Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1800,4,Mod(649,1800)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1800, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1800.649");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 1800.f (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(106.203438010\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(i)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{2} + 1 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{17}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 200) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 649.1 | ||
Root | \(-1.00000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 1800.649 |
Dual form | 1800.4.f.c.649.2 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1800\mathbb{Z}\right)^\times\).
\(n\) | \(577\) | \(901\) | \(1001\) | \(1351\) |
\(\chi(n)\) | \(-1\) | \(1\) | \(1\) | \(1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | − 2.00000i | − 0.107990i | −0.998541 | − | 0.0539949i | \(-0.982805\pi\) | ||||
0.998541 | − | 0.0539949i | \(-0.0171955\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | −39.0000 | −1.06899 | −0.534497 | − | 0.845170i | \(-0.679499\pi\) | ||||
−0.534497 | + | 0.845170i | \(0.679499\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 84.0000i | 1.79211i | 0.443945 | + | 0.896054i | \(0.353579\pi\) | ||||
−0.443945 | + | 0.896054i | \(0.646421\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | − 61.0000i | − 0.870275i | −0.900364 | − | 0.435137i | \(-0.856700\pi\) | ||||
0.900364 | − | 0.435137i | \(-0.143300\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | −151.000 | −1.82325 | −0.911626 | − | 0.411021i | \(-0.865172\pi\) | ||||
−0.911626 | + | 0.411021i | \(0.865172\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 58.0000i | 0.525819i | 0.964821 | + | 0.262909i | \(0.0846821\pi\) | ||||
−0.964821 | + | 0.262909i | \(0.915318\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 192.000 | 1.22943 | 0.614716 | − | 0.788749i | \(-0.289271\pi\) | ||||
0.614716 | + | 0.788749i | \(0.289271\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | −18.0000 | −0.104287 | −0.0521435 | − | 0.998640i | \(-0.516605\pi\) | ||||
−0.0521435 | + | 0.998640i | \(0.516605\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 138.000i | 0.613164i | 0.951844 | + | 0.306582i | \(0.0991853\pi\) | ||||
−0.951844 | + | 0.306582i | \(0.900815\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −229.000 | −0.872288 | −0.436144 | − | 0.899877i | \(-0.643656\pi\) | ||||
−0.436144 | + | 0.899877i | \(0.643656\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | − 164.000i | − 0.581622i | −0.956780 | − | 0.290811i | \(-0.906075\pi\) | ||||
0.956780 | − | 0.290811i | \(-0.0939252\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | − 212.000i | − 0.657944i | −0.944340 | − | 0.328972i | \(-0.893298\pi\) | ||||
0.944340 | − | 0.328972i | \(-0.106702\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 339.000 | 0.988338 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | − 578.000i | − 1.49801i | −0.662566 | − | 0.749004i | \(-0.730532\pi\) | ||||
0.662566 | − | 0.749004i | \(-0.269468\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | −336.000 | −0.741415 | −0.370707 | − | 0.928750i | \(-0.620885\pi\) | ||||
−0.370707 | + | 0.928750i | \(0.620885\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 858.000 | 1.80091 | 0.900456 | − | 0.434947i | \(-0.143233\pi\) | ||||
0.900456 | + | 0.434947i | \(0.143233\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 209.000i | 0.381096i | 0.981678 | + | 0.190548i | \(0.0610264\pi\) | ||||
−0.981678 | + | 0.190548i | \(0.938974\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 780.000 | 1.30379 | 0.651894 | − | 0.758310i | \(-0.273975\pi\) | ||||
0.651894 | + | 0.758310i | \(0.273975\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | − 403.000i | − 0.646131i | −0.946377 | − | 0.323066i | \(-0.895287\pi\) | ||||
0.946377 | − | 0.323066i | \(-0.104713\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 78.0000i | 0.115441i | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 230.000 | 0.327557 | 0.163779 | − | 0.986497i | \(-0.447632\pi\) | ||||
0.163779 | + | 0.986497i | \(0.447632\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 1293.00i | 1.70994i | 0.518676 | + | 0.854971i | \(0.326425\pi\) | ||||
−0.518676 | + | 0.854971i | \(0.673575\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −1369.00 | −1.63049 | −0.815246 | − | 0.579115i | \(-0.803398\pi\) | ||||
−0.815246 | + | 0.579115i | \(0.803398\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 168.000 | 0.193530 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | − 382.000i | − 0.399858i | −0.979810 | − | 0.199929i | \(-0.935929\pi\) | ||||
