Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1800,4,Mod(649,1800)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1800, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1800.649");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 1800.f (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(106.203438010\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(i)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{2} + 1 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{13}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 600) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 649.1 | ||
Root | \(-1.00000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 1800.649 |
Dual form | 1800.4.f.l.649.2 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1800\mathbb{Z}\right)^\times\).
\(n\) | \(577\) | \(901\) | \(1001\) | \(1351\) |
\(\chi(n)\) | \(-1\) | \(1\) | \(1\) | \(1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | − 5.00000i | − 0.269975i | −0.990847 | − | 0.134987i | \(-0.956901\pi\) | ||||
0.990847 | − | 0.134987i | \(-0.0430994\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | −14.0000 | −0.383742 | −0.191871 | − | 0.981420i | \(-0.561455\pi\) | ||||
−0.191871 | + | 0.981420i | \(0.561455\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 1.00000i | 0.0213346i | 0.999943 | + | 0.0106673i | \(0.00339558\pi\) | ||||
−0.999943 | + | 0.0106673i | \(0.996604\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 46.0000i | 0.656273i | 0.944630 | + | 0.328136i | \(0.106421\pi\) | ||||
−0.944630 | + | 0.328136i | \(0.893579\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | −19.0000 | −0.229416 | −0.114708 | − | 0.993399i | \(-0.536593\pi\) | ||||
−0.114708 | + | 0.993399i | \(0.536593\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 46.0000i | 0.417029i | 0.978019 | + | 0.208514i | \(0.0668628\pi\) | ||||
−0.978019 | + | 0.208514i | \(0.933137\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 14.0000 | 0.0896460 | 0.0448230 | − | 0.998995i | \(-0.485728\pi\) | ||||
0.0448230 | + | 0.998995i | \(0.485728\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 133.000 | 0.770565 | 0.385282 | − | 0.922799i | \(-0.374104\pi\) | ||||
0.385282 | + | 0.922799i | \(0.374104\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | − 258.000i | − 1.14635i | −0.819433 | − | 0.573175i | \(-0.805712\pi\) | ||||
0.819433 | − | 0.573175i | \(-0.194288\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −84.0000 | −0.319966 | −0.159983 | − | 0.987120i | \(-0.551144\pi\) | ||||
−0.159983 | + | 0.987120i | \(0.551144\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | − 167.000i | − 0.592262i | −0.955147 | − | 0.296131i | \(-0.904304\pi\) | ||||
0.955147 | − | 0.296131i | \(-0.0956965\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 410.000i | 1.27244i | 0.771508 | + | 0.636220i | \(0.219503\pi\) | ||||
−0.771508 | + | 0.636220i | \(0.780497\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 318.000 | 0.927114 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | − 456.000i | − 1.18182i | −0.806738 | − | 0.590910i | \(-0.798769\pi\) | ||||
0.806738 | − | 0.590910i | \(-0.201231\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | −194.000 | −0.428079 | −0.214039 | − | 0.976825i | \(-0.568662\pi\) | ||||
−0.214039 | + | 0.976825i | \(0.568662\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −17.0000 | −0.0356824 | −0.0178412 | − | 0.999841i | \(-0.505679\pi\) | ||||
−0.0178412 | + | 0.999841i | \(0.505679\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | − 653.000i | − 1.19070i | −0.803468 | − | 0.595348i | \(-0.797014\pi\) | ||||
0.803468 | − | 0.595348i | \(-0.202986\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | −828.000 | −1.38402 | −0.692011 | − | 0.721887i | \(-0.743275\pi\) | ||||
−0.692011 | + | 0.721887i | \(0.743275\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 570.000i | 0.913883i | 0.889497 | + | 0.456941i | \(0.151055\pi\) | ||||
−0.889497 | + | 0.456941i | \(0.848945\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 70.0000i | 0.103601i | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 552.000 | 0.786137 | 0.393069 | − | 0.919509i | \(-0.371413\pi\) | ||||
0.393069 | + | 0.919509i | \(0.371413\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | − 142.000i | − 0.187789i | −0.995582 | − | 0.0938947i | \(-0.970068\pi\) | ||||
0.995582 | − | 0.0938947i | \(-0.0299317\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −1104.00 | −1.31487 | −0.657437 | − | 0.753510i | \(-0.728359\pi\) | ||||
