Properties

Label 1800.4.f.j.649.2
Level $1800$
Weight $4$
Character 1800.649
Analytic conductor $106.203$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1800,4,Mod(649,1800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1800.649");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1800.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(106.203438010\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1800.649
Dual form 1800.4.f.j.649.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+34.0000i q^{7} +O(q^{10})\) \(q+34.0000i q^{7} -16.0000 q^{11} +58.0000i q^{13} -70.0000i q^{17} -4.00000 q^{19} +134.000i q^{23} -242.000 q^{29} +100.000 q^{31} +438.000i q^{37} +138.000 q^{41} +178.000i q^{43} +22.0000i q^{47} -813.000 q^{49} -162.000i q^{53} -268.000 q^{59} +250.000 q^{61} -422.000i q^{67} +852.000 q^{71} +306.000i q^{73} -544.000i q^{77} +456.000 q^{79} -434.000i q^{83} -726.000 q^{89} -1972.00 q^{91} -1378.00i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 32 q^{11} - 8 q^{19} - 484 q^{29} + 200 q^{31} + 276 q^{41} - 1626 q^{49} - 536 q^{59} + 500 q^{61} + 1704 q^{71} + 912 q^{79} - 1452 q^{89} - 3944 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1800\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1001\) \(1351\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 34.0000i 1.83583i 0.396780 + 0.917914i \(0.370128\pi\)
−0.396780 + 0.917914i \(0.629872\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −16.0000 −0.438562 −0.219281 0.975662i \(-0.570371\pi\)
−0.219281 + 0.975662i \(0.570371\pi\)
\(12\) 0 0
\(13\) 58.0000i 1.23741i 0.785624 + 0.618704i \(0.212342\pi\)
−0.785624 + 0.618704i \(0.787658\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 70.0000i − 0.998676i −0.866407 0.499338i \(-0.833577\pi\)
0.866407 0.499338i \(-0.166423\pi\)
\(18\) 0 0
\(19\) −4.00000 −0.0482980 −0.0241490 0.999708i \(-0.507688\pi\)
−0.0241490 + 0.999708i \(0.507688\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 134.000i 1.21482i 0.794387 + 0.607412i \(0.207792\pi\)
−0.794387 + 0.607412i \(0.792208\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −242.000 −1.54960 −0.774798 0.632209i \(-0.782148\pi\)
−0.774798 + 0.632209i \(0.782148\pi\)
\(30\) 0 0
\(31\) 100.000 0.579372 0.289686 0.957122i \(-0.406449\pi\)
0.289686 + 0.957122i \(0.406449\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 438.000i 1.94613i 0.230534 + 0.973064i \(0.425953\pi\)
−0.230534 + 0.973064i \(0.574047\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 138.000 0.525658 0.262829 0.964842i \(-0.415344\pi\)
0.262829 + 0.964842i \(0.415344\pi\)
\(42\) 0 0
\(43\) 178.000i 0.631273i 0.948880 + 0.315637i \(0.102218\pi\)
−0.948880 + 0.315637i \(0.897782\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 22.0000i 0.0682772i 0.999417 + 0.0341386i \(0.0108688\pi\)
−0.999417 + 0.0341386i \(0.989131\pi\)
\(48\) 0 0
\(49\) −813.000 −2.37026
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 162.000i − 0.419857i −0.977717 0.209928i \(-0.932677\pi\)
0.977717 0.209928i \(-0.0673231\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −268.000 −0.591367 −0.295683 0.955286i \(-0.595547\pi\)
−0.295683 + 0.955286i \(0.595547\pi\)
\(60\) 0 0
\(61\) 250.000 0.524741 0.262371 0.964967i \(-0.415496\pi\)
0.262371 + 0.964967i \(0.415496\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 422.000i − 0.769485i −0.923024 0.384743i \(-0.874290\pi\)
0.923024 0.384743i \(-0.125710\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 852.000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) 0 0
\(73\) 306.000i 0.490611i 0.969446 + 0.245305i \(0.0788882\pi\)
−0.969446 + 0.245305i \(0.921112\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 544.000i − 0.805124i
\(78\) 0 0
\(79\) 456.000 0.649418 0.324709 0.945814i \(-0.394734\pi\)