0.979810 | − | 0.199929i | \(-0.0640711\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 794.000 | 0.782237 | 0.391119 | − | 0.920340i | \(-0.372088\pi\) | ||||
0.391119 | + | 0.920340i | \(0.372088\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | − 1348.00i | − 1.28954i | −0.764378 | − | 0.644769i | \(-0.776954\pi\) | ||||
0.764378 | − | 0.644769i | \(-0.223046\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | − 775.000i | − 0.700206i | −0.936711 | − | 0.350103i | \(-0.886147\pi\) | ||||
0.936711 | − | 0.350103i | \(-0.113853\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −446.000 | −0.391918 | −0.195959 | − | 0.980612i | \(-0.562782\pi\) | ||||
−0.195959 | + | 0.980612i | \(0.562782\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 231.000i | 0.192307i | 0.995367 | + | 0.0961533i | \(0.0306539\pi\) | ||||
−0.995367 | + | 0.0961533i | \(0.969346\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | −122.000 | −0.0939809 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 190.000 | 0.142750 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | − 2386.00i | − 1.66711i | −0.552435 | − | 0.833556i | \(-0.686301\pi\) | ||||
0.552435 | − | 0.833556i | \(-0.313699\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | −2452.00 | −1.63536 | −0.817680 | − | 0.575673i | \(-0.804740\pi\) | ||||
−0.817680 | + | 0.575673i | \(0.804740\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 302.000i | 0.196893i | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | − 1125.00i | − 0.701571i | −0.936456 | − | 0.350786i | \(-0.885915\pi\) | ||||
0.936456 | − | 0.350786i | \(-0.114085\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 1377.00 | 0.840256 | 0.420128 | − | 0.907465i | \(-0.361985\pi\) | ||||
0.420128 | + | 0.907465i | \(0.361985\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | − 3276.00i | − 1.91575i | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 1920.00 | 1.05565 | 0.527827 | − | 0.849352i | \(-0.323007\pi\) | ||||
0.527827 | + | 0.849352i | \(0.323007\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 1854.00 | 0.999181 | 0.499591 | − | 0.866262i | \(-0.333484\pi\) | ||||
0.499591 | + | 0.866262i | \(0.333484\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 634.000i | 0.322285i | 0.986931 | + | 0.161142i | \(0.0515178\pi\) | ||||
−0.986931 | + | 0.161142i | \(0.948482\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 116.000 | 0.0567831 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 103.000i | 0.0494944i | 0.999694 | + | 0.0247472i | \(0.00787808\pi\) | ||||
−0.999694 | + | 0.0247472i | \(0.992122\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 44.0000i | 0.0203882i | 0.999948 | + | 0.0101941i | \(0.00324493\pi\) | ||||
−0.999948 | + | 0.0101941i | \(0.996755\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | −4859.00 | −2.21165 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 1128.00i | 0.495724i | 0.968795 | + | 0.247862i | \(0.0797280\pi\) | ||||
−0.968795 | + | 0.247862i | \(0.920272\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −2245.00 | −0.937426 | −0.468713 | − | 0.883351i | \(-0.655282\pi\) | ||||
−0.468713 | + | 0.883351i | \(0.655282\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 3050.00 | 1.25251 | 0.626256 | − | 0.779617i | \(-0.284586\pi\) | ||||
0.626256 | + | 0.779617i | \(0.284586\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 2379.00i | 0.930319i | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 4222.00 | 1.59944 | 0.799720 | − | 0.600373i | \(-0.204981\pi\) | ||||
0.799720 | + | 0.600373i | \(0.204981\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | − 3357.00i | − 1.25203i | −0.779810 | − | 0.626016i | \(-0.784684\pi\) | ||||
0.779810 | − | 0.626016i | \(-0.215316\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | − 166.000i | − 0.0600356i | −0.999549 | − | 0.0300178i | \(-0.990444\pi\) | ||||
0.999549 | − | 0.0300178i | \(-0.00955640\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −3372.00 | −1.20118 | −0.600590 | − | 0.799557i | \(-0.705068\pi\) | ||||
−0.600590 | + | 0.799557i | \(0.705068\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | − 384.000i | − 0.132766i | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 5889.00 | 1.94905 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 5601.00 | 1.82743 | 0.913717 | − | 0.406350i | \(-0.133199\pi\) | ||||
0.913717 | + | 0.406350i | \(0.133199\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 36.0000i | 0.0112619i | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 5124.00 | 1.55963 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 828.000i | 0.248641i | 0.992242 | + | 0.124321i | \(0.0396751\pi\) | ||||