−0.657437 | + | 0.753510i | \(0.728359\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 5.00000 | 0.00575981 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | − 841.000i | − 0.880316i | −0.897920 | − | 0.440158i | \(-0.854923\pi\) | ||||
0.897920 | − | 0.440158i | \(-0.145077\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | −552.000 | −0.543822 | −0.271911 | − | 0.962322i | \(-0.587656\pi\) | ||||
−0.271911 | + | 0.962322i | \(0.587656\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | − 308.000i | − 0.294642i | −0.989089 | − | 0.147321i | \(-0.952935\pi\) | ||||
0.989089 | − | 0.147321i | \(-0.0470651\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 984.000i | 0.889036i | 0.895770 | + | 0.444518i | \(0.146625\pi\) | ||||
−0.895770 | + | 0.444518i | \(0.853375\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 1843.00 | 1.61952 | 0.809759 | − | 0.586763i | \(-0.199598\pi\) | ||||
0.809759 | + | 0.586763i | \(0.199598\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | − 876.000i | − 0.729267i | −0.931151 | − | 0.364633i | \(-0.881194\pi\) | ||||
0.931151 | − | 0.364633i | \(-0.118806\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 230.000 | 0.177177 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −1135.00 | −0.852742 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | − 2376.00i | − 1.66013i | −0.557670 | − | 0.830063i | \(-0.688305\pi\) | ||||
0.557670 | − | 0.830063i | \(-0.311695\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | −1056.00 | −0.704299 | −0.352149 | − | 0.935944i | \(-0.614549\pi\) | ||||
−0.352149 | + | 0.935944i | \(0.614549\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 95.0000i | 0.0619364i | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | − 778.000i | − 0.485175i | −0.970129 | − | 0.242588i | \(-0.922004\pi\) | ||||
0.970129 | − | 0.242588i | \(-0.0779962\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −1692.00 | −1.03247 | −0.516236 | − | 0.856446i | \(-0.672667\pi\) | ||||
−0.516236 | + | 0.856446i | \(0.672667\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | − 14.0000i | − 0.00818698i | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −494.000 | −0.271611 | −0.135806 | − | 0.990736i | \(-0.543362\pi\) | ||||
−0.135806 | + | 0.990736i | \(0.543362\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −841.000 | −0.453242 | −0.226621 | − | 0.973983i | \(-0.572768\pi\) | ||||
−0.226621 | + | 0.973983i | \(0.572768\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | − 19.0000i | − 0.00965838i | −0.999988 | − | 0.00482919i | \(-0.998463\pi\) | ||||
0.999988 | − | 0.00482919i | \(-0.00153718\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 230.000 | 0.112587 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | − 2261.00i | − 1.08647i | −0.839580 | − | 0.543237i | \(-0.817199\pi\) | ||||
0.839580 | − | 0.543237i | \(-0.182801\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 2112.00i | 0.978632i | 0.872107 | + | 0.489316i | \(0.162753\pi\) | ||||
−0.872107 | + | 0.489316i | \(0.837247\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 2196.00 | 0.999545 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | − 562.000i | − 0.246983i | −0.992346 | − | 0.123492i | \(-0.960591\pi\) | ||||
0.992346 | − | 0.123492i | \(-0.0394092\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 3718.00 | 1.55249 | 0.776247 | − | 0.630429i | \(-0.217121\pi\) | ||||
0.776247 | + | 0.630429i | \(0.217121\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −1639.00 | −0.673071 | −0.336536 | − | 0.941671i | \(-0.609255\pi\) | ||||
−0.336536 | + | 0.941671i | \(0.609255\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | − 644.000i | − 0.251839i | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | −2410.00 | −0.912992 | −0.456496 | − | 0.889725i | \(-0.650896\pi\) | ||||
−0.456496 | + | 0.889725i | \(0.650896\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | − 2621.00i | − 0.977532i | −0.872415 | − | 0.488766i | \(-0.837447\pi\) | ||||
0.872415 | − | 0.488766i | \(-0.162553\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | − 4954.00i | − 1.79166i | −0.444392 | − | 0.895832i | \(-0.646580\pi\) | ||||
0.444392 | − | 0.895832i | \(-0.353420\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −1739.00 | −0.619470 | −0.309735 | − | 0.950823i | \(-0.600240\pi\) | ||||
−0.309735 | + | 0.950823i | \(0.600240\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | − 70.0000i | − 0.0242022i | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 266.000 | 0.0880364 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | −4525.00 | −1.47637 | −0.738184 | − | 0.674599i | \(-0.764317\pi\) | ||||
