | −1.30535 | −0.652676 | − | 0.757637i | \(-0.726354\pi\) | ||||
−0.652676 | + | 0.757637i | \(0.726354\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 4160.00i | 0.514204i | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 7560.00i | 0.920726i | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −3850.00 | −0.465453 | −0.232726 | − | 0.972542i | \(-0.574765\pi\) | ||||
−0.232726 | + | 0.972542i | \(0.574765\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | − 3136.00i | − 0.373638i | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | −5796.00 | −0.675783 | −0.337892 | − | 0.941185i | \(-0.609714\pi\) | ||||
−0.337892 | + | 0.941185i | \(0.609714\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 3294.00 | 0.381330 | 0.190665 | − | 0.981655i | \(-0.438936\pi\) | ||||
0.190665 | + | 0.981655i | \(0.438936\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | − 11872.0i | − 1.34549i | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −1696.00 | −0.189544 | −0.0947720 | − | 0.995499i | \(-0.530212\pi\) | ||||
−0.0947720 | + | 0.995499i | \(0.530212\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 12334.0i | 1.36890i | 0.729059 | + | 0.684451i | \(0.239958\pi\) | ||||
−0.729059 | + | 0.684451i | \(0.760042\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | − 14144.0i | − 1.54828i | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | −376.000 | −0.0408781 | −0.0204391 | − | 0.999791i | \(-0.506506\pi\) | ||||
−0.0204391 | + | 0.999791i | \(0.506506\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 8028.00i | 0.860997i | 0.902591 | + | 0.430499i | \(0.141662\pi\) | ||||
−0.902591 | + | 0.430499i | \(0.858338\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 8898.00 | 0.935240 | 0.467620 | − | 0.883930i | \(-0.345112\pi\) | ||||
0.467620 | + | 0.883930i | \(0.345112\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | −7896.00 | −0.824408 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 10330.0i | 1.05737i | 0.848819 | + | 0.528684i | \(0.177314\pi\) | ||||
−0.848819 | + | 0.528684i | \(0.822686\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | −1878.00 | −0.189734 | −0.0948668 | − | 0.995490i | \(-0.530243\pi\) | ||||
−0.0948668 | + | 0.995490i | \(0.530243\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 13224.0i | 1.32737i | 0.748013 | + | 0.663684i | \(0.231008\pi\) | ||||
−0.748013 | + | 0.663684i | \(0.768992\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 8012.00i | 0.793900i | 0.917840 | + | 0.396950i | \(0.129931\pi\) | ||||
−0.917840 | + | 0.396950i | \(0.870069\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 13376.0 | 1.31694 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | − 2128.00i | − 0.206862i | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | −1792.00 | −0.170936 | −0.0854682 | − | 0.996341i | \(-0.527239\pi\) | ||||
−0.0854682 | + | 0.996341i | \(0.527239\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | −7020.00 | −0.665456 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 8272.00i | 0.769692i | 0.922981 | + | 0.384846i | \(0.125745\pi\) | ||||
−0.922981 | + | 0.384846i | \(0.874255\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | −516.000 | −0.0474272 | −0.0237136 | − | 0.999719i | \(-0.507549\pi\) | ||||
−0.0237136 | + | 0.999719i | \(0.507549\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | − 3596.00i | − 0.328511i | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | − 8064.00i | − 0.727807i | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 14020.0 | 1.25776 | 0.628879 | − | 0.777503i | \(-0.283514\pi\) | ||||
0.628879 | + | 0.777503i | \(0.283514\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 1872.00i | 0.165941i | 0.996552 | + | 0.0829705i | \(0.0264407\pi\) | ||||
−0.996552 | + | 0.0829705i | \(0.973559\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 8678.00 | 0.755689 | 0.377844 | − | 0.925869i | \(-0.376665\pi\) | ||||
0.377844 | + | 0.925869i | \(0.376665\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 16992.0 | 1.47100 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 7840.00i | 0.666930i | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | −18074.0 | −1.51984 | −0.759920 | − | 0.650017i | \(-0.774762\pi\) | ||||
−0.759920 | + | 0.650017i | \(0.774762\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 20852.0i | 1.74339i | 0.490047 | + | 0.871696i | \(0.336980\pi\) | ||||