−0.992242 | + | 0.124321i | \(0.960325\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | − 2388.00i | − 0.698225i | −0.937081 | − | 0.349113i | \(-0.886483\pi\) | ||||
0.937081 | − | 0.349113i | \(-0.113517\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 2844.00 | 0.820685 | 0.410342 | − | 0.911932i | \(-0.365409\pi\) | ||||
0.410342 | + | 0.911932i | \(0.365409\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | − 5962.00i | − 1.67632i | −0.545421 | − | 0.838162i | \(-0.683630\pi\) | ||||
0.545421 | − | 0.838162i | \(-0.316370\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | −4320.00 | −1.16919 | −0.584597 | − | 0.811324i | \(-0.698748\pi\) | ||||
−0.584597 | + | 0.811324i | \(0.698748\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 3857.00 | 1.03092 | 0.515459 | − | 0.856914i | \(-0.327621\pi\) | ||||
0.515459 | + | 0.856914i | \(0.327621\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | − 12684.0i | − 3.26746i | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 287.000 | 0.0721724 | 0.0360862 | − | 0.999349i | \(-0.488511\pi\) | ||||
0.0360862 | + | 0.999349i | \(0.488511\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | − 2262.00i | − 0.562098i | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 2130.00i | 0.516987i | 0.966013 | + | 0.258494i | \(0.0832261\pi\) | ||||
−0.966013 | + | 0.258494i | \(0.916774\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 276.000 | 0.0662155 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 3066.00i | 0.718850i | 0.933174 | + | 0.359425i | \(0.117027\pi\) | ||||
−0.933174 | + | 0.359425i | \(0.882973\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −3744.00 | −0.848609 | −0.424304 | − | 0.905520i | \(-0.639481\pi\) | ||||
−0.424304 | + | 0.905520i | \(0.639481\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −3346.00 | −0.750019 | −0.375009 | − | 0.927021i | \(-0.622360\pi\) | ||||
−0.375009 | + | 0.927021i | \(0.622360\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | − 7040.00i | − 1.52705i | −0.645779 | − | 0.763525i | \(-0.723467\pi\) | ||||
0.645779 | − | 0.763525i | \(-0.276533\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 3010.00 | 0.639009 | 0.319505 | − | 0.947585i | \(-0.396484\pi\) | ||||
0.319505 | + | 0.947585i | \(0.396484\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | − 6001.00i | − 1.26050i | −0.776391 | − | 0.630252i | \(-0.782952\pi\) | ||||
0.776391 | − | 0.630252i | \(-0.217048\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 458.000i | 0.0941982i | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 1192.00 | 0.242622 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | − 4802.00i | − 0.957460i | −0.877962 | − | 0.478730i | \(-0.841097\pi\) | ||||
0.877962 | − | 0.478730i | \(-0.158903\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | −4872.00 | −0.942325 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | −328.000 | −0.0628093 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | − 6149.00i | − 1.14313i | −0.820556 | − | 0.571567i | \(-0.806336\pi\) | ||||
0.820556 | − | 0.571567i | \(-0.193664\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 878.000 | 0.160086 | 0.0800431 | − | 0.996791i | \(-0.474494\pi\) | ||||
0.0800431 | + | 0.996791i | \(0.474494\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | − 4042.00i | − 0.729928i | −0.931022 | − | 0.364964i | \(-0.881081\pi\) | ||||
0.931022 | − | 0.364964i | \(-0.118919\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 3844.00i | 0.681074i | 0.940231 | + | 0.340537i | \(0.110609\pi\) | ||||
−0.940231 | + | 0.340537i | \(0.889391\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | −7488.00 | −1.31426 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 9211.00i | 1.58673i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | −424.000 | −0.0710513 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −2717.00 | −0.451178 | −0.225589 | − | 0.974223i | \(-0.572431\pi\) | ||||
−0.225589 | + | 0.974223i | \(0.572431\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 1603.00i | 0.259113i | 0.991572 | + | 0.129556i | \(0.0413553\pi\) | ||||
−0.991572 | + | 0.129556i | \(0.958645\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 702.000 | 0.111482 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | − 1364.00i | − 0.214720i | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | − 11607.0i | − 1.79567i | −0.440335 | − | 0.897833i | \(-0.645140\pi\) | ||||
0.440335 | − | 0.897833i | \(-0.354860\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −4030.00 | −0.618112 | −0.309056 | − | 0.951044i | \(-0.600013\pi\) | ||||
