Properties

Label 1800.4.f.m.649.1
Level $1800$
Weight $4$
Character 1800.649
Analytic conductor $106.203$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1800,4,Mod(649,1800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1800.649");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1800.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(106.203438010\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{37}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1800.649
Dual form 1800.4.f.m.649.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{11} -54.0000i q^{13} -114.000i q^{17} -44.0000 q^{19} +96.0000i q^{23} +134.000 q^{29} -272.000 q^{31} -98.0000i q^{37} +6.00000 q^{41} -12.0000i q^{43} +200.000i q^{47} +343.000 q^{49} +654.000i q^{53} +36.0000 q^{59} -442.000 q^{61} -188.000i q^{67} +632.000 q^{71} +390.000i q^{73} -688.000 q^{79} +1188.00i q^{83} -694.000 q^{89} -1726.00i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{11} - 88 q^{19} + 268 q^{29} - 544 q^{31} + 12 q^{41} + 686 q^{49} + 72 q^{59} - 884 q^{61} + 1264 q^{71} - 1376 q^{79} - 1388 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1800\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1001\) \(1351\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −4.00000 −0.109640 −0.0548202 0.998496i \(-0.517459\pi\)
−0.0548202 + 0.998496i \(0.517459\pi\)
\(12\) 0 0
\(13\) − 54.0000i − 1.15207i −0.817425 0.576035i \(-0.804599\pi\)
0.817425 0.576035i \(-0.195401\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 114.000i − 1.62642i −0.581974 0.813208i \(-0.697719\pi\)
0.581974 0.813208i \(-0.302281\pi\)
\(18\) 0 0
\(19\) −44.0000 −0.531279 −0.265639 0.964072i \(-0.585583\pi\)
−0.265639 + 0.964072i \(0.585583\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 96.0000i 0.870321i 0.900353 + 0.435161i \(0.143308\pi\)
−0.900353 + 0.435161i \(0.856692\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 134.000 0.858041 0.429020 0.903295i \(-0.358859\pi\)
0.429020 + 0.903295i \(0.358859\pi\)
\(30\) 0 0
\(31\) −272.000 −1.57589 −0.787946 0.615745i \(-0.788855\pi\)
−0.787946 + 0.615745i \(0.788855\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 98.0000i − 0.435435i −0.976012 0.217718i \(-0.930139\pi\)
0.976012 0.217718i \(-0.0698612\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.00000 0.0228547 0.0114273 0.999935i \(-0.496362\pi\)
0.0114273 + 0.999935i \(0.496362\pi\)
\(42\) 0 0
\(43\) − 12.0000i − 0.0425577i −0.999774 0.0212789i \(-0.993226\pi\)
0.999774 0.0212789i \(-0.00677379\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 200.000i 0.620702i 0.950622 + 0.310351i \(0.100447\pi\)
−0.950622 + 0.310351i \(0.899553\pi\)
\(48\) 0 0
\(49\) 343.000 1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 654.000i 1.69498i 0.530813 + 0.847489i \(0.321887\pi\)
−0.530813 + 0.847489i \(0.678113\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 36.0000 0.0794373 0.0397187 0.999211i \(-0.487354\pi\)
0.0397187 + 0.999211i \(0.487354\pi\)
\(60\) 0 0
\(61\) −442.000 −0.927743 −0.463871 0.885903i \(-0.653540\pi\)
−0.463871 + 0.885903i \(0.653540\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 188.000i − 0.342804i −0.985201 0.171402i \(-0.945170\pi\)
0.985201 0.171402i \(-0.0548297\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 632.000 1.05640 0.528201 0.849119i \(-0.322867\pi\)
0.528201 + 0.849119i \(0.322867\pi\)
\(72\) 0 0
\(73\) 390.000i 0.625288i 0.949870 + 0.312644i \(0.101215\pi\)