0.324709 + 0.945814i \(0.394734\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 434.000i − 0.573948i −0.957938 0.286974i \(-0.907351\pi\)
0.957938 0.286974i \(-0.0926493\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −726.000 −0.864672 −0.432336 0.901712i \(-0.642311\pi\)
−0.432336 + 0.901712i \(0.642311\pi\)
\(90\) 0 0
\(91\) −1972.00 −2.27167
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 1378.00i − 1.44242i −0.692717 0.721210i \(-0.743586\pi\)
0.692717 0.721210i \(-0.256414\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −126.000 −0.124133 −0.0620667 0.998072i \(-0.519769\pi\)
−0.0620667 + 0.998072i \(0.519769\pi\)
\(102\) 0 0
\(103\) − 1262.00i − 1.20727i −0.797262 0.603634i \(-0.793719\pi\)
0.797262 0.603634i \(-0.206281\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 510.000i 0.460781i 0.973098 + 0.230390i \(0.0740003\pi\)
−0.973098 + 0.230390i \(0.926000\pi\)
\(108\) 0 0
\(109\) −26.0000 −0.0228472 −0.0114236 0.999935i \(-0.503636\pi\)
−0.0114236 + 0.999935i \(0.503636\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 1242.00i − 1.03396i −0.855997 0.516980i \(-0.827056\pi\)
0.855997 0.516980i \(-0.172944\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2380.00 1.83340
\(120\) 0 0
\(121\) −1075.00 −0.807663
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 978.000i 0.683334i 0.939821 + 0.341667i \(0.110992\pi\)
−0.939821 + 0.341667i \(0.889008\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 912.000 0.608258 0.304129 0.952631i \(-0.401635\pi\)
0.304129 + 0.952631i \(0.401635\pi\)
\(132\) 0 0
\(133\) − 136.000i − 0.0886669i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 926.000i − 0.577471i −0.957409 0.288735i \(-0.906765\pi\)
0.957409 0.288735i \(-0.0932348\pi\)
\(138\) 0 0
\(139\) −516.000 −0.314867 −0.157434 0.987530i \(-0.550322\pi\)
−0.157434 + 0.987530i \(0.550322\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 928.000i − 0.542680i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −958.000 −0.526728 −0.263364 0.964697i \(-0.584832\pi\)
−0.263364 + 0.964697i \(0.584832\pi\)
\(150\) 0 0
\(151\) 332.000 0.178926 0.0894628 0.995990i \(-0.471485\pi\)
0.0894628 + 0.995990i \(0.471485\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 1022.00i 0.519519i 0.965673 + 0.259759i \(0.0836433\pi\)
−0.965673 + 0.259759i \(0.916357\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −4556.00 −2.23021
\(162\) 0 0
\(163\) − 926.000i − 0.444969i −0.974936 0.222484i \(-0.928583\pi\)
0.974936 0.222484i \(-0.0714166\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 654.000i 0.303042i 0.988454 + 0.151521i \(0.0484171\pi\)
−0.988454 + 0.151521i \(0.951583\pi\)
\(168\) 0 0
\(169\) −1167.00 −0.531179
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1294.00i 0.568676i 0.958724 + 0.284338i \(0.0917738\pi\)
−0.958724 + 0.284338i \(0.908226\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −2836.00 −1.18420 −0.592102 0.805863i \(-0.701702\pi\)
−0.592102 + 0.805863i \(0.701702\pi\)
\(180\) 0 0
\(181\) 1742.00 0.715369 0.357685 0.933842i \(-0.383566\pi\)
0.357685 + 0.933842i \(0.383566\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 1120.00i 0.437981i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4460.00 −1.68960 −0.844802 0.535079i \(-0.820282\pi\)
−0.844802 + 0.535079i \(0.820282\pi\)
\(192\) 0 0
\(193\) − 3782.00i − 1.41054i −0.708939 0.705270i \(-0.750826\pi\)
0.708939 0.705270i \(-0.249174\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4474.00i 1.61807i 0.587762 + 0.809034i \(0.300009\pi\)
−0.587762 + 0.809034i \(0.699991\pi\)
\(198\) 0 0
\(199\) −3608.00 −1.28525 −0.642624 0.766182i \(-0.722154\pi\)
−0.642624 + 0.766182i \(0.722154\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 8228.00i − 2.84479i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 64.0000 0.0211817