−0.309056 | + | 0.951044i | \(0.600013\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | − 2106.00i | − 0.317538i | −0.987316 | − | 0.158769i | \(-0.949247\pi\) | ||||
0.987316 | − | 0.158769i | \(-0.0507526\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 7394.00 | 1.08702 | 0.543510 | − | 0.839402i | \(-0.317095\pi\) | ||||
0.543510 | + | 0.839402i | \(0.317095\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 15942.0 | 2.32425 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 6940.00i | 0.987098i | 0.869718 | + | 0.493549i | \(0.164301\pi\) | ||||
−0.869718 | + | 0.493549i | \(0.835699\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | −1156.00 | −0.161770 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 7486.00i | 1.03917i | 0.854419 | + | 0.519585i | \(0.173913\pi\) | ||||
−0.854419 | + | 0.519585i | \(0.826087\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 16128.0i | 2.20327i | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | −1285.00 | −0.174158 | −0.0870792 | − | 0.996201i | \(-0.527753\pi\) | ||||
−0.0870792 | + | 0.996201i | \(0.527753\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | − 9622.00i | − 1.28371i | −0.766826 | − | 0.641855i | \(-0.778165\pi\) | ||||
0.766826 | − | 0.641855i | \(-0.221835\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 1974.00 | 0.257290 | 0.128645 | − | 0.991691i | \(-0.458937\pi\) | ||||
0.128645 | + | 0.991691i | \(0.458937\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 3538.00 | 0.457607 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 8084.00i | 1.02198i | 0.859588 | + | 0.510988i | \(0.170720\pi\) | ||||
−0.859588 | + | 0.510988i | \(0.829280\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 5667.00 | 0.705727 | 0.352863 | − | 0.935675i | \(-0.385208\pi\) | ||||
0.352863 | + | 0.935675i | \(0.385208\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | − 1512.00i | − 0.186894i | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | − 5382.00i | − 0.655469i | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 4835.00 | 0.584536 | 0.292268 | − | 0.956336i | \(-0.405590\pi\) | ||||
0.292268 | + | 0.956336i | \(0.405590\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 672.000i | 0.0800653i | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 4619.00 | 0.538551 | 0.269276 | − | 0.963063i | \(-0.413216\pi\) | ||||
0.269276 | + | 0.963063i | \(0.413216\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 7476.00 | 0.865458 | 0.432729 | − | 0.901524i | \(-0.357551\pi\) | ||||
0.432729 | + | 0.901524i | \(0.357551\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | − 1716.00i | − 0.194480i | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −7810.00 | −0.872841 | −0.436420 | − | 0.899743i | \(-0.643754\pi\) | ||||
−0.436420 | + | 0.899743i | \(0.643754\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | − 2029.00i | − 0.225191i | −0.993641 | − | 0.112595i | \(-0.964084\pi\) | ||||
0.993641 | − | 0.112595i | \(-0.0359164\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | − 8758.00i | − 0.958700i | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | −3208.00 | −0.348769 | −0.174384 | − | 0.984678i | \(-0.555794\pi\) | ||||
−0.174384 | + | 0.984678i | \(0.555794\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | − 13227.0i | − 1.41859i | −0.704914 | − | 0.709293i | \(-0.749014\pi\) | ||||
0.704914 | − | 0.709293i | \(-0.250986\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 3617.00 | 0.380171 | 0.190086 | − | 0.981768i | \(-0.439123\pi\) | ||||
0.190086 | + | 0.981768i | \(0.439123\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 8931.00 | 0.932471 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | − 6215.00i | − 0.636161i | −0.948064 | − | 0.318080i | \(-0.896962\pi\) | ||||
0.948064 | − | 0.318080i | \(-0.103038\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 7108.00 | 0.718118 | 0.359059 | − | 0.933315i | \(-0.383098\pi\) | ||||
0.359059 | + | 0.933315i | \(0.383098\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | − 3364.00i | − 0.337664i | −0.985645 | − | 0.168832i | \(-0.946000\pi\) | ||||
0.985645 | − | 0.168832i | \(-0.0539995\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | − 18964.0i | − 1.87912i | −0.342384 | − | 0.939560i | \(-0.611234\pi\) | ||||
0.342384 | − | 0.939560i | \(-0.388766\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 418.000 | 0.0411545 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 6396.00i | 0.621751i | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | −10926.0 | −1.04222 | −0.521108 | − | 0.853491i | \(-0.674481\pi\) | ||||
−0.521108 | + | 0.853491i | \(0.674481\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | −11592.0 | −1.09886 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 4350.00i | 0.404758i | 0.979307 | + | 0.202379i | \(0.0648673\pi\) | ||||