−0.949870 + 0.312644i \(0.898785\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −688.000 −0.979823 −0.489912 0.871772i \(-0.662971\pi\)
−0.489912 + 0.871772i \(0.662971\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1188.00i 1.57108i 0.618809 + 0.785542i \(0.287616\pi\)
−0.618809 + 0.785542i \(0.712384\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −694.000 −0.826560 −0.413280 0.910604i \(-0.635617\pi\)
−0.413280 + 0.910604i \(0.635617\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 1726.00i − 1.80669i −0.428917 0.903344i \(-0.641105\pi\)
0.428917 0.903344i \(-0.358895\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1182.00 −1.16449 −0.582245 0.813014i \(-0.697825\pi\)
−0.582245 + 0.813014i \(0.697825\pi\)
\(102\) 0 0
\(103\) − 1968.00i − 1.88265i −0.337503 0.941324i \(-0.609582\pi\)
0.337503 0.941324i \(-0.390418\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 796.000i − 0.719180i −0.933110 0.359590i \(-0.882917\pi\)
0.933110 0.359590i \(-0.117083\pi\)
\(108\) 0 0
\(109\) −342.000 −0.300529 −0.150264 0.988646i \(-0.548013\pi\)
−0.150264 + 0.988646i \(0.548013\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 114.000i 0.0949046i 0.998874 + 0.0474523i \(0.0151102\pi\)
−0.998874 + 0.0474523i \(0.984890\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1315.00 −0.987979
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 2344.00i 1.63777i 0.573960 + 0.818883i \(0.305406\pi\)
−0.573960 + 0.818883i \(0.694594\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2164.00 1.44328 0.721640 0.692269i \(-0.243389\pi\)
0.721640 + 0.692269i \(0.243389\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2822.00i 1.75985i 0.475111 + 0.879926i \(0.342408\pi\)
−0.475111 + 0.879926i \(0.657592\pi\)
\(138\) 0 0
\(139\) −1972.00 −1.20333 −0.601665 0.798749i \(-0.705496\pi\)
−0.601665 + 0.798749i \(0.705496\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 216.000i 0.126313i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1394.00 −0.766449 −0.383225 0.923655i \(-0.625186\pi\)
−0.383225 + 0.923655i \(0.625186\pi\)
\(150\) 0 0
\(151\) −2216.00 −1.19427 −0.597137 0.802139i \(-0.703695\pi\)
−0.597137 + 0.802139i \(0.703695\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 954.000i − 0.484952i −0.970157 0.242476i \(-0.922040\pi\)
0.970157 0.242476i \(-0.0779596\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 3404.00i 1.63572i 0.575419 + 0.817858i \(0.304839\pi\)
−0.575419 + 0.817858i \(0.695161\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 832.000i 0.385522i 0.981246 + 0.192761i \(0.0617441\pi\)
−0.981246 + 0.192761i \(0.938256\pi\)
\(168\) 0 0
\(169\) −719.000 −0.327264
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 362.000i − 0.159089i −0.996831 0.0795444i \(-0.974653\pi\)
0.996831 0.0795444i \(-0.0253465\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −3252.00 −1.35791 −0.678955 0.734180i \(-0.737567\pi\)
−0.678955 + 0.734180i \(0.737567\pi\)
\(180\) 0 0
\(181\) 3086.00 1.26730 0.633648 0.773621i \(-0.281557\pi\)
0.633648 + 0.773621i \(0.281557\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 456.000i 0.178321i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4080.00 1.54565 0.772823 0.634621i \(-0.218844\pi\)
0.772823 + 0.634621i \(0.218844\pi\)
\(192\) 0 0
\(193\) 2654.00i 0.989840i 0.868939 + 0.494920i \(0.164803\pi\)
−0.868939 + 0.494920i \(0.835197\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 1534.00i − 0.554787i −0.960756 0.277393i \(-0.910529\pi\)
0.960756 0.277393i \(-0.0894705\pi\)
\(198\) 0 0
\(199\) −4344.00 −1.54743 −0.773714 0.633536i \(-0.781603\pi\)