−0.738184 | + | 0.674599i | \(0.764317\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | − 665.000i | − 0.208033i | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | −46.0000 | −0.0140013 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | − 3211.00i | − 0.964235i | −0.876106 | − | 0.482118i | \(-0.839868\pi\) | ||||
0.876106 | − | 0.482118i | \(-0.160132\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | − 2484.00i | − 0.726295i | −0.931732 | − | 0.363147i | \(-0.881702\pi\) | ||||
0.931732 | − | 0.363147i | \(-0.118298\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 1847.00 | 0.532983 | 0.266492 | − | 0.963837i | \(-0.414136\pi\) | ||||
0.266492 | + | 0.963837i | \(0.414136\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 1020.00i | 0.286792i | 0.989665 | + | 0.143396i | \(0.0458022\pi\) | ||||
−0.989665 | + | 0.143396i | \(0.954198\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 1176.00 | 0.318281 | 0.159140 | − | 0.987256i | \(-0.449128\pi\) | ||||
0.159140 | + | 0.987256i | \(0.449128\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −6967.00 | −1.86217 | −0.931087 | − | 0.364797i | \(-0.881138\pi\) | ||||
−0.931087 | + | 0.364797i | \(0.881138\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | − 19.0000i | − 0.00489450i | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −1380.00 | −0.347031 | −0.173516 | − | 0.984831i | \(-0.555513\pi\) | ||||
−0.173516 | + | 0.984831i | \(0.555513\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | − 644.000i | − 0.160031i | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | − 6924.00i | − 1.68057i | −0.542143 | − | 0.840286i | \(-0.682387\pi\) | ||||
0.542143 | − | 0.840286i | \(-0.317613\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | −1290.00 | −0.309485 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | − 1884.00i | − 0.441720i | −0.975305 | − | 0.220860i | \(-0.929114\pi\) | ||||
0.975305 | − | 0.220860i | \(-0.0708864\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 3610.00 | 0.818236 | 0.409118 | − | 0.912481i | \(-0.365836\pi\) | ||||
0.409118 | + | 0.912481i | \(0.365836\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −6072.00 | −1.36106 | −0.680531 | − | 0.732719i | \(-0.738251\pi\) | ||||
−0.680531 | + | 0.732719i | \(0.738251\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 2803.00i | 0.608000i | 0.952672 | + | 0.304000i | \(0.0983223\pi\) | ||||
−0.952672 | + | 0.304000i | \(0.901678\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 6694.00 | 1.42111 | 0.710553 | − | 0.703644i | \(-0.248445\pi\) | ||||
0.710553 | + | 0.703644i | \(0.248445\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | − 6481.00i | − 1.36133i | −0.732596 | − | 0.680663i | \(-0.761692\pi\) | ||||
0.732596 | − | 0.680663i | \(-0.238308\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 420.000i | 0.0863826i | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 2797.00 | 0.569306 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | − 3014.00i | − 0.600955i | −0.953789 | − | 0.300477i | \(-0.902854\pi\) | ||||
0.953789 | − | 0.300477i | \(-0.0971460\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | −46.0000 | −0.00889715 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | −835.000 | −0.159896 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 5369.00i | 0.998127i | 0.866565 | + | 0.499064i | \(0.166323\pi\) | ||||
−0.866565 | + | 0.499064i | \(0.833677\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −4846.00 | −0.883574 | −0.441787 | − | 0.897120i | \(-0.645655\pi\) | ||||
−0.441787 | + | 0.897120i | \(0.645655\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | − 757.000i | − 0.136703i | −0.997661 | − | 0.0683517i | \(-0.978226\pi\) | ||||
0.997661 | − | 0.0683517i | \(-0.0217740\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | − 7632.00i | − 1.35223i | −0.736798 | − | 0.676113i | \(-0.763663\pi\) | ||||
0.736798 | − | 0.676113i | \(-0.236337\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | −196.000 | −0.0344009 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | − 874.000i | − 0.150559i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 2050.00 | 0.343526 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −6780.00 | −1.12587 | −0.562934 | − | 0.826502i | \(-0.690328\pi\) | ||||
−0.562934 | + | 0.826502i | \(0.690328\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | − 7849.00i | − 1.26873i | −0.773033 | − | 0.634365i | \(-0.781261\pi\) | ||||
0.773033 | − | 0.634365i | \(-0.218739\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | −1862.00 | −0.295698 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | − 3305.00i | − 0.520272i | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 634.000i | 0.0980833i | 0.998797 | + | 0.0490416i | \(0.0156167\pi\) | ||||