−0.490047 | + | 0.871696i | \(0.663020\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 9920.00i | 0.819966i | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −31097.0 | −2.55585 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | − 7332.00i | − 0.595843i | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 2436.00 | 0.194668 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −12410.0 | −0.986225 | −0.493112 | − | 0.869966i | \(-0.664141\pi\) | ||||
−0.493112 | + | 0.869966i | \(0.664141\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 3620.00i | 0.282962i | 0.989941 | + | 0.141481i | \(0.0451864\pi\) | ||||
−0.989941 | + | 0.141481i | \(0.954814\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −3944.00 | −0.304937 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 12288.0i | 0.944917i | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | − 11734.0i | − 0.892613i | −0.894880 | − | 0.446307i | \(-0.852739\pi\) | ||||
0.894880 | − | 0.446307i | \(-0.147261\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 1976.00 | 0.149510 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | − 1372.00i | − 0.102705i | −0.998681 | − | 0.0513525i | \(-0.983647\pi\) | ||||
0.998681 | − | 0.0513525i | \(-0.0163532\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 18922.0 | 1.39412 | 0.697058 | − | 0.717015i | \(-0.254492\pi\) | ||||
0.697058 | + | 0.717015i | \(0.254492\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 14596.0 | 1.06974 | 0.534872 | − | 0.844933i | \(-0.320360\pi\) | ||||
0.534872 | + | 0.844933i | \(0.320360\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | − 2302.00i | − 0.166089i | −0.996546 | − | 0.0830446i | \(-0.973536\pi\) | ||||
0.996546 | − | 0.0830446i | \(-0.0264644\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | −16832.0 | −1.20191 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | − 5880.00i | − 0.417710i | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | − 23292.0i | − 1.63776i | −0.573966 | − | 0.818879i | \(-0.694596\pi\) | ||||
0.573966 | − | 0.818879i | \(-0.305404\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 10880.0 | 0.761125 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | − 16542.0i | − 1.14553i | −0.819720 | − | 0.572764i | \(-0.805871\pi\) | ||||
0.819720 | − | 0.572764i | \(-0.194129\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 7464.00 | 0.509133 | 0.254567 | − | 0.967055i | \(-0.418067\pi\) | ||||
0.254567 | + | 0.967055i | \(0.418067\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −17270.0 | −1.17214 | −0.586072 | − | 0.810259i | \(-0.699326\pi\) | ||||
−0.586072 | + | 0.810259i | \(0.699326\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 984.000i | 0.0657979i | 0.999459 | + | 0.0328990i | \(0.0104740\pi\) | ||||
−0.999459 | + | 0.0328990i | \(0.989526\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | −7280.00 | −0.482025 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | − 7278.00i | − 0.479536i | −0.970830 | − | 0.239768i | \(-0.922929\pi\) | ||||
0.970830 | − | 0.239768i | \(-0.0770714\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | − 18090.0i | − 1.18035i | −0.807275 | − | 0.590175i | \(-0.799059\pi\) | ||||
0.807275 | − | 0.590175i | \(-0.200941\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −24740.0 | −1.60644 | −0.803219 | − | 0.595684i | \(-0.796881\pi\) | ||||
−0.803219 | + | 0.595684i | \(0.796881\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 11616.0i | 0.747007i | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | −16740.0 | −1.06116 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 19720.0 | 1.24412 | 0.622061 | − | 0.782969i | \(-0.286296\pi\) | ||||
0.622061 | + | 0.782969i | \(0.286296\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 2262.00i | 0.140697i | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 16542.0 | 1.01930 | 0.509649 | − | 0.860383i | \(-0.329775\pi\) | ||||
0.509649 | + | 0.860383i | \(0.329775\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 10092.0i | 0.618957i | 0.950906 | + | 0.309479i | \(0.100155\pi\) | ||||
−0.950906 | + | 0.309479i | \(0.899845\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 14544.0i | 0.883746i | 0.897078 | + | 0.441873i | \(0.145686\pi\) | ||||