−0.773714 + 0.633536i \(0.781603\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 176.000 0.0582496
\(210\) 0 0
\(211\) −1380.00 −0.450252 −0.225126 0.974330i \(-0.572279\pi\)
−0.225126 + 0.974330i \(0.572279\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −6156.00 −1.87374
\(222\) 0 0
\(223\) 5224.00i 1.56872i 0.620305 + 0.784361i \(0.287009\pi\)
−0.620305 + 0.784361i \(0.712991\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 3364.00i − 0.983597i −0.870709 0.491799i \(-0.836340\pi\)
0.870709 0.491799i \(-0.163660\pi\)
\(228\) 0 0
\(229\) −3998.00 −1.15369 −0.576846 0.816853i \(-0.695717\pi\)
−0.576846 + 0.816853i \(0.695717\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 3590.00i − 1.00939i −0.863297 0.504697i \(-0.831604\pi\)
0.863297 0.504697i \(-0.168396\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1104.00 −0.298794 −0.149397 0.988777i \(-0.547733\pi\)
−0.149397 + 0.988777i \(0.547733\pi\)
\(240\) 0 0
\(241\) 1618.00 0.432467 0.216233 0.976342i \(-0.430623\pi\)
0.216233 + 0.976342i \(0.430623\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 2376.00i 0.612070i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −5780.00 −1.45351 −0.726754 0.686898i \(-0.758972\pi\)
−0.726754 + 0.686898i \(0.758972\pi\)
\(252\) 0 0
\(253\) − 384.000i − 0.0954224i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 2594.00i − 0.629608i −0.949157 0.314804i \(-0.898061\pi\)
0.949157 0.314804i \(-0.101939\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 3696.00i 0.866559i 0.901260 + 0.433280i \(0.142644\pi\)
−0.901260 + 0.433280i \(0.857356\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −2250.00 −0.509981 −0.254991 0.966944i \(-0.582072\pi\)
−0.254991 + 0.966944i \(0.582072\pi\)
\(270\) 0 0
\(271\) 2208.00 0.494932 0.247466 0.968897i \(-0.420402\pi\)
0.247466 + 0.968897i \(0.420402\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 1682.00i − 0.364843i −0.983220 0.182422i \(-0.941606\pi\)
0.983220 0.182422i \(-0.0583936\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −7306.00 −1.55103 −0.775515 0.631329i \(-0.782510\pi\)
−0.775515 + 0.631329i \(0.782510\pi\)
\(282\) 0 0
\(283\) 8164.00i 1.71484i 0.514618 + 0.857419i \(0.327934\pi\)
−0.514618 + 0.857419i \(0.672066\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −8083.00 −1.64523
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 514.000i − 0.102485i −0.998686 0.0512427i \(-0.983682\pi\)
0.998686 0.0512427i \(-0.0163182\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 5184.00 1.00267
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 2476.00i − 0.460302i −0.973155 0.230151i \(-0.926078\pi\)
0.973155 0.230151i \(-0.0739220\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −2296.00 −0.418631 −0.209315 0.977848i \(-0.567124\pi\)
−0.209315 + 0.977848i \(0.567124\pi\)
\(312\) 0 0
\(313\) 9878.00i 1.78383i 0.452207 + 0.891913i \(0.350637\pi\)
−0.452207 + 0.891913i \(0.649363\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2138.00i 0.378808i 0.981899 + 0.189404i \(0.0606555\pi\)
−0.981899 + 0.189404i \(0.939344\pi\)
\(318\) 0 0
\(319\) −536.000 −0.0940760
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 5016.00i 0.864080i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −6460.00 −1.07273 −0.536365 0.843986i \(-0.680203\pi\)
−0.536365 + 0.843986i \(0.680203\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 626.000i 0.101188i 0.998719 + 0.0505941i \(0.0161115\pi\)
−0.998719 + 0.0505941i \(0.983889\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 1088.00 0.172782