−0.998797 | + | 0.0490416i | \(0.984383\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −930.000 | −0.142641 | −0.0713206 | − | 0.997453i | \(-0.522721\pi\) | ||||
−0.0713206 | + | 0.997453i | \(0.522721\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 4286.00i | 0.646234i | 0.946359 | + | 0.323117i | \(0.104731\pi\) | ||||
−0.946359 | + | 0.323117i | \(0.895269\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −4236.00 | −0.622751 | −0.311375 | − | 0.950287i | \(-0.600790\pi\) | ||||
−0.311375 | + | 0.950287i | \(0.600790\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −6498.00 | −0.947368 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | − 1451.00i | − 0.206380i | −0.994662 | − | 0.103190i | \(-0.967095\pi\) | ||||
0.994662 | − | 0.103190i | \(-0.0329050\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | −2280.00 | −0.319061 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 3115.00i | 0.432409i | 0.976348 | + | 0.216205i | \(0.0693678\pi\) | ||||
−0.976348 | + | 0.216205i | \(0.930632\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 14.0000i | 0.00191256i | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 1415.00 | 0.191777 | 0.0958887 | − | 0.995392i | \(-0.469431\pi\) | ||||
0.0958887 | + | 0.995392i | \(0.469431\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 180.000i | 0.0240145i | 0.999928 | + | 0.0120073i | \(0.00382213\pi\) | ||||
−0.999928 | + | 0.0120073i | \(0.996178\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 12372.0 | 1.61256 | 0.806279 | − | 0.591535i | \(-0.201478\pi\) | ||||
0.806279 | + | 0.591535i | \(0.201478\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | −2116.00 | −0.273685 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | − 5767.00i | − 0.729062i | −0.931191 | − | 0.364531i | \(-0.881229\pi\) | ||||
0.931191 | − | 0.364531i | \(-0.118771\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 3120.00 | 0.388542 | 0.194271 | − | 0.980948i | \(-0.437766\pi\) | ||||
0.194271 | + | 0.980948i | \(0.437766\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 133.000i | 0.0164397i | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 3612.00i | 0.439902i | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −1501.00 | −0.181466 | −0.0907331 | − | 0.995875i | \(-0.528921\pi\) | ||||
−0.0907331 | + | 0.995875i | \(0.528921\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 970.000i | 0.115570i | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | −9072.00 | −1.05775 | −0.528874 | − | 0.848701i | \(-0.677386\pi\) | ||||
−0.528874 | + | 0.848701i | \(0.677386\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 7350.00 | 0.850872 | 0.425436 | − | 0.904989i | \(-0.360121\pi\) | ||||
0.425436 | + | 0.904989i | \(0.360121\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 85.0000i | 0.00963334i | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −5962.00 | −0.666310 | −0.333155 | − | 0.942872i | \(-0.608113\pi\) | ||||
−0.333155 | + | 0.942872i | \(0.608113\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | − 10093.0i | − 1.12018i | −0.828431 | − | 0.560091i | \(-0.810766\pi\) | ||||
0.828431 | − | 0.560091i | \(-0.189234\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | − 874.000i | − 0.0956730i | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 2555.00 | 0.277776 | 0.138888 | − | 0.990308i | \(-0.455647\pi\) | ||||
0.138888 | + | 0.990308i | \(0.455647\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | − 6240.00i | − 0.669236i | −0.942354 | − | 0.334618i | \(-0.891393\pi\) | ||||
0.942354 | − | 0.334618i | \(-0.108607\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 3324.00 | 0.349375 | 0.174687 | − | 0.984624i | \(-0.444109\pi\) | ||||
0.174687 | + | 0.984624i | \(0.444109\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 1176.00 | 0.122784 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | − 16774.0i | − 1.71697i | −0.512840 | − | 0.858484i | \(-0.671407\pi\) | ||||
0.512840 | − | 0.858484i | \(-0.328593\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | −14304.0 | −1.44513 | −0.722564 | − | 0.691304i | \(-0.757036\pi\) | ||||
−0.722564 | + | 0.691304i | \(0.757036\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 6936.00i | 0.696206i | 0.937456 | + | 0.348103i | \(0.113174\pi\) | ||||
−0.937456 | + | 0.348103i | \(0.886826\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 15622.0i | 1.54797i | 0.633207 | + | 0.773983i | \(0.281738\pi\) | ||||
−0.633207 | + | 0.773983i | \(0.718262\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | −3265.00 | −0.321458 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 2338.00i | 0.227276i | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | −13354.0 | −1.27382 | −0.636910 | − | 0.770938i | \(-0.719788\pi\) | ||||