−0.979307 | + | 0.202379i | \(0.935133\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 1324.00 | 0.121693 | 0.0608465 | − | 0.998147i | \(-0.480620\pi\) | ||||
0.0608465 | + | 0.998147i | \(0.480620\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | − 11712.0i | − 1.06994i | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | − 1560.00i | − 0.140796i | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −9068.00 | −0.813506 | −0.406753 | − | 0.913538i | \(-0.633339\pi\) | ||||
−0.406753 | + | 0.913538i | \(0.633339\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 19836.0i | 1.75834i | 0.476511 | + | 0.879169i | \(0.341901\pi\) | ||||
−0.476511 | + | 0.879169i | \(0.658099\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 2682.00 | 0.233551 | 0.116776 | − | 0.993158i | \(-0.462744\pi\) | ||||
0.116776 | + | 0.993158i | \(0.462744\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | −806.000 | −0.0697756 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 8268.00i | 0.703339i | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 3035.00 | 0.255213 | 0.127606 | − | 0.991825i | \(-0.459271\pi\) | ||||
0.127606 | + | 0.991825i | \(0.459271\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 7701.00i | 0.643865i | 0.946763 | + | 0.321932i | \(0.104332\pi\) | ||||
−0.946763 | + | 0.321932i | \(0.895668\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 1098.00i | 0.0907583i | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 8803.00 | 0.723514 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | − 19236.0i | − 1.56323i | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | −13221.0 | −1.05653 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −18112.0 | −1.43936 | −0.719682 | − | 0.694304i | \(-0.755712\pi\) | ||||
−0.719682 | + | 0.694304i | \(0.755712\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | − 19541.0i | − 1.52745i | −0.645544 | − | 0.763723i | \(-0.723369\pi\) | ||||
0.645544 | − | 0.763723i | \(-0.276631\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −28992.0 | −2.24156 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | − 460.000i | − 0.0353729i | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 13508.0i | 1.02756i | 0.857921 | + | 0.513781i | \(0.171756\pi\) | ||||
−0.857921 | + | 0.513781i | \(0.828244\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 13776.0 | 1.04233 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 8712.00i | 0.652162i | 0.945342 | + | 0.326081i | \(0.105728\pi\) | ||||
−0.945342 | + | 0.326081i | \(0.894272\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −9623.00 | −0.708993 | −0.354497 | − | 0.935057i | \(-0.615348\pi\) | ||||
−0.354497 | + | 0.935057i | \(0.615348\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 604.000 | 0.0442673 | 0.0221336 | − | 0.999755i | \(-0.492954\pi\) | ||||
0.0221336 | + | 0.999755i | \(0.492954\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | − 3629.00i | − 0.261832i | −0.991393 | − | 0.130916i | \(-0.958208\pi\) | ||||
0.991393 | − | 0.130916i | \(-0.0417919\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 2586.00 | 0.184656 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 22542.0i | 1.60136i | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 9219.00i | 0.648226i | 0.946018 | + | 0.324113i | \(0.105066\pi\) | ||||
−0.946018 | + | 0.324113i | \(0.894934\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 2718.00 | 0.190141 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 19111.0i | 1.32343i | 0.749755 | + | 0.661716i | \(0.230171\pi\) | ||||
−0.749755 | + | 0.661716i | \(0.769829\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −17086.0 | −1.16547 | −0.582734 | − | 0.812663i | \(-0.698017\pi\) | ||||
−0.582734 | + | 0.812663i | \(0.698017\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 9035.00 | 0.613220 | 0.306610 | − | 0.951835i | \(-0.400805\pi\) | ||||
0.306610 | + | 0.951835i | \(0.400805\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 14784.0i | 0.988573i | 0.869299 | + | 0.494287i | \(0.164571\pi\) | ||||
−0.869299 | + | 0.494287i | \(0.835429\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 17808.0 | 1.17911 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | − 17846.0i | − 1.17585i | −0.808917 | − | 0.587923i | \(-0.799946\pi\) | ||||
0.808917 | − | 0.587923i | \(-0.200054\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 11618.0i | 0.758060i | 0.925384 | + | 0.379030i | \(0.123742\pi\) | ||||
−0.925384 | + | 0.379030i | \(0.876258\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 9556.00 | 0.620498 | 0.310249 | − | 0.950655i | \(-0.399588\pi\) | ||||