\(210\) 0 0
\(211\) −256.000 −0.0835250 −0.0417625 0.999128i \(-0.513297\pi\)
−0.0417625 + 0.999128i \(0.513297\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 3400.00i 1.06363i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 4060.00 1.23577
\(222\) 0 0
\(223\) − 5158.00i − 1.54890i −0.632634 0.774451i \(-0.718026\pi\)
0.632634 0.774451i \(-0.281974\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 2226.00i − 0.650858i −0.945566 0.325429i \(-0.894491\pi\)
0.945566 0.325429i \(-0.105509\pi\)
\(228\) 0 0
\(229\) −2086.00 −0.601951 −0.300975 0.953632i \(-0.597312\pi\)
−0.300975 + 0.953632i \(0.597312\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 5718.00i 1.60772i 0.594819 + 0.803860i \(0.297224\pi\)
−0.594819 + 0.803860i \(0.702776\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −3624.00 −0.980825 −0.490412 0.871491i \(-0.663154\pi\)
−0.490412 + 0.871491i \(0.663154\pi\)
\(240\) 0 0
\(241\) −82.0000 −0.0219174 −0.0109587 0.999940i \(-0.503488\pi\)
−0.0109587 + 0.999940i \(0.503488\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 232.000i − 0.0597644i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 5040.00 1.26742 0.633709 0.773571i \(-0.281532\pi\)
0.633709 + 0.773571i \(0.281532\pi\)
\(252\) 0 0
\(253\) − 2144.00i − 0.532775i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 2310.00i − 0.560676i −0.959901 0.280338i \(-0.909553\pi\)
0.959901 0.280338i \(-0.0904466\pi\)
\(258\) 0 0
\(259\) −14892.0 −3.57276
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4110.00i 0.963625i 0.876274 + 0.481813i \(0.160021\pi\)
−0.876274 + 0.481813i \(0.839979\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 746.000 0.169087 0.0845435 0.996420i \(-0.473057\pi\)
0.0845435 + 0.996420i \(0.473057\pi\)
\(270\) 0 0
\(271\) −4596.00 −1.03021 −0.515105 0.857127i \(-0.672247\pi\)
−0.515105 + 0.857127i \(0.672247\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 2206.00i 0.478504i 0.970957 + 0.239252i \(0.0769023\pi\)
−0.970957 + 0.239252i \(0.923098\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −8278.00 −1.75738 −0.878691 0.477392i \(-0.841582\pi\)
−0.878691 + 0.477392i \(0.841582\pi\)
\(282\) 0 0
\(283\) 1178.00i 0.247438i 0.992317 + 0.123719i \(0.0394821\pi\)
−0.992317 + 0.123719i \(0.960518\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4692.00i 0.965017i
\(288\) 0 0
\(289\) 13.0000 0.00264604
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 106.000i − 0.0211351i −0.999944 0.0105676i \(-0.996636\pi\)
0.999944 0.0105676i \(-0.00336382\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −7772.00 −1.50323
\(300\) 0 0
\(301\) −6052.00 −1.15891
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 8134.00i − 1.51216i −0.654482 0.756078i \(-0.727113\pi\)
0.654482 0.756078i \(-0.272887\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4396.00 0.801525 0.400763 0.916182i \(-0.368745\pi\)
0.400763 + 0.916182i \(0.368745\pi\)
\(312\) 0 0
\(313\) 4826.00i 0.871507i 0.900066 + 0.435753i \(0.143518\pi\)
−0.900066 + 0.435753i \(0.856482\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 7026.00i 1.24486i 0.782677 + 0.622428i \(0.213854\pi\)
−0.782677 + 0.622428i \(0.786146\pi\)
\(318\) 0 0
\(319\) 3872.00 0.679594
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 280.000i 0.0482341i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −748.000 −0.125345
\(330\) 0 0
\(331\) 8808.00 1.46263 0.731316 0.682038i \(-0.238906\pi\)
0.731316 + 0.682038i \(0.238906\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 5602.00i − 0.905520i −0.891632 0.452760i \(-0.850439\pi\)
0.891632 0.452760i \(-0.149561\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1600.00 −0.254090
\(342\) 0 0