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 876.000i − 0.135522i −0.997702 0.0677610i \(-0.978414\pi\)
0.997702 0.0677610i \(-0.0215855\pi\)
\(348\) 0 0
\(349\) 9850.00 1.51077 0.755385 0.655282i \(-0.227450\pi\)
0.755385 + 0.655282i \(0.227450\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 8894.00i − 1.34102i −0.741901 0.670510i \(-0.766075\pi\)
0.741901 0.670510i \(-0.233925\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1464.00 0.215228 0.107614 0.994193i \(-0.465679\pi\)
0.107614 + 0.994193i \(0.465679\pi\)
\(360\) 0 0
\(361\) −4923.00 −0.717743
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 7016.00i − 0.997908i −0.866628 0.498954i \(-0.833718\pi\)
0.866628 0.498954i \(-0.166282\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 1010.00i 0.140203i 0.997540 + 0.0701016i \(0.0223324\pi\)
−0.997540 + 0.0701016i \(0.977668\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 7236.00i − 0.988522i
\(378\) 0 0
\(379\) −4900.00 −0.664106 −0.332053 0.943261i \(-0.607741\pi\)
−0.332053 + 0.943261i \(0.607741\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 7800.00i 1.04063i 0.853974 + 0.520315i \(0.174186\pi\)
−0.853974 + 0.520315i \(0.825814\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −12258.0 −1.59770 −0.798850 0.601530i \(-0.794558\pi\)
−0.798850 + 0.601530i \(0.794558\pi\)
\(390\) 0 0
\(391\) 10944.0 1.41550
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 5558.00i 0.702640i 0.936255 + 0.351320i \(0.114267\pi\)
−0.936255 + 0.351320i \(0.885733\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1970.00 −0.245329 −0.122665 0.992448i \(-0.539144\pi\)
−0.122665 + 0.992448i \(0.539144\pi\)
\(402\) 0 0
\(403\) 14688.0i 1.81554i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 392.000i 0.0477413i
\(408\) 0 0
\(409\) −15626.0 −1.88913 −0.944567 0.328318i \(-0.893518\pi\)
−0.944567 + 0.328318i \(0.893518\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −5412.00 −0.631011 −0.315505 0.948924i \(-0.602174\pi\)
−0.315505 + 0.948924i \(0.602174\pi\)
\(420\) 0 0
\(421\) −10690.0 −1.23753 −0.618763 0.785577i \(-0.712366\pi\)
−0.618763 + 0.785577i \(0.712366\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 14048.0 1.57000 0.784998 0.619498i \(-0.212664\pi\)
0.784998 + 0.619498i \(0.212664\pi\)
\(432\) 0 0
\(433\) − 17778.0i − 1.97311i −0.163433 0.986554i \(-0.552257\pi\)
0.163433 0.986554i \(-0.447743\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 4224.00i − 0.462383i
\(438\) 0 0
\(439\) −7240.00 −0.787122 −0.393561 0.919299i \(-0.628757\pi\)
−0.393561 + 0.919299i \(0.628757\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 11740.0i 1.25911i 0.776957 + 0.629553i \(0.216762\pi\)
−0.776957 + 0.629553i \(0.783238\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 15234.0 1.60120 0.800598 0.599202i \(-0.204515\pi\)
0.800598 + 0.599202i \(0.204515\pi\)
\(450\) 0 0
\(451\) −24.0000 −0.00250580
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 3866.00i 0.395720i 0.980230 + 0.197860i \(0.0633991\pi\)
−0.980230 + 0.197860i \(0.936601\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1706.00 0.172356 0.0861782 0.996280i \(-0.472535\pi\)
0.0861782 + 0.996280i \(0.472535\pi\)
\(462\) 0 0
\(463\) − 3944.00i − 0.395882i −0.980214 0.197941i \(-0.936575\pi\)
0.980214 0.197941i \(-0.0634254\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 9452.00i 0.936588i 0.883573 + 0.468294i \(0.155131\pi\)