0.310249 | + | 0.950655i | \(0.399588\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 2738.00i | 0.176076i | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 8418.00 | 0.533621 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −19394.0 | −1.22355 | −0.611777 | − | 0.791030i | \(-0.709545\pi\) | ||||
−0.611777 | + | 0.791030i | \(0.709545\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 28476.0i | 1.77121i | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −12138.0 | −0.747929 | −0.373964 | − | 0.927443i | \(-0.622002\pi\) | ||||
−0.373964 | + | 0.927443i | \(0.622002\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 27036.0i | 1.65816i | 0.559131 | + | 0.829079i | \(0.311135\pi\) | ||||
−0.559131 | + | 0.829079i | \(0.688865\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | − 17556.0i | − 1.06677i | −0.845874 | − | 0.533383i | \(-0.820920\pi\) | ||||
0.845874 | − | 0.533383i | \(-0.179080\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 13104.0 | 0.792569 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 17262.0i | 1.03448i | 0.855841 | + | 0.517239i | \(0.173040\pi\) | ||||
−0.855841 | + | 0.517239i | \(0.826960\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 10517.0 | 0.621675 | 0.310838 | − | 0.950463i | \(-0.399390\pi\) | ||||
0.310838 | + | 0.950463i | \(0.399390\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 1408.00 | 0.0828515 | 0.0414258 | − | 0.999142i | \(-0.486810\pi\) | ||||
0.0414258 | + | 0.999142i | \(0.486810\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 11136.0i | 0.646458i | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | −33462.0 | −1.92517 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | − 9626.00i | − 0.551345i | −0.961252 | − | 0.275672i | \(-0.911100\pi\) | ||||
0.961252 | − | 0.275672i | \(-0.0889005\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 28464.0i | 1.61589i | 0.589255 | + | 0.807947i | \(0.299421\pi\) | ||||
−0.589255 | + | 0.807947i | \(0.700579\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | −764.000 | −0.0431806 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 3963.00i | 0.222020i | 0.993819 | + | 0.111010i | \(0.0354086\pi\) | ||||
−0.993819 | + | 0.111010i | \(0.964591\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 48552.0 | 2.68459 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −31781.0 | −1.74965 | −0.874824 | − | 0.484442i | \(-0.839023\pi\) | ||||
−0.874824 | + | 0.484442i | \(0.839023\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 13969.0i | 0.759130i | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 28004.0 | 1.50884 | 0.754420 | − | 0.656392i | \(-0.227918\pi\) | ||||
0.754420 | + | 0.656392i | \(0.227918\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | − 20838.0i | − 1.11795i | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | − 1588.00i | − 0.0844737i | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 35228.0 | 1.86603 | 0.933015 | − | 0.359837i | \(-0.117168\pi\) | ||||
0.933015 | + | 0.359837i | \(0.117168\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | − 1044.00i | − 0.0548361i | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | −8658.00 | −0.449081 | −0.224540 | − | 0.974465i | \(-0.572088\pi\) | ||||
−0.224540 | + | 0.974465i | \(0.572088\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −2696.00 | −0.139257 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | − 5728.00i | − 0.292214i | −0.989269 | − | 0.146107i | \(-0.953326\pi\) | ||||
0.989269 | − | 0.146107i | \(-0.0466744\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | −10004.0 | −0.506171 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 21460.0i | 1.08137i | 0.841226 | + | 0.540684i | \(0.181835\pi\) | ||||
−0.841226 | + | 0.540684i | \(0.818165\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | − 8151.00i | − 0.407389i | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −29164.0 | −1.45171 | −0.725856 | − | 0.687847i | \(-0.758556\pi\) | ||||
−0.725856 | + | 0.687847i | \(0.758556\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | − 29478.0i | − 1.45551i | −0.685838 | − | 0.727754i | \(-0.740564\pi\) | ||||
0.685838 | − | 0.727754i | \(-0.259436\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | −1550.00 | −0.0756152 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 576.000 | 0.0279874 | 0.0139937 | − | 0.999902i | \(-0.495546\pi\) | ||||
0.0139937 | + | 0.999902i | \(0.495546\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | − 2880.00i | − 0.138277i | −0.997607 | − | 0.0691383i | \(-0.977975\pi\) | ||||
0.997607 | − | 0.0691383i | \(-0.0220250\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −20789.0 | −0.990277 | −0.495138 | − | 0.868814i | \(-0.664883\pi\) | ||||