\(343\) − 15980.0i − 2.51557i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 6634.00i − 1.02632i −0.858294 0.513158i \(-0.828475\pi\)
0.858294 0.513158i \(-0.171525\pi\)
\(348\) 0 0
\(349\) −3198.00 −0.490501 −0.245251 0.969460i \(-0.578870\pi\)
−0.245251 + 0.969460i \(0.578870\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 5230.00i 0.788569i 0.918988 + 0.394284i \(0.129008\pi\)
−0.918988 + 0.394284i \(0.870992\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −312.000 −0.0458683 −0.0229342 0.999737i \(-0.507301\pi\)
−0.0229342 + 0.999737i \(0.507301\pi\)
\(360\) 0 0
\(361\) −6843.00 −0.997667
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 10790.0i − 1.53470i −0.641231 0.767348i \(-0.721576\pi\)
0.641231 0.767348i \(-0.278424\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 5508.00 0.770785
\(372\) 0 0
\(373\) − 4190.00i − 0.581635i −0.956778 0.290818i \(-0.906073\pi\)
0.956778 0.290818i \(-0.0939273\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 14036.0i − 1.91748i
\(378\) 0 0
\(379\) 6980.00 0.946012 0.473006 0.881059i \(-0.343169\pi\)
0.473006 + 0.881059i \(0.343169\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 13962.0i − 1.86273i −0.364089 0.931364i \(-0.618620\pi\)
0.364089 0.931364i \(-0.381380\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 3810.00 0.496593 0.248296 0.968684i \(-0.420129\pi\)
0.248296 + 0.968684i \(0.420129\pi\)
\(390\) 0 0
\(391\) 9380.00 1.21321
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 9158.00i 1.15775i 0.815416 + 0.578875i \(0.196508\pi\)
−0.815416 + 0.578875i \(0.803492\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −4866.00 −0.605976 −0.302988 0.952994i \(-0.597984\pi\)
−0.302988 + 0.952994i \(0.597984\pi\)
\(402\) 0 0
\(403\) 5800.00i 0.716920i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 7008.00i − 0.853498i
\(408\) 0 0
\(409\) −13486.0 −1.63042 −0.815208 0.579169i \(-0.803377\pi\)
−0.815208 + 0.579169i \(0.803377\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 9112.00i − 1.08565i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 5628.00 0.656195 0.328098 0.944644i \(-0.393593\pi\)
0.328098 + 0.944644i \(0.393593\pi\)
\(420\) 0 0
\(421\) 7938.00 0.918942 0.459471 0.888193i \(-0.348039\pi\)
0.459471 + 0.888193i \(0.348039\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 8500.00i 0.963334i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −1916.00 −0.214131 −0.107066 0.994252i \(-0.534145\pi\)
−0.107066 + 0.994252i \(0.534145\pi\)
\(432\) 0 0
\(433\) − 16510.0i − 1.83238i −0.400746 0.916189i \(-0.631249\pi\)
0.400746 0.916189i \(-0.368751\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 536.000i − 0.0586736i
\(438\) 0 0
\(439\) 1256.00 0.136550 0.0682752 0.997667i \(-0.478250\pi\)
0.0682752 + 0.997667i \(0.478250\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 12222.0i 1.31080i 0.755282 + 0.655400i \(0.227500\pi\)
−0.755282 + 0.655400i \(0.772500\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −5946.00 −0.624965 −0.312482 0.949924i \(-0.601160\pi\)
−0.312482 + 0.949924i \(0.601160\pi\)
\(450\) 0 0
\(451\) −2208.00 −0.230534
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 1258.00i − 0.128768i −0.997925 0.0643838i \(-0.979492\pi\)
0.997925 0.0643838i \(-0.0205082\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −16422.0 −1.65911 −0.829554 0.558426i \(-0.811405\pi\)
−0.829554 + 0.558426i \(0.811405\pi\)
\(462\) 0 0
\(463\) 2658.00i 0.266799i 0.991062 + 0.133399i \(0.0425893\pi\)
−0.991062 + 0.133399i \(0.957411\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 3686.00i 0.365241i 0.983183 + 0.182621i \(0.0584580\pi\)
−0.983183 + 0.182621i \(0.941542\pi\)
\(468\) 0 0
\(469\) 14348.0 1.41264
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 2848.00i − 0.276852i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 88.0000 0.00839420 0.00419710 0.999991i \(-0.498664\pi\)