−0.883573 + 0.468294i \(0.844869\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 48.0000i 0.00466605i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −12544.0 −1.19656 −0.598278 0.801289i \(-0.704148\pi\)
−0.598278 + 0.801289i \(0.704148\pi\)
\(480\) 0 0
\(481\) −5292.00 −0.501652
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 7936.00i 0.738428i 0.929344 + 0.369214i \(0.120373\pi\)
−0.929344 + 0.369214i \(0.879627\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 8412.00 0.773174 0.386587 0.922253i \(-0.373654\pi\)
0.386587 + 0.922253i \(0.373654\pi\)
\(492\) 0 0
\(493\) − 15276.0i − 1.39553i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 15092.0 1.35393 0.676965 0.736016i \(-0.263295\pi\)
0.676965 + 0.736016i \(0.263295\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 6112.00i 0.541790i 0.962609 + 0.270895i \(0.0873197\pi\)
−0.962609 + 0.270895i \(0.912680\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 2534.00 0.220663 0.110332 0.993895i \(-0.464809\pi\)
0.110332 + 0.993895i \(0.464809\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 800.000i − 0.0680541i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 9894.00 0.831985 0.415992 0.909368i \(-0.363434\pi\)
0.415992 + 0.909368i \(0.363434\pi\)
\(522\) 0 0
\(523\) − 16172.0i − 1.35211i −0.736852 0.676054i \(-0.763689\pi\)
0.736852 0.676054i \(-0.236311\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 31008.0i 2.56305i
\(528\) 0 0
\(529\) 2951.00 0.242541
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 324.000i − 0.0263302i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −1372.00 −0.109640
\(540\) 0 0
\(541\) −6138.00 −0.487788 −0.243894 0.969802i \(-0.578425\pi\)
−0.243894 + 0.969802i \(0.578425\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 21852.0i − 1.70809i −0.520201 0.854044i \(-0.674143\pi\)
0.520201 0.854044i \(-0.325857\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −5896.00 −0.455859
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1962.00i 0.149251i 0.997212 + 0.0746253i \(0.0237761\pi\)
−0.997212 + 0.0746253i \(0.976224\pi\)
\(558\) 0 0
\(559\) −648.000 −0.0490295
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 10876.0i − 0.814154i −0.913394 0.407077i \(-0.866548\pi\)
0.913394 0.407077i \(-0.133452\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 5610.00 0.413328 0.206664 0.978412i \(-0.433739\pi\)
0.206664 + 0.978412i \(0.433739\pi\)
\(570\) 0 0
\(571\) 5076.00 0.372021 0.186010 0.982548i \(-0.440444\pi\)
0.186010 + 0.982548i \(0.440444\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 6526.00i − 0.470851i −0.971892 0.235425i \(-0.924352\pi\)
0.971892 0.235425i \(-0.0756483\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) − 2616.00i − 0.185838i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 2332.00i − 0.163973i −0.996633 0.0819863i \(-0.973874\pi\)
0.996633 0.0819863i \(-0.0261264\pi\)
\(588\) 0 0
\(589\) 11968.0 0.837237
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 9582.00i − 0.663551i −0.943358 0.331775i \(-0.892352\pi\)
0.943358 0.331775i \(-0.107648\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −17624.0 −1.20217 −0.601083 0.799187i \(-0.705264\pi\)
−0.601083 + 0.799187i \(0.705264\pi\)
\(600\) 0 0
\(601\) −21238.0 −1.44146 −0.720729 0.693217i \(-0.756193\pi\)
−0.720729 + 0.693217i \(0.756193\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 13000.0i 0.869281i 0.900604 + 0.434641i \(0.143125\pi\)
−0.900604 + 0.434641i \(0.856875\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 10800.0 0.715092
\(612\) 0 0
\(613\) − 9214.00i − 0.607096i −0.952816 0.303548i \(-0.901829\pi\)