−0.897078 | + | 0.441873i | \(0.854314\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 5488.00 | 0.331930 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 23062.0i | 1.38206i | 0.722826 | + | 0.691030i | \(0.242843\pi\) | ||||
−0.722826 | + | 0.691030i | \(0.757157\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −28020.0 | −1.65630 | −0.828152 | − | 0.560504i | \(-0.810608\pi\) | ||||
−0.828152 | + | 0.560504i | \(0.810608\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −6738.00 | −0.396487 | −0.198243 | − | 0.980153i | \(-0.563524\pi\) | ||||
−0.198243 | + | 0.980153i | \(0.563524\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 12064.0i | 0.700330i | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 20776.0 | 1.19530 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 14430.0i | 0.826502i | 0.910617 | + | 0.413251i | \(0.135607\pi\) | ||||
−0.910617 | + | 0.413251i | \(0.864393\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 17890.0i | 1.01561i | 0.861472 | + | 0.507805i | \(0.169543\pi\) | ||||
−0.861472 | + | 0.507805i | \(0.830457\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | −22496.0 | −1.27145 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 10860.0i | 0.608413i | 0.952606 | + | 0.304207i | \(0.0983914\pi\) | ||||
−0.952606 | + | 0.304207i | \(0.901609\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 5460.00 | 0.301900 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −8692.00 | −0.478523 | −0.239261 | − | 0.970955i | \(-0.576905\pi\) | ||||
−0.239261 | + | 0.970955i | \(0.576905\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | − 17484.0i | − 0.950149i | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 698.000 | 0.0376078 | 0.0188039 | − | 0.999823i | \(-0.494014\pi\) | ||||
0.0188039 | + | 0.999823i | \(0.494014\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 18360.0i | 0.985008i | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 15840.0i | 0.842609i | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −2654.00 | −0.140583 | −0.0702913 | − | 0.997527i | \(-0.522393\pi\) | ||||
−0.0702913 | + | 0.997527i | \(0.522393\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | − 33280.0i | − 1.74803i | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | −28240.0 | −1.46478 | −0.732388 | − | 0.680887i | \(-0.761594\pi\) | ||||
−0.732388 | + | 0.680887i | \(0.761594\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −11776.0 | −0.608268 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | − 8320.00i | − 0.424445i | −0.977221 | − | 0.212223i | \(-0.931930\pi\) | ||||
0.977221 | − | 0.212223i | \(-0.0680702\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 4712.00 | 0.238413 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 2154.00i | 0.108540i | 0.998526 | + | 0.0542700i | \(0.0172832\pi\) | ||||
−0.998526 | + | 0.0542700i | \(0.982717\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 23408.0i | 1.16994i | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −22380.0 | −1.11402 | −0.557011 | − | 0.830505i | \(-0.688052\pi\) | ||||
−0.557011 | + | 0.830505i | \(0.688052\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | − 5760.00i | − 0.284406i | −0.989837 | − | 0.142203i | \(-0.954581\pi\) | ||||
0.989837 | − | 0.142203i | \(-0.0454186\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | −19392.0 | −0.946019 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | −6192.00 | −0.300865 | −0.150432 | − | 0.988620i | \(-0.548067\pi\) | ||||
−0.150432 | + | 0.988620i | \(0.548067\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | − 13666.0i | − 0.656142i | −0.944653 | − | 0.328071i | \(-0.893602\pi\) | ||||
0.944653 | − | 0.328071i | \(-0.106398\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 32022.0 | 1.52536 | 0.762678 | − | 0.646778i | \(-0.223884\pi\) | ||||
0.762678 | + | 0.646778i | \(0.223884\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | − 29344.0i | − 1.39230i | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 5096.00i | 0.239903i | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −22786.0 | −1.06851 | −0.534255 | − | 0.845323i | \(-0.679408\pi\) | ||||
−0.534255 | + | 0.845323i | \(0.679408\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 8286.00i | 0.385546i | 0.981243 | + | 0.192773i | \(0.0617480\pi\) | ||||