0.00419710 + 0.999991i \(0.498664\pi\)
\(480\) 0 0
\(481\) −25404.0 −2.40816
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 14714.0i 1.36911i 0.728963 + 0.684553i \(0.240003\pi\)
−0.728963 + 0.684553i \(0.759997\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 7344.00 0.675010 0.337505 0.941324i \(-0.390417\pi\)
0.337505 + 0.941324i \(0.390417\pi\)
\(492\) 0 0
\(493\) 16940.0i 1.54754i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 28968.0i 2.61447i
\(498\) 0 0
\(499\) −1604.00 −0.143898 −0.0719488 0.997408i \(-0.522922\pi\)
−0.0719488 + 0.997408i \(0.522922\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 14802.0i − 1.31210i −0.754715 0.656052i \(-0.772225\pi\)
0.754715 0.656052i \(-0.227775\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −22514.0 −1.96054 −0.980271 0.197660i \(-0.936666\pi\)
−0.980271 + 0.197660i \(0.936666\pi\)
\(510\) 0 0
\(511\) −10404.0 −0.900677
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 352.000i − 0.0299438i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 6710.00 0.564243 0.282121 0.959379i \(-0.408962\pi\)
0.282121 + 0.959379i \(0.408962\pi\)
\(522\) 0 0
\(523\) 7930.00i 0.663011i 0.943453 + 0.331505i \(0.107557\pi\)
−0.943453 + 0.331505i \(0.892443\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 7000.00i − 0.578605i
\(528\) 0 0
\(529\) −5789.00 −0.475795
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 8004.00i 0.650454i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 13008.0 1.03951
\(540\) 0 0
\(541\) 4918.00 0.390834 0.195417 0.980720i \(-0.437394\pi\)
0.195417 + 0.980720i \(0.437394\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 3922.00i 0.306568i 0.988182 + 0.153284i \(0.0489849\pi\)
−0.988182 + 0.153284i \(0.951015\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 968.000 0.0748424
\(552\) 0 0
\(553\) 15504.0i 1.19222i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 17786.0i 1.35299i 0.736446 + 0.676496i \(0.236503\pi\)
−0.736446 + 0.676496i \(0.763497\pi\)
\(558\) 0 0
\(559\) −10324.0 −0.781143
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 20266.0i − 1.51707i −0.651633 0.758535i \(-0.725916\pi\)
0.651633 0.758535i \(-0.274084\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 13358.0 0.984177 0.492088 0.870545i \(-0.336234\pi\)
0.492088 + 0.870545i \(0.336234\pi\)
\(570\) 0 0
\(571\) 16360.0 1.19903 0.599514 0.800364i \(-0.295361\pi\)
0.599514 + 0.800364i \(0.295361\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 15574.0i 1.12366i 0.827251 + 0.561832i \(0.189903\pi\)
−0.827251 + 0.561832i \(0.810097\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 14756.0 1.05367
\(582\) 0 0
\(583\) 2592.00i 0.184133i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 6654.00i 0.467870i 0.972252 + 0.233935i \(0.0751604\pi\)
−0.972252 + 0.233935i \(0.924840\pi\)
\(588\) 0 0
\(589\) −400.000 −0.0279825
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 17742.0i 1.22863i 0.789062 + 0.614314i \(0.210567\pi\)
−0.789062 + 0.614314i \(0.789433\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 15840.0 1.08048 0.540238 0.841512i \(-0.318334\pi\)
0.540238 + 0.841512i \(0.318334\pi\)
\(600\) 0 0
\(601\) −3002.00 −0.203751 −0.101875 0.994797i \(-0.532484\pi\)
−0.101875 + 0.994797i \(0.532484\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 23610.0i 1.57875i 0.613912 + 0.789374i \(0.289595\pi\)
−0.613912 + 0.789374i \(0.710405\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1276.00 −0.0844868
\(612\) 0 0
\(613\) 23850.0i 1.57144i 0.618583 + 0.785720i \(0.287707\pi\)
−0.618583 + 0.785720i \(0.712293\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 5334.00i − 0.348037i −0.984742 0.174018i \(-0.944325\pi\)
0.984742 0.174018i \(-0.0556752\pi\)
\(618\) 0 0