0.952816 0.303548i \(-0.0981713\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 4474.00i − 0.291923i −0.989290 0.145961i \(-0.953372\pi\)
0.989290 0.145961i \(-0.0466276\pi\)
\(618\) 0 0
\(619\) 12556.0 0.815296 0.407648 0.913139i \(-0.366349\pi\)
0.407648 + 0.913139i \(0.366349\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −11172.0 −0.708198
\(630\) 0 0
\(631\) 26936.0 1.69937 0.849687 0.527287i \(-0.176791\pi\)
0.849687 + 0.527287i \(0.176791\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 18522.0i − 1.15207i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 19134.0 1.17901 0.589507 0.807764i \(-0.299322\pi\)
0.589507 + 0.807764i \(0.299322\pi\)
\(642\) 0 0
\(643\) − 12436.0i − 0.762718i −0.924427 0.381359i \(-0.875456\pi\)
0.924427 0.381359i \(-0.124544\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 2784.00i 0.169166i 0.996416 + 0.0845829i \(0.0269558\pi\)
−0.996416 + 0.0845829i \(0.973044\pi\)
\(648\) 0 0
\(649\) −144.000 −0.00870954
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 7318.00i 0.438554i 0.975663 + 0.219277i \(0.0703698\pi\)
−0.975663 + 0.219277i \(0.929630\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 8108.00 0.479276 0.239638 0.970862i \(-0.422971\pi\)
0.239638 + 0.970862i \(0.422971\pi\)
\(660\) 0 0
\(661\) 1230.00 0.0723774 0.0361887 0.999345i \(-0.488478\pi\)
0.0361887 + 0.999345i \(0.488478\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 12864.0i 0.746771i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1768.00 0.101718
\(672\) 0 0
\(673\) 14078.0i 0.806340i 0.915125 + 0.403170i \(0.132092\pi\)
−0.915125 + 0.403170i \(0.867908\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 25246.0i − 1.43321i −0.697480 0.716605i \(-0.745695\pi\)
0.697480 0.716605i \(-0.254305\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 24332.0i 1.36316i 0.731744 + 0.681580i \(0.238707\pi\)
−0.731744 + 0.681580i \(0.761293\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 35316.0 1.95273
\(690\) 0 0
\(691\) 19036.0 1.04799 0.523997 0.851720i \(-0.324440\pi\)
0.523997 + 0.851720i \(0.324440\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 684.000i − 0.0371712i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −28806.0 −1.55205 −0.776025 0.630702i \(-0.782767\pi\)
−0.776025 + 0.630702i \(0.782767\pi\)
\(702\) 0 0
\(703\) 4312.00i 0.231337i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 25090.0 1.32902 0.664510 0.747280i \(-0.268640\pi\)
0.664510 + 0.747280i \(0.268640\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 26112.0i − 1.37153i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 36432.0 1.88969 0.944843 0.327523i \(-0.106214\pi\)
0.944843 + 0.327523i \(0.106214\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 21616.0i 1.10274i 0.834260 + 0.551371i \(0.185895\pi\)
−0.834260 + 0.551371i \(0.814105\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −1368.00 −0.0692166
\(732\) 0 0
\(733\) − 28102.0i − 1.41606i −0.706183 0.708029i \(-0.749584\pi\)
0.706183 0.708029i \(-0.250416\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 752.000i 0.0375852i
\(738\) 0 0
\(739\) −764.000 −0.0380300 −0.0190150 0.999819i \(-0.506053\pi\)
−0.0190150 + 0.999819i \(0.506053\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 6256.00i 0.308897i 0.988001 + 0.154448i \(0.0493600\pi\)
−0.988001 + 0.154448i \(0.950640\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 1184.00 0.0575297 0.0287648 0.999586i \(-0.490843\pi\)