−0.636910 | + | 0.770938i | \(0.719788\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 258.000 | 0.0244569 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 461.000i | 0.0428951i | 0.999770 | + | 0.0214475i | \(0.00682749\pi\) | ||||
−0.999770 | + | 0.0214475i | \(0.993173\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | −3768.00 | −0.346329 | −0.173164 | − | 0.984893i | \(-0.555399\pi\) | ||||
−0.173164 | + | 0.984893i | \(0.555399\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 644.000i | 0.0588323i | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 4140.00i | 0.373651i | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 14317.0 | 1.28440 | 0.642201 | − | 0.766536i | \(-0.278021\pi\) | ||||
0.642201 | + | 0.766536i | \(0.278021\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | − 9228.00i | − 0.818004i | −0.912533 | − | 0.409002i | \(-0.865877\pi\) | ||||
0.912533 | − | 0.409002i | \(-0.134123\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 4574.00 | 0.398308 | 0.199154 | − | 0.979968i | \(-0.436181\pi\) | ||||
0.199154 | + | 0.979968i | \(0.436181\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 2850.00 | 0.246725 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | − 5740.00i | − 0.488288i | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 8494.00 | 0.714259 | 0.357129 | − | 0.934055i | \(-0.383755\pi\) | ||||
0.357129 | + | 0.934055i | \(0.383755\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 8263.00i | 0.690852i | 0.938446 | + | 0.345426i | \(0.112266\pi\) | ||||
−0.938446 | + | 0.345426i | \(0.887734\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 6118.00i | 0.505701i | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 10051.0 | 0.826087 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | − 84.0000i | − 0.00682635i | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | −4452.00 | −0.355772 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 21157.0 | 1.68135 | 0.840675 | − | 0.541540i | \(-0.182158\pi\) | ||||
0.840675 | + | 0.541540i | \(0.182158\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 4048.00i | 0.316417i | 0.987406 | + | 0.158208i | \(0.0505718\pi\) | ||||
−0.987406 | + | 0.158208i | \(0.949428\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −266.000 | −0.0205662 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | − 2760.00i | − 0.212237i | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | − 6758.00i | − 0.514086i | −0.966400 | − | 0.257043i | \(-0.917252\pi\) | ||||
0.966400 | − | 0.257043i | \(-0.0827481\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 167.000 | 0.0126357 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | − 24506.0i | − 1.83447i | −0.398350 | − | 0.917233i | \(-0.630417\pi\) | ||||
0.398350 | − | 0.917233i | \(-0.369583\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −1430.00 | −0.105358 | −0.0526790 | − | 0.998611i | \(-0.516776\pi\) | ||||
−0.0526790 | + | 0.998611i | \(0.516776\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 3691.00 | 0.270514 | 0.135257 | − | 0.990811i | \(-0.456814\pi\) | ||||
0.135257 | + | 0.990811i | \(0.456814\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | − 4571.00i | − 0.329798i | −0.986310 | − | 0.164899i | \(-0.947270\pi\) | ||||
0.986310 | − | 0.164899i | \(-0.0527298\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | −710.000 | −0.0506984 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 6384.00i | 0.453513i | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 14808.0i | 1.04121i | 0.853797 | + | 0.520606i | \(0.174294\pi\) | ||||
−0.853797 | + | 0.520606i | \(0.825706\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | −2527.00 | −0.176780 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 24588.0i | 1.70271i | 0.524588 | + | 0.851356i | \(0.324219\pi\) | ||||
−0.524588 | + | 0.851356i | \(0.675781\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −27564.0 | −1.88019 | −0.940096 | − | 0.340911i | \(-0.889265\pi\) | ||||
−0.940096 | + | 0.340911i | \(0.889265\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 10987.0 | 0.745706 | 0.372853 | − | 0.927891i | \(-0.378380\pi\) | ||||
0.372853 | + | 0.927891i | \(0.378380\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 13200.0i | 0.882655i | 0.897346 | + | 0.441327i | \(0.145492\pi\) | ||||
−0.897346 | + | 0.441327i | \(0.854508\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | −410.000 | −0.0271470 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 21066.0i | 1.38801i | 0.719972 | + | 0.694003i | \(0.244155\pi\) | ||||