\(619\) 2164.00 0.140515 0.0702573 0.997529i \(-0.477618\pi\)
0.0702573 + 0.997529i \(0.477618\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 24684.0i − 1.58739i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 30660.0 1.94355
\(630\) 0 0
\(631\) −25220.0 −1.59111 −0.795557 0.605879i \(-0.792821\pi\)
−0.795557 + 0.605879i \(0.792821\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 47154.0i − 2.93298i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 12306.0 0.758280 0.379140 0.925339i \(-0.376220\pi\)
0.379140 + 0.925339i \(0.376220\pi\)
\(642\) 0 0
\(643\) − 27414.0i − 1.68134i −0.541547 0.840671i \(-0.682161\pi\)
0.541547 0.840671i \(-0.317839\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 21834.0i − 1.32671i −0.748304 0.663356i \(-0.769131\pi\)
0.748304 0.663356i \(-0.230869\pi\)
\(648\) 0 0
\(649\) 4288.00 0.259351
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 23998.0i 1.43815i 0.694931 + 0.719077i \(0.255435\pi\)
−0.694931 + 0.719077i \(0.744565\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −32004.0 −1.89180 −0.945902 0.324452i \(-0.894820\pi\)
−0.945902 + 0.324452i \(0.894820\pi\)
\(660\) 0 0
\(661\) −8526.00 −0.501699 −0.250849 0.968026i \(-0.580710\pi\)
−0.250849 + 0.968026i \(0.580710\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 32428.0i − 1.88248i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −4000.00 −0.230132
\(672\) 0 0
\(673\) 8178.00i 0.468408i 0.972187 + 0.234204i \(0.0752484\pi\)
−0.972187 + 0.234204i \(0.924752\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 16646.0i − 0.944989i −0.881334 0.472495i \(-0.843354\pi\)
0.881334 0.472495i \(-0.156646\pi\)
\(678\) 0 0
\(679\) 46852.0 2.64803
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 22446.0i 1.25750i 0.777608 + 0.628750i \(0.216433\pi\)
−0.777608 + 0.628750i \(0.783567\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 9396.00 0.519534
\(690\) 0 0
\(691\) 35336.0 1.94536 0.972681 0.232147i \(-0.0745750\pi\)
0.972681 + 0.232147i \(0.0745750\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 9660.00i − 0.524962i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −3482.00 −0.187608 −0.0938041 0.995591i \(-0.529903\pi\)
−0.0938041 + 0.995591i \(0.529903\pi\)
\(702\) 0 0
\(703\) − 1752.00i − 0.0939942i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 4284.00i − 0.227887i
\(708\) 0 0
\(709\) 19402.0 1.02773 0.513863 0.857872i \(-0.328214\pi\)
0.513863 + 0.857872i \(0.328214\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 13400.0i 0.703834i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −9896.00 −0.513294 −0.256647 0.966505i \(-0.582618\pi\)
−0.256647 + 0.966505i \(0.582618\pi\)
\(720\) 0 0
\(721\) 42908.0 2.21633
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 494.000i − 0.0252014i −0.999921 0.0126007i \(-0.995989\pi\)
0.999921 0.0126007i \(-0.00401104\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 12460.0 0.630437
\(732\) 0 0
\(733\) 9282.00i 0.467720i 0.972270 + 0.233860i \(0.0751357\pi\)
−0.972270 + 0.233860i \(0.924864\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 6752.00i 0.337467i
\(738\) 0 0
\(739\) 3252.00 0.161877 0.0809383 0.996719i \(-0.474208\pi\)
0.0809383 + 0.996719i \(0.474208\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 4710.00i 0.232561i 0.993216 + 0.116281i \(0.0370972\pi\)
−0.993216 + 0.116281i \(0.962903\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −17340.0 −0.845914
\(750\) 0 0
\(751\) 25764.0 1.25185 0.625927 0.779882i \(-0.284721\pi\)
0.625927 + 0.779882i \(0.284721\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 30094.0i 1.44489i 0.691426 + 0.722447i \(0.256983\pi\)
−0.691426 + 0.722447i \(0.743017\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −22362.0 −1.06521 −0.532603 0.846365i \(-0.678786\pi\)