−0.495138 | + | 0.868814i | \(0.664883\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 892.000i | 0.0423232i | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | − 28224.0i | − 1.32870i | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −26421.0 | −1.23897 | −0.619484 | − | 0.785010i | \(-0.712658\pi\) | ||||
−0.619484 | + | 0.785010i | \(0.712658\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | − 32504.0i | − 1.51240i | −0.654339 | − | 0.756202i | \(-0.727053\pi\) | ||||
0.654339 | − | 0.756202i | \(-0.272947\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 34579.0 | 1.59040 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | −30420.0 | −1.39374 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | − 996.000i | − 0.0451125i | −0.999746 | − | 0.0225563i | \(-0.992820\pi\) | ||||
0.999746 | − | 0.0225563i | \(-0.00718049\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 462.000 | 0.0207672 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 72072.0i | 3.22743i | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 15134.0i | 0.672615i | 0.941752 | + | 0.336307i | \(0.109178\pi\) | ||||
−0.941752 | + | 0.336307i | \(0.890822\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | −12932.0 | −0.572592 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 15717.0i | 0.690711i | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −36942.0 | −1.60545 | −0.802727 | − | 0.596347i | \(-0.796618\pi\) | ||||
−0.802727 | + | 0.596347i | \(0.796618\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | −11748.0 | −0.508666 | −0.254333 | − | 0.967117i | \(-0.581856\pi\) | ||||
−0.254333 | + | 0.967117i | \(0.581856\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 24764.0i | 1.06044i | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 1198.00 | 0.0509263 | 0.0254631 | − | 0.999676i | \(-0.491894\pi\) | ||||
0.0254631 | + | 0.999676i | \(0.491894\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | − 6788.00i | − 0.287503i | −0.989614 | − | 0.143751i | \(-0.954083\pi\) | ||||
0.989614 | − | 0.143751i | \(-0.0459166\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 33011.0i | 1.38803i | 0.719958 | + | 0.694017i | \(0.244161\pi\) | ||||
−0.719958 | + | 0.694017i | \(0.755839\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −17732.0 | −0.742892 | −0.371446 | − | 0.928454i | \(-0.621138\pi\) | ||||
−0.371446 | + | 0.928454i | \(0.621138\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | − 20679.0i | − 0.860126i | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 8480.00 | 0.348942 | 0.174471 | − | 0.984662i | \(-0.444179\pi\) | ||||
0.174471 | + | 0.984662i | \(0.444179\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 12475.0 | 0.511501 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | − 380.000i | − 0.0154155i | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | −8004.00 | −0.322413 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 30014.0i | 1.20476i | 0.798210 | + | 0.602380i | \(0.205781\pi\) | ||||
−0.798210 | + | 0.602380i | \(0.794219\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 21643.0i | 0.862673i | 0.902191 | + | 0.431337i | \(0.141958\pi\) | ||||
−0.902191 | + | 0.431337i | \(0.858042\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −2799.00 | −0.111177 | −0.0555883 | − | 0.998454i | \(-0.517703\pi\) | ||||
−0.0555883 | + | 0.998454i | \(0.517703\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 19384.0i | 0.764588i | 0.924041 | + | 0.382294i | \(0.124866\pi\) | ||||
−0.924041 | + | 0.382294i | \(0.875134\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | −8970.00 | −0.350157 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | −17556.0 | −0.682965 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | − 5132.00i | − 0.197600i | −0.995107 | − | 0.0988001i | \(-0.968500\pi\) | ||||
0.995107 | − | 0.0988001i | \(-0.0315004\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | −4430.00 | −0.169410 | −0.0847052 | − | 0.996406i | \(-0.526995\pi\) | ||||
−0.0847052 | + | 0.996406i | \(0.526995\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 24317.0i | 0.926764i | 0.886159 | + | 0.463382i | \(0.153364\pi\) | ||||
−0.886159 | + | 0.463382i | \(0.846636\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | − 26100.0i | − 0.987996i | −0.869463 | − | 0.493998i | \(-0.835535\pi\) | ||||
0.869463 | − | 0.493998i | \(-0.164465\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | −4772.00 | −0.180031 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 32012.0i | 1.19960i | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | −3456.00 | −0.128214 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | −35258.0 | −1.30368 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | − 24356.0i | − 0.891651i | −0.895120 | − | 0.445826i | \(-0.852910\pi\) | ||||