−0.719972 | + | 0.694003i | \(0.755845\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 12336.0i | 0.804909i | 0.915440 | + | 0.402454i | \(0.131843\pi\) | ||||
−0.915440 | + | 0.402454i | \(0.868157\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 1441.00 | 0.0935681 | 0.0467841 | − | 0.998905i | \(-0.485103\pi\) | ||||
0.0467841 | + | 0.998905i | \(0.485103\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 5520.00i | 0.354983i | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 11868.0 | 0.752318 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −9839.00 | −0.620736 | −0.310368 | − | 0.950616i | \(-0.600452\pi\) | ||||
−0.310368 | + | 0.950616i | \(0.600452\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 318.000i | 0.0197796i | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 21564.0 | 1.32875 | 0.664373 | − | 0.747401i | \(-0.268698\pi\) | ||||
0.664373 | + | 0.747401i | \(0.268698\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 8604.00i | 0.527696i | 0.964564 | + | 0.263848i | \(0.0849918\pi\) | ||||
−0.964564 | + | 0.263848i | \(0.915008\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 3444.00i | 0.209270i | 0.994511 | + | 0.104635i | \(0.0333674\pi\) | ||||
−0.994511 | + | 0.104635i | \(0.966633\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 2716.00 | 0.164272 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 3518.00i | 0.210827i | 0.994428 | + | 0.105413i | \(0.0336166\pi\) | ||||
−0.994428 | + | 0.105413i | \(0.966383\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −12612.0 | −0.745514 | −0.372757 | − | 0.927929i | \(-0.621588\pi\) | ||||
−0.372757 | + | 0.927929i | \(0.621588\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 27090.0 | 1.59407 | 0.797034 | − | 0.603935i | \(-0.206401\pi\) | ||||
0.797034 | + | 0.603935i | \(0.206401\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 644.000i | 0.0373850i | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 238.000 | 0.0136928 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | − 5442.00i | − 0.311699i | −0.987781 | − | 0.155850i | \(-0.950188\pi\) | ||||
0.987781 | − | 0.155850i | \(-0.0498115\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | − 15226.0i | − 0.864376i | −0.901783 | − | 0.432188i | \(-0.857742\pi\) | ||||
0.901783 | − | 0.432188i | \(-0.142258\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | −4205.00 | −0.237663 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 552.000i | 0.0309249i | 0.999880 | + | 0.0154624i | \(0.00492204\pi\) | ||||
−0.999880 | + | 0.0154624i | \(0.995078\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 456.000 | 0.0252137 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 9776.00 | 0.538201 | 0.269100 | − | 0.963112i | \(-0.413274\pi\) | ||||
0.269100 | + | 0.963112i | \(0.413274\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | − 3864.00i | − 0.209985i | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | −13066.0 | −0.703989 | −0.351994 | − | 0.936002i | \(-0.614496\pi\) | ||||
−0.351994 | + | 0.936002i | \(0.614496\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 4902.00i | 0.262991i | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 2760.00i | 0.146818i | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −28985.0 | −1.53534 | −0.767669 | − | 0.640847i | \(-0.778583\pi\) | ||||
−0.767669 | + | 0.640847i | \(0.778583\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 6118.00i | 0.321348i | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 15722.0 | 0.815482 | 0.407741 | − | 0.913098i | \(-0.366317\pi\) | ||||
0.407741 | + | 0.913098i | \(0.366317\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −1540.00 | −0.0795459 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 32611.0i | 1.66365i | 0.555036 | + | 0.831826i | \(0.312704\pi\) | ||||
−0.555036 | + | 0.831826i | \(0.687296\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 7682.00 | 0.388685 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 8358.00i | 0.421159i | 0.977577 | + | 0.210580i | \(0.0675351\pi\) | ||||
−0.977577 | + | 0.210580i | \(0.932465\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 9142.00i | 0.456920i | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −20604.0 | −1.02562 | −0.512808 | − | 0.858503i | \(-0.671395\pi\) | ||||
−0.512808 | + | 0.858503i | \(0.671395\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 19476.0i | 0.961649i | 0.876817 | + | 0.480824i | \(0.159663\pi\) | ||||
−0.876817 | + | 0.480824i | \(0.840337\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 4920.00 | 0.240017 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 3864.00 | 0.187749 | 0.0938744 | − | 0.995584i | \(-0.470075\pi\) | ||||