0.0287648 + 0.999586i \(0.490843\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 26446.0i 1.26974i 0.772617 + 0.634872i \(0.218947\pi\)
−0.772617 + 0.634872i \(0.781053\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −36778.0 −1.75191 −0.875954 0.482395i \(-0.839767\pi\)
−0.875954 + 0.482395i \(0.839767\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 1944.00i − 0.0915173i
\(768\) 0 0
\(769\) 10302.0 0.483094 0.241547 0.970389i \(-0.422345\pi\)
0.241547 + 0.970389i \(0.422345\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 4674.00i − 0.217480i −0.994070 0.108740i \(-0.965318\pi\)
0.994070 0.108740i \(-0.0346816\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −264.000 −0.0121422
\(780\) 0 0
\(781\) −2528.00 −0.115825
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 23084.0i − 1.04556i −0.852468 0.522780i \(-0.824895\pi\)
0.852468 0.522780i \(-0.175105\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 23868.0i 1.06882i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 10694.0i − 0.475283i −0.971353 0.237642i \(-0.923626\pi\)
0.971353 0.237642i \(-0.0763744\pi\)
\(798\) 0 0
\(799\) 22800.0 1.00952
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 1560.00i − 0.0685569i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 9594.00 0.416943 0.208472 0.978028i \(-0.433151\pi\)
0.208472 + 0.978028i \(0.433151\pi\)
\(810\) 0 0
\(811\) 10244.0 0.443546 0.221773 0.975098i \(-0.428816\pi\)
0.221773 + 0.975098i \(0.428816\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 528.000i 0.0226100i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1390.00 −0.0590881 −0.0295441 0.999563i \(-0.509406\pi\)
−0.0295441 + 0.999563i \(0.509406\pi\)
\(822\) 0 0
\(823\) 8448.00i 0.357811i 0.983866 + 0.178906i \(0.0572557\pi\)
−0.983866 + 0.178906i \(0.942744\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 41484.0i − 1.74430i −0.489234 0.872152i \(-0.662724\pi\)
0.489234 0.872152i \(-0.337276\pi\)
\(828\) 0 0
\(829\) 31610.0 1.32432 0.662160 0.749363i \(-0.269640\pi\)
0.662160 + 0.749363i \(0.269640\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 39102.0i − 1.62642i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 38264.0 1.57452 0.787259 0.616623i \(-0.211500\pi\)
0.787259 + 0.616623i \(0.211500\pi\)
\(840\) 0 0
\(841\) −6433.00 −0.263766
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 9408.00 0.378968
\(852\) 0 0
\(853\) − 30350.0i − 1.21825i −0.793076 0.609123i \(-0.791521\pi\)
0.793076 0.609123i \(-0.208479\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 12566.0i 0.500871i 0.968133 + 0.250435i \(0.0805738\pi\)
−0.968133 + 0.250435i \(0.919426\pi\)
\(858\) 0 0
\(859\) −11812.0 −0.469174 −0.234587 0.972095i \(-0.575374\pi\)
−0.234587 + 0.972095i \(0.575374\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 31496.0i − 1.24234i −0.783677 0.621168i \(-0.786658\pi\)
0.783677 0.621168i \(-0.213342\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 2752.00 0.107428
\(870\) 0 0
\(871\) −10152.0 −0.394934
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 7414.00i 0.285465i 0.989761 + 0.142733i \(0.0455889\pi\)
−0.989761 + 0.142733i \(0.954411\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 22190.0 0.848581 0.424291 0.905526i \(-0.360523\pi\)
0.424291 + 0.905526i \(0.360523\pi\)
\(882\) 0 0
\(883\) 10172.0i 0.387673i 0.981034 + 0.193836i \(0.0620931\pi\)
−0.981034 + 0.193836i \(0.937907\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 20784.0i 0.786763i 0.919375 + 0.393381i \(0.128695\pi\)