0.895120 | − | 0.445826i | \(-0.147090\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 29900.0 | 1.08741 | 0.543705 | − | 0.839276i | \(-0.317021\pi\) | ||||
0.543705 | + | 0.839276i | \(0.317021\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | − 50427.0i | − 1.82792i | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 4904.00i | 0.176602i | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 34838.0 | 1.25049 | 0.625245 | − | 0.780429i | \(-0.284999\pi\) | ||||
0.625245 | + | 0.780429i | \(0.284999\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 65520.0i | 2.33653i | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 26334.0 | 0.930022 | 0.465011 | − | 0.885305i | \(-0.346050\pi\) | ||||
0.465011 | + | 0.885305i | \(0.346050\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | −51189.0 | −1.80199 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | − 30949.0i | − 1.07904i | −0.841973 | − | 0.539520i | \(-0.818606\pi\) | ||||
0.841973 | − | 0.539520i | \(-0.181394\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | −25276.0 | −0.875637 | −0.437818 | − | 0.899063i | \(-0.644249\pi\) | ||||
−0.437818 | + | 0.899063i | \(0.644249\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | − 13282.0i | − 0.458665i | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | − 1216.00i | − 0.0417262i | −0.999782 | − | 0.0208631i | \(-0.993359\pi\) | ||||
0.999782 | − | 0.0208631i | \(-0.00664141\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 33852.0 | 1.15794 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 6033.00i | 0.205066i | 0.994730 | + | 0.102533i | \(0.0326947\pi\) | ||||
−0.994730 | + | 0.102533i | \(0.967305\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | −2250.00 | −0.0757626 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −29467.0 | −0.989124 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 41792.0i | 1.38980i | 0.719105 | + | 0.694902i | \(0.244552\pi\) | ||||
−0.719105 | + | 0.694902i | \(0.755448\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 2105.00 | 0.0695702 | 0.0347851 | − | 0.999395i | \(-0.488925\pi\) | ||||
0.0347851 | + | 0.999395i | \(0.488925\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | − 2754.00i | − 0.0907391i | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 30119.0i | 0.986277i | 0.869951 | + | 0.493138i | \(0.164150\pi\) | ||||
−0.869951 | + | 0.493138i | \(0.835850\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 53391.0 | 1.74299 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | − 18438.0i | − 0.598251i | −0.954214 | − | 0.299126i | \(-0.903305\pi\) | ||||
0.954214 | − | 0.299126i | \(-0.0966949\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 9512.00 | 0.305828 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −2230.00 | −0.0714816 | −0.0357408 | − | 0.999361i | \(-0.511379\pi\) | ||||
−0.0357408 | + | 0.999361i | \(0.511379\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 6804.00i | 0.216133i | 0.994144 | + | 0.108067i | \(0.0344660\pi\) | ||||
−0.994144 | + | 0.108067i | \(0.965534\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 1800.4.f.c.649.1 | 2 | ||
3.2 | odd | 2 | 200.4.c.d.49.2 | 2 | |||
5.2 | odd | 4 | 1800.4.a.t.1.1 | 1 | |||
5.3 | odd | 4 | 1800.4.a.p.1.1 | 1 | |||
5.4 | even | 2 | inner | 1800.4.f.c.649.2 | 2 | ||
12.11 | even | 2 | 400.4.c.g.49.1 | 2 | |||
15.2 | even | 4 | 200.4.a.h.1.1 | yes | 1 | ||
15.8 | even | 4 | 200.4.a.c.1.1 | ✓ | 1 | ||
15.14 | odd | 2 | 200.4.c.d.49.1 | 2 | |||
60.23 | odd | 4 | 400.4.a.q.1.1 | 1 | |||
60.47 | odd | 4 | 400.4.a.f.1.1 | 1 | |||
60.59 | even | 2 | 400.4.c.g.49.2 | 2 | |||
120.53 | even | 4 | 1600.4.a.bn.1.1 | 1 | |||
120.77 | even | 4 | 1600.4.a.m.1.1 | 1 | |||
120.83 | odd | 4 | 1600.4.a.n.1.1 | 1 | |||
120.107 | odd | 4 | 1600.4.a.bo.1.1 | 1 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
200.4.a.c.1.1 | ✓ | 1 | 15.8 | even | 4 | ||
200.4.a.h.1.1 | yes | 1 | 15.2 | even | 4 | ||
200.4.c.d.49.1 | 2 | 15.14 | odd | 2 | |||
200.4.c.d.49.2 | 2 | 3.2 | odd | 2 | |||
400.4.a.f.1.1 | 1 | 60.47 | odd | 4 | |||
400.4.a.q.1.1 | 1 | 60.23 | odd | 4 | |||
400.4.c.g.49.1 | 2 | 12.11 | even | 2 | |||
400.4.c.g.49.2 | 2 | 60.59 | even | 2 | |||
1600.4.a.m.1.1 | 1 | 120.77 | even | 4 | |||
1600.4.a.n.1.1 | 1 | 120.83 | odd | 4 | |||
1600.4.a.bn.1.1 | 1 | 120.53 | even | 4 | |||
1600.4.a.bo.1.1 | 1 | 120.107 | odd | 4 | |||
1800.4.a.p.1.1 | 1 | 5.3 | odd | 4 | |||
1800.4.a.t.1.1 | 1 | 5.2 | odd | 4 | |||
1800.4.f.c.649.1 | 2 | 1.1 | even | 1 | trivial | ||
1800.4.f.c.649.2 | 2 | 5.4 | even | 2 | inner |