0.0938744 | + | 0.995584i | \(0.470075\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 18871.0i | 0.906048i | 0.891498 | + | 0.453024i | \(0.149655\pi\) | ||||
−0.891498 | + | 0.453024i | \(0.850345\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 36372.0 | 1.73257 | 0.866284 | − | 0.499552i | \(-0.166502\pi\) | ||||
0.866284 | + | 0.499552i | \(0.166502\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | − 9215.00i | − 0.437229i | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | − 194.000i | − 0.00913290i | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −4603.00 | −0.215850 | −0.107925 | − | 0.994159i | \(-0.534421\pi\) | ||||
−0.107925 | + | 0.994159i | \(0.534421\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 36.0000i | 0.00167507i | 1.00000 | 0.000837536i | \(0.000266596\pi\) | |||||
−1.00000 | 0.000837536i | \(0.999733\pi\) | ||||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 1596.00 | 0.0734052 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 11592.0 | 0.531107 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 20281.0i | 0.918602i | 0.888281 | + | 0.459301i | \(0.151900\pi\) | ||||
−0.888281 | + | 0.459301i | \(0.848100\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | −4380.00 | −0.196884 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | − 17.0000i | 0 0.000761271i | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | − 37524.0i | − 1.66771i | −0.551980 | − | 0.833857i | \(-0.686128\pi\) | ||||
0.551980 | − | 0.833857i | \(-0.313872\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | −18860.0 | −0.835067 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | − 7980.00i | − 0.350695i | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 31224.0 | 1.35696 | 0.678478 | − | 0.734621i | \(-0.262640\pi\) | ||||
0.678478 | + | 0.734621i | \(0.262640\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 32579.0 | 1.41061 | 0.705304 | − | 0.708905i | \(-0.250810\pi\) | ||||
0.705304 | + | 0.708905i | \(0.250810\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 3173.00i | 0.135874i | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 19810.0 | 0.842112 | 0.421056 | − | 0.907035i | \(-0.361660\pi\) | ||||
0.421056 | + | 0.907035i | \(0.361660\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 10273.0i | 0.435108i | 0.976048 | + | 0.217554i | \(0.0698079\pi\) | ||||
−0.976048 | + | 0.217554i | \(0.930192\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 16656.0i | 0.700346i | 0.936685 | + | 0.350173i | \(0.113877\pi\) | ||||
−0.936685 | + | 0.350173i | \(0.886123\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 4790.00 | 0.200680 | 0.100340 | − | 0.994953i | \(-0.468007\pi\) | ||||
0.100340 | + | 0.994953i | \(0.468007\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 14628.0i | 0.608440i | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 7414.00 | 0.305077 | 0.152539 | − | 0.988298i | \(-0.451255\pi\) | ||||
0.152539 | + | 0.988298i | \(0.451255\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −24193.0 | −0.991964 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 5675.00i | 0.230219i | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 11868.0 | 0.478061 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 30155.0i | 1.21042i | 0.796066 | + | 0.605210i | \(0.206911\pi\) | ||||
−0.796066 | + | 0.605210i | \(0.793089\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | − 8244.00i | − 0.328599i | −0.986410 | − | 0.164300i | \(-0.947464\pi\) | ||||
0.986410 | − | 0.164300i | \(-0.0525364\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −17552.0 | −0.697167 | −0.348584 | − | 0.937278i | \(-0.613337\pi\) | ||||
−0.348584 | + | 0.937278i | \(0.613337\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 34104.0i | 1.34521i | 0.740003 | + | 0.672604i | \(0.234824\pi\) | ||||
−0.740003 | + | 0.672604i | \(0.765176\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | −7728.00 | −0.301674 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 653.000 | 0.0254031 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 46229.0i | 1.77998i | 0.455980 | + | 0.889990i | \(0.349289\pi\) | ||||
−0.455980 | + | 0.889990i | \(0.650711\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 22440.0 | 0.858142 | 0.429071 | − | 0.903271i | \(-0.358841\pi\) | ||||
0.429071 | + | 0.903271i | \(0.358841\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | − 17143.0i | − 0.653350i | −0.945137 | − | 0.326675i | \(-0.894072\pi\) | ||||
0.945137 | − | 0.326675i | \(-0.105928\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | − 23626.0i | − 0.894344i | −0.894448 | − | 0.447172i | \(-0.852431\pi\) | ||||