−0.919375 + 0.393381i \(0.871305\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 8800.00i − 0.329766i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −36448.0 −1.35218
\(900\) 0 0
\(901\) 74556.0 2.75674
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 7652.00i − 0.280133i −0.990142 0.140066i \(-0.955268\pi\)
0.990142 0.140066i \(-0.0447316\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −19296.0 −0.701762 −0.350881 0.936420i \(-0.614118\pi\)
−0.350881 + 0.936420i \(0.614118\pi\)
\(912\) 0 0
\(913\) − 4752.00i − 0.172254i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 35896.0 1.28847 0.644233 0.764830i \(-0.277177\pi\)
0.644233 + 0.764830i \(0.277177\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 34128.0i − 1.21705i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −16350.0 −0.577423 −0.288712 0.957416i \(-0.593227\pi\)
−0.288712 + 0.957416i \(0.593227\pi\)
\(930\) 0 0
\(931\) −15092.0 −0.531279
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 19686.0i − 0.686354i −0.939271 0.343177i \(-0.888497\pi\)
0.939271 0.343177i \(-0.111503\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −56246.0 −1.94853 −0.974265 0.225405i \(-0.927630\pi\)
−0.974265 + 0.225405i \(0.927630\pi\)
\(942\) 0 0
\(943\) 576.000i 0.0198909i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 11436.0i 0.392418i 0.980562 + 0.196209i \(0.0628631\pi\)
−0.980562 + 0.196209i \(0.937137\pi\)
\(948\) 0 0
\(949\) 21060.0 0.720376
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 22582.0i − 0.767579i −0.923421 0.383789i \(-0.874619\pi\)
0.923421 0.383789i \(-0.125381\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 44193.0 1.48343
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 2112.00i − 0.0702351i −0.999383 0.0351175i \(-0.988819\pi\)
0.999383 0.0351175i \(-0.0111806\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 47964.0 1.58521 0.792605 0.609736i \(-0.208725\pi\)
0.792605 + 0.609736i \(0.208725\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 10510.0i 0.344160i 0.985083 + 0.172080i \(0.0550488\pi\)
−0.985083 + 0.172080i \(0.944951\pi\)
\(978\) 0 0
\(979\) 2776.00 0.0906245
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 11488.0i 0.372747i 0.982479 + 0.186373i \(0.0596734\pi\)
−0.982479 + 0.186373i \(0.940327\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1152.00 0.0370389
\(990\) 0 0
\(991\) −23120.0 −0.741101 −0.370550 0.928812i \(-0.620831\pi\)
−0.370550 + 0.928812i \(0.620831\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 30078.0i 0.955446i 0.878510 + 0.477723i \(0.158538\pi\)
−0.878510 + 0.477723i \(0.841462\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1800.4.f.m.649.1 2
3.2 odd 2 600.4.f.d.49.2 2
5.2 odd 4 1800.4.a.s.1.1 1
5.3 odd 4 360.4.a.c.1.1 1
5.4 even 2 inner 1800.4.f.m.649.2 2
12.11 even 2 1200.4.f.l.49.1 2
15.2 even 4 600.4.a.m.1.1 1
15.8 even 4 120.4.a.d.1.1 1
15.14 odd 2 600.4.f.d.49.1 2
20.3 even 4 720.4.a.i.1.1 1
60.23 odd 4 240.4.a.k.1.1 1
60.47 odd 4 1200.4.a.j.1.1 1
60.59 even 2 1200.4.f.l.49.2 2
120.53 even 4 960.4.a.x.1.1 1
120.83 odd 4 960.4.a.e.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.4.a.d.1.1 1 15.8 even 4
240.4.a.k.1.1 1 60.23 odd 4
360.4.a.c.1.1 1 5.3 odd 4
600.4.a.m.1.1 1 15.2 even 4
600.4.f.d.49.1 2 15.14 odd 2
600.4.f.d.49.2 2 3.2 odd 2
720.4.a.i.1.1 1 20.3 even 4
960.4.a.e.1.1 1 120.83 odd 4
960.4.a.x.1.1 1 120.53 even 4
1200.4.a.j.1.1 1 60.47 odd 4
1200.4.f.l.49.1 2 12.11 even 2
1200.4.f.l.49.2 2 60.59 even 2
1800.4.a.s.1.1 1 5.2 odd 4
1800.4.f.m.649.1 2 1.1 even 1 trivial
1800.4.f.m.649.2 2 5.4 even 2 inner