−0.981243 | + | 0.192773i | \(0.938252\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | −19176.0 | −0.881966 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 14112.0 | 0.646565 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | − 25804.0i | − 1.16876i | −0.811481 | − | 0.584379i | \(-0.801338\pi\) | ||||
0.811481 | − | 0.584379i | \(-0.198662\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | −32736.0 | −1.47150 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 19292.0i | 0.863908i | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | − 17670.0i | − 0.785324i | −0.919683 | − | 0.392662i | \(-0.871554\pi\) | ||||
0.919683 | − | 0.392662i | \(-0.128446\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | −17360.0 | −0.768652 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 29736.0i | 1.30680i | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −7398.00 | −0.321508 | −0.160754 | − | 0.986995i | \(-0.551393\pi\) | ||||
−0.160754 | + | 0.986995i | \(0.551393\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | −28108.0 | −1.21702 | −0.608511 | − | 0.793545i | \(-0.708233\pi\) | ||||
−0.608511 | + | 0.793545i | \(0.708233\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | − 5168.00i | − 0.221304i | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | −30830.0 | −1.31057 | −0.655283 | − | 0.755384i | \(-0.727451\pi\) | ||||
−0.655283 | + | 0.755384i | \(0.727451\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | − 5872.00i | − 0.248706i | −0.992238 | − | 0.124353i | \(-0.960314\pi\) | ||||
0.992238 | − | 0.124353i | \(-0.0396855\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 16308.0i | 0.685713i | 0.939388 | + | 0.342857i | \(0.111394\pi\) | ||||
−0.939388 | + | 0.342857i | \(0.888606\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −28294.0 | −1.18539 | −0.592697 | − | 0.805426i | \(-0.701937\pi\) | ||||
−0.592697 | + | 0.805426i | \(0.701937\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 5394.00i | 0.224359i | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 20536.0 | 0.845032 | 0.422516 | − | 0.906356i | \(-0.361147\pi\) | ||||
0.422516 | + | 0.906356i | \(0.361147\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −21025.0 | −0.862069 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 8752.00i | 0.355044i | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 56160.0 | 2.26221 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | − 27710.0i | − 1.11228i | −0.831090 | − | 0.556139i | \(-0.812282\pi\) | ||||
0.831090 | − | 0.556139i | \(-0.187718\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | − 12858.0i | − 0.512510i | −0.966609 | − | 0.256255i | \(-0.917511\pi\) | ||||
0.966609 | − | 0.256255i | \(-0.0824887\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 3148.00 | 0.125039 | 0.0625194 | − | 0.998044i | \(-0.480086\pi\) | ||||
0.0625194 | + | 0.998044i | \(0.480086\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 48456.0i | 1.91131i | 0.294487 | + | 0.955656i | \(0.404851\pi\) | ||||
−0.294487 | + | 0.955656i | \(0.595149\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | −21504.0 | −0.839440 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | −21736.0 | −0.845576 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 9478.00i | 0.364937i | 0.983212 | + | 0.182468i | \(0.0584087\pi\) | ||||
−0.983212 | + | 0.182468i | \(0.941591\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | −8178.00 | −0.312740 | −0.156370 | − | 0.987699i | \(-0.549979\pi\) | ||||
−0.156370 | + | 0.987699i | \(0.549979\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 316.000i | 0.0120433i | 0.999982 | + | 0.00602166i | \(0.00191676\pi\) | ||||
−0.999982 | + | 0.00602166i | \(0.998083\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 6304.00i | 0.238633i | 0.992856 | + | 0.119317i | \(0.0380703\pi\) | ||||
−0.992856 | + | 0.119317i | \(0.961930\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 18816.0 | 0.709863 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 19040.0i | 0.713493i | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | −9280.00 | −0.344277 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 13020.0 | 0.481420 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 1596.00i | 0.0584281i | 0.999573 | + | 0.0292141i | \(0.00930045\pi\) | ||||
−0.999573 | + | 0.0292141i | \(0.990700\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 25792.0 | 0.938010 | 0.469005 | − | 0.883196i | \(-0.344613\pi\) | ||||