−0.532603 + 0.846365i \(0.678786\pi\)
\(762\) 0 0
\(763\) − 884.000i − 0.0419436i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 15544.0i − 0.731762i
\(768\) 0 0
\(769\) 30398.0 1.42546 0.712731 0.701438i \(-0.247458\pi\)
0.712731 + 0.701438i \(0.247458\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 1290.00i − 0.0600234i −0.999550 0.0300117i \(-0.990446\pi\)
0.999550 0.0300117i \(-0.00955445\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −552.000 −0.0253883
\(780\) 0 0
\(781\) −13632.0 −0.624573
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 14.0000i 0 0.000634112i −1.00000 0.000317056i \(-0.999899\pi\)
1.00000 0.000317056i \(-0.000100922\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 42228.0 1.89817
\(792\) 0 0
\(793\) 14500.0i 0.649319i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 38814.0i − 1.72505i −0.506017 0.862523i \(-0.668883\pi\)
0.506017 0.862523i \(-0.331117\pi\)
\(798\) 0 0
\(799\) 1540.00 0.0681868
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 4896.00i − 0.215163i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 27402.0 1.19086 0.595428 0.803408i \(-0.296982\pi\)
0.595428 + 0.803408i \(0.296982\pi\)
\(810\) 0 0
\(811\) −28576.0 −1.23729 −0.618643 0.785672i \(-0.712317\pi\)
−0.618643 + 0.785672i \(0.712317\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 712.000i − 0.0304893i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −31762.0 −1.35018 −0.675092 0.737733i \(-0.735896\pi\)
−0.675092 + 0.737733i \(0.735896\pi\)
\(822\) 0 0
\(823\) 20506.0i 0.868523i 0.900787 + 0.434261i \(0.142991\pi\)
−0.900787 + 0.434261i \(0.857009\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 13014.0i 0.547208i 0.961842 + 0.273604i \(0.0882158\pi\)
−0.961842 + 0.273604i \(0.911784\pi\)
\(828\) 0 0
\(829\) 22790.0 0.954800 0.477400 0.878686i \(-0.341579\pi\)
0.477400 + 0.878686i \(0.341579\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 56910.0i 2.36712i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 23696.0 0.975062 0.487531 0.873106i \(-0.337898\pi\)
0.487531 + 0.873106i \(0.337898\pi\)
\(840\) 0 0
\(841\) 34175.0 1.40125
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 36550.0i − 1.48273i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −58692.0 −2.36420
\(852\) 0 0
\(853\) 5306.00i 0.212982i 0.994314 + 0.106491i \(0.0339616\pi\)
−0.994314 + 0.106491i \(0.966038\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 21054.0i − 0.839196i −0.907710 0.419598i \(-0.862171\pi\)
0.907710 0.419598i \(-0.137829\pi\)
\(858\) 0 0
\(859\) −7364.00 −0.292499 −0.146249 0.989248i \(-0.546720\pi\)
−0.146249 + 0.989248i \(0.546720\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 17226.0i − 0.679467i −0.940522 0.339733i \(-0.889663\pi\)
0.940522 0.339733i \(-0.110337\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −7296.00 −0.284810
\(870\) 0 0
\(871\) 24476.0 0.952167
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 21202.0i − 0.816352i −0.912903 0.408176i \(-0.866165\pi\)
0.912903 0.408176i \(-0.133835\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 29490.0 1.12774 0.563872 0.825862i \(-0.309311\pi\)
0.563872 + 0.825862i \(0.309311\pi\)
\(882\) 0 0
\(883\) 2570.00i 0.0979472i 0.998800 + 0.0489736i \(0.0155950\pi\)
−0.998800 + 0.0489736i \(0.984405\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 36334.0i 1.37540i 0.725997 + 0.687698i \(0.241379\pi\)
−0.725997 + 0.687698i \(0.758621\pi\)
\(888\) 0 0
\(889\) −33252.0 −1.25448
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 88.0000i − 0.00329766i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −24200.0 −0.897792
\(900\) 0 0
\(901\) −11340.0 −0.419301
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 12474.0i 0.456662i 0.973584 + 0.228331i \(0.0733268\pi\)