0.894448 | − | 0.447172i | \(-0.147569\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | −11880.0 | −0.448192 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | − 7790.00i | − 0.291918i | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 1862.00 | 0.0690781 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 20976.0 | 0.775596 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 11268.0i | 0.412511i | 0.978498 | + | 0.206256i | \(0.0661279\pi\) | ||||
−0.978498 | + | 0.206256i | \(0.933872\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −10046.0 | −0.365355 | −0.182678 | − | 0.983173i | \(-0.558476\pi\) | ||||
−0.182678 | + | 0.983173i | \(0.558476\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 1988.00i | 0.0720626i | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 5280.00i | 0.190143i | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −15359.0 | −0.551302 | −0.275651 | − | 0.961258i | \(-0.588893\pi\) | ||||
−0.275651 | + | 0.961258i | \(0.588893\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | − 828.000i | − 0.0295276i | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | −39790.0 | −1.40524 | −0.702620 | − | 0.711565i | \(-0.747986\pi\) | ||||
−0.702620 | + | 0.711565i | \(0.747986\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | −6042.00 | −0.212694 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 17009.0i | 0.593020i | 0.955030 | + | 0.296510i | \(0.0958228\pi\) | ||||
−0.955030 | + | 0.296510i | \(0.904177\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 11674.0 | 0.404422 | 0.202211 | − | 0.979342i | \(-0.435187\pi\) | ||||
0.202211 | + | 0.979342i | \(0.435187\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | − 3864.00i | − 0.133435i | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 6026.00i | 0.206778i | 0.994641 | + | 0.103389i | \(0.0329686\pi\) | ||||
−0.994641 | + | 0.103389i | \(0.967031\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −570.000 | −0.0194973 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 14088.0i | 0.478862i | 0.970913 | + | 0.239431i | \(0.0769608\pi\) | ||||
−0.970913 | + | 0.239431i | \(0.923039\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | −3890.00 | −0.130985 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −12102.0 | −0.406230 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 11208.0i | 0.372725i | 0.982481 | + | 0.186362i | \(0.0596699\pi\) | ||||
−0.982481 | + | 0.186362i | \(0.940330\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 26054.0 | 0.861084 | 0.430542 | − | 0.902571i | \(-0.358322\pi\) | ||||
0.430542 | + | 0.902571i | \(0.358322\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 8460.00i | 0.278741i | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | − 26870.0i | − 0.879885i | −0.898026 | − | 0.439942i | \(-0.854999\pi\) | ||||
0.898026 | − | 0.439942i | \(-0.145001\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 15456.0 | 0.504572 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 23388.0i | 0.758862i | 0.925220 | + | 0.379431i | \(0.123880\pi\) | ||||
−0.925220 | + | 0.379431i | \(0.876120\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 7682.00 | 0.246990 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 17345.0 | 0.555986 | 0.277993 | − | 0.960583i | \(-0.410331\pi\) | ||||
0.277993 | + | 0.960583i | \(0.410331\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 25998.0i | 0.825842i | 0.910767 | + | 0.412921i | \(0.135492\pi\) | ||||
−0.910767 | + | 0.412921i | \(0.864508\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 1800.4.f.l.649.1 | 2 | ||
3.2 | odd | 2 | 600.4.f.e.49.2 | 2 | |||
5.2 | odd | 4 | 1800.4.a.v.1.1 | 1 | |||
5.3 | odd | 4 | 1800.4.a.m.1.1 | 1 | |||
5.4 | even | 2 | inner | 1800.4.f.l.649.2 | 2 | ||
12.11 | even | 2 | 1200.4.f.i.49.1 | 2 | |||
15.2 | even | 4 | 600.4.a.n.1.1 | yes | 1 | ||
15.8 | even | 4 | 600.4.a.e.1.1 | ✓ | 1 | ||
15.14 | odd | 2 | 600.4.f.e.49.1 | 2 | |||
60.23 | odd | 4 | 1200.4.a.bd.1.1 | 1 | |||
60.47 | odd | 4 | 1200.4.a.g.1.1 | 1 | |||
60.59 | even | 2 | 1200.4.f.i.49.2 | 2 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
600.4.a.e.1.1 | ✓ | 1 | 15.8 | even | 4 | ||
600.4.a.n.1.1 | yes | 1 | 15.2 | even | 4 | ||
600.4.f.e.49.1 | 2 | 15.14 | odd | 2 | |||
600.4.f.e.49.2 | 2 | 3.2 | odd | 2 | |||
1200.4.a.g.1.1 | 1 | 60.47 | odd | 4 | |||
1200.4.a.bd.1.1 | 1 | 60.23 | odd | 4 | |||
1200.4.f.i.49.1 | 2 | 12.11 | even | 2 | |||
1200.4.f.i.49.2 | 2 | 60.59 | even | 2 | |||
1800.4.a.m.1.1 | 1 | 5.3 | odd | 4 | |||
1800.4.a.v.1.1 | 1 | 5.2 | odd | 4 | |||
1800.4.f.l.649.1 | 2 | 1.1 | even | 1 | trivial | ||
1800.4.f.l.649.2 | 2 | 5.4 | even | 2 | inner |