0.469005 | + | 0.883196i | \(0.344613\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | − 29456.0i | − 1.06775i | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 192.000i | 0.00691428i | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 9736.00 | 0.349468 | 0.174734 | − | 0.984616i | \(-0.444093\pi\) | ||||
0.174734 | + | 0.984616i | \(0.444093\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 13104.0i | 0.467306i | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | −94.0000 | −0.00331974 | −0.00165987 | − | 0.999999i | \(-0.500528\pi\) | ||||
−0.00165987 | + | 0.999999i | \(0.500528\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 5916.00 | 0.208259 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | − 8678.00i | − 0.302559i | −0.988491 | − | 0.151280i | \(-0.951661\pi\) | ||||
0.988491 | − | 0.151280i | \(-0.0483394\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | −28406.0 | −0.984069 | −0.492035 | − | 0.870576i | \(-0.663747\pi\) | ||||
−0.492035 | + | 0.870576i | \(0.663747\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 58656.0i | 2.02556i | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | − 31988.0i | − 1.09765i | −0.835939 | − | 0.548823i | \(-0.815076\pi\) | ||||
0.835939 | − | 0.548823i | \(-0.184924\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −27612.0 | −0.944493 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 6714.00i | 0.228214i | 0.993468 | + | 0.114107i | \(0.0364006\pi\) | ||||
−0.993468 | + | 0.114107i | \(0.963599\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 12640.0 | 0.425617 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −4191.00 | −0.140680 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 15312.0i | 0.509204i | 0.967046 | + | 0.254602i | \(0.0819445\pi\) | ||||
−0.967046 | + | 0.254602i | \(0.918055\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 8540.00 | 0.282247 | 0.141123 | − | 0.989992i | \(-0.454929\pi\) | ||||
0.141123 | + | 0.989992i | \(0.454929\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | − 14784.0i | − 0.487105i | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 8126.00i | 0.266094i | 0.991110 | + | 0.133047i | \(0.0424761\pi\) | ||||
−0.991110 | + | 0.133047i | \(0.957524\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | −20328.0 | −0.663622 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 1392.00i | 0.0451657i | 0.999745 | + | 0.0225829i | \(0.00718896\pi\) | ||||
−0.999745 | + | 0.0225829i | \(0.992811\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | −15808.0 | −0.508256 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −48832.0 | −1.56529 | −0.782644 | − | 0.622470i | \(-0.786129\pi\) | ||||
−0.782644 | + | 0.622470i | \(0.786129\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 46926.0i | 1.49063i | 0.666711 | + | 0.745317i | \(0.267702\pi\) | ||||
−0.666711 | + | 0.745317i | \(0.732298\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 1800.4.f.r.649.1 | 2 | ||
3.2 | odd | 2 | 600.4.f.c.49.2 | 2 | |||
5.2 | odd | 4 | 1800.4.a.bb.1.1 | 1 | |||
5.3 | odd | 4 | 360.4.a.b.1.1 | 1 | |||
5.4 | even | 2 | inner | 1800.4.f.r.649.2 | 2 | ||
12.11 | even | 2 | 1200.4.f.o.49.1 | 2 | |||
15.2 | even | 4 | 600.4.a.q.1.1 | 1 | |||
15.8 | even | 4 | 120.4.a.c.1.1 | ✓ | 1 | ||
15.14 | odd | 2 | 600.4.f.c.49.1 | 2 | |||
20.3 | even | 4 | 720.4.a.l.1.1 | 1 | |||
60.23 | odd | 4 | 240.4.a.l.1.1 | 1 | |||
60.47 | odd | 4 | 1200.4.a.c.1.1 | 1 | |||
60.59 | even | 2 | 1200.4.f.o.49.2 | 2 | |||
120.53 | even | 4 | 960.4.a.u.1.1 | 1 | |||
120.83 | odd | 4 | 960.4.a.h.1.1 | 1 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
120.4.a.c.1.1 | ✓ | 1 | 15.8 | even | 4 | ||
240.4.a.l.1.1 | 1 | 60.23 | odd | 4 | |||
360.4.a.b.1.1 | 1 | 5.3 | odd | 4 | |||
600.4.a.q.1.1 | 1 | 15.2 | even | 4 | |||
600.4.f.c.49.1 | 2 | 15.14 | odd | 2 | |||
600.4.f.c.49.2 | 2 | 3.2 | odd | 2 | |||
720.4.a.l.1.1 | 1 | 20.3 | even | 4 | |||
960.4.a.h.1.1 | 1 | 120.83 | odd | 4 | |||
960.4.a.u.1.1 | 1 | 120.53 | even | 4 | |||
1200.4.a.c.1.1 | 1 | 60.47 | odd | 4 | |||
1200.4.f.o.49.1 | 2 | 12.11 | even | 2 | |||
1200.4.f.o.49.2 | 2 | 60.59 | even | 2 | |||
1800.4.a.bb.1.1 | 1 | 5.2 | odd | 4 | |||
1800.4.f.r.649.1 | 2 | 1.1 | even | 1 | trivial | ||
1800.4.f.r.649.2 | 2 | 5.4 | even | 2 | inner |