−0.973584 + 0.228331i \(0.926673\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 41132.0 1.49590 0.747949 0.663756i \(-0.231039\pi\)
0.747949 + 0.663756i \(0.231039\pi\)
\(912\) 0 0
\(913\) 6944.00i 0.251712i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 31008.0i 1.11666i
\(918\) 0 0
\(919\) 38416.0 1.37892 0.689460 0.724324i \(-0.257848\pi\)
0.689460 + 0.724324i \(0.257848\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 49416.0i 1.76224i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 41302.0 1.45864 0.729319 0.684174i \(-0.239837\pi\)
0.729319 + 0.684174i \(0.239837\pi\)
\(930\) 0 0
\(931\) 3252.00 0.114479
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 26150.0i 0.911722i 0.890051 + 0.455861i \(0.150669\pi\)
−0.890051 + 0.455861i \(0.849331\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −35254.0 −1.22130 −0.610652 0.791899i \(-0.709093\pi\)
−0.610652 + 0.791899i \(0.709093\pi\)
\(942\) 0 0
\(943\) 18492.0i 0.638582i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 18550.0i 0.636530i 0.948002 + 0.318265i \(0.103100\pi\)
−0.948002 + 0.318265i \(0.896900\pi\)
\(948\) 0 0
\(949\) −17748.0 −0.607086
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 17322.0i − 0.588788i −0.955684 0.294394i \(-0.904882\pi\)
0.955684 0.294394i \(-0.0951177\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 31484.0 1.06014
\(960\) 0 0
\(961\) −19791.0 −0.664328
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 35190.0i − 1.17025i −0.810942 0.585126i \(-0.801045\pi\)
0.810942 0.585126i \(-0.198955\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 40696.0 1.34500 0.672501 0.740096i \(-0.265220\pi\)
0.672501 + 0.740096i \(0.265220\pi\)
\(972\) 0 0
\(973\) − 17544.0i − 0.578042i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 44306.0i 1.45084i 0.688304 + 0.725422i \(0.258355\pi\)
−0.688304 + 0.725422i \(0.741645\pi\)
\(978\) 0 0
\(979\) 11616.0 0.379212
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 18798.0i 0.609932i 0.952363 + 0.304966i \(0.0986451\pi\)
−0.952363 + 0.304966i \(0.901355\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −23852.0 −0.766885
\(990\) 0 0
\(991\) 2468.00 0.0791106 0.0395553 0.999217i \(-0.487406\pi\)
0.0395553 + 0.999217i \(0.487406\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 61086.0i 1.94043i 0.242237 + 0.970217i \(0.422119\pi\)
−0.242237 + 0.970217i \(0.577881\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1800.4.f.j.649.2 2
3.2 odd 2 200.4.c.c.49.1 2
5.2 odd 4 360.4.a.h.1.1 1
5.3 odd 4 1800.4.a.bi.1.1 1
5.4 even 2 inner 1800.4.f.j.649.1 2
12.11 even 2 400.4.c.f.49.2 2
15.2 even 4 40.4.a.a.1.1 1
15.8 even 4 200.4.a.i.1.1 1
15.14 odd 2 200.4.c.c.49.2 2
20.7 even 4 720.4.a.bd.1.1 1
60.23 odd 4 400.4.a.e.1.1 1
60.47 odd 4 80.4.a.e.1.1 1
60.59 even 2 400.4.c.f.49.1 2
105.62 odd 4 1960.4.a.h.1.1 1
120.53 even 4 1600.4.a.j.1.1 1
120.77 even 4 320.4.a.l.1.1 1
120.83 odd 4 1600.4.a.br.1.1 1
120.107 odd 4 320.4.a.c.1.1 1
240.77 even 4 1280.4.d.p.641.1 2
240.107 odd 4 1280.4.d.a.641.1 2
240.197 even 4 1280.4.d.p.641.2 2
240.227 odd 4 1280.4.d.a.641.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.4.a.a.1.1 1 15.2 even 4
80.4.a.e.1.1 1 60.47 odd 4
200.4.a.i.1.1 1 15.8 even 4
200.4.c.c.49.1 2 3.2 odd 2
200.4.c.c.49.2 2 15.14 odd 2
320.4.a.c.1.1 1 120.107 odd 4
320.4.a.l.1.1 1 120.77 even 4
360.4.a.h.1.1 1 5.2 odd 4
400.4.a.e.1.1 1 60.23 odd 4
400.4.c.f.49.1 2 60.59 even 2
400.4.c.f.49.2 2 12.11 even 2
720.4.a.bd.1.1 1 20.7 even 4
1280.4.d.a.641.1 2 240.107 odd 4
1280.4.d.a.641.2 2 240.227 odd 4
1280.4.d.p.641.1 2 240.77 even 4
1280.4.d.p.641.2 2 240.197 even 4
1600.4.a.j.1.1 1 120.53 even 4
1600.4.a.br.1.1 1 120.83 odd 4
1800.4.a.bi.1.1 1 5.3 odd 4
1800.4.f.j.649.1 2 5.4 even 2 inner
1800.4.f.j.649.2 2 1.1 even 1 trivial
1960.4.a.h.1.1 1 105.62 odd 4