Properties

Label 1800.4.f.a.649.1
Level $1800$
Weight $4$
Character 1800.649
Analytic conductor $106.203$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1800,4,Mod(649,1800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1800.649");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1800.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(106.203438010\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1800.649
Dual form 1800.4.f.a.649.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000i q^{7} +O(q^{10})\) \(q-4.00000i q^{7} -72.0000 q^{11} -6.00000i q^{13} +38.0000i q^{17} -52.0000 q^{19} -152.000i q^{23} -78.0000 q^{29} +120.000 q^{31} +150.000i q^{37} -362.000 q^{41} -484.000i q^{43} +280.000i q^{47} +327.000 q^{49} +670.000i q^{53} +696.000 q^{59} +222.000 q^{61} +4.00000i q^{67} -96.0000 q^{71} +178.000i q^{73} +288.000i q^{77} +632.000 q^{79} +612.000i q^{83} +994.000 q^{89} -24.0000 q^{91} -1634.00i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 144 q^{11} - 104 q^{19} - 156 q^{29} + 240 q^{31} - 724 q^{41} + 654 q^{49} + 1392 q^{59} + 444 q^{61} - 192 q^{71} + 1264 q^{79} + 1988 q^{89} - 48 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1800\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1001\) \(1351\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 4.00000i − 0.215980i −0.994152 0.107990i \(-0.965559\pi\)
0.994152 0.107990i \(-0.0344414\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −72.0000 −1.97353 −0.986764 0.162160i \(-0.948154\pi\)
−0.986764 + 0.162160i \(0.948154\pi\)
\(12\) 0 0
\(13\) − 6.00000i − 0.128008i −0.997950 0.0640039i \(-0.979613\pi\)
0.997950 0.0640039i \(-0.0203870\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 38.0000i 0.542138i 0.962560 + 0.271069i \(0.0873772\pi\)
−0.962560 + 0.271069i \(0.912623\pi\)
\(18\) 0 0
\(19\) −52.0000 −0.627875 −0.313937 0.949444i \(-0.601648\pi\)
−0.313937 + 0.949444i \(0.601648\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 152.000i − 1.37801i −0.724757 0.689004i \(-0.758048\pi\)
0.724757 0.689004i \(-0.241952\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −78.0000 −0.499456 −0.249728 0.968316i \(-0.580341\pi\)
−0.249728 + 0.968316i \(0.580341\pi\)
\(30\) 0 0
\(31\) 120.000 0.695246 0.347623 0.937634i \(-0.386989\pi\)
0.347623 + 0.937634i \(0.386989\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 150.000i 0.666482i 0.942842 + 0.333241i \(0.108142\pi\)
−0.942842 + 0.333241i \(0.891858\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −362.000 −1.37890 −0.689450 0.724333i \(-0.742148\pi\)
−0.689450 + 0.724333i \(0.742148\pi\)
\(42\) 0 0
\(43\) − 484.000i − 1.71650i −0.513236 0.858248i \(-0.671553\pi\)
0.513236 0.858248i \(-0.328447\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 280.000i 0.868983i 0.900676 + 0.434491i \(0.143072\pi\)
−0.900676 + 0.434491i \(0.856928\pi\)
\(48\) 0 0
\(49\) 327.000 0.953353
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 670.000i 1.73644i 0.496175 + 0.868222i \(0.334737\pi\)
−0.496175 + 0.868222i \(0.665263\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 696.000 1.53579 0.767894 0.640577i \(-0.221305\pi\)
0.767894 + 0.640577i \(0.221305\pi\)
\(60\) 0 0
\(61\) 222.000 0.465970 0.232985 0.972480i \(-0.425151\pi\)
0.232985 + 0.972480i \(0.425151\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 4.00000i 0.00729370i 0.999993 + 0.00364685i \(0.00116083\pi\)
−0.999993 + 0.00364685i \(0.998839\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −96.0000 −0.160466 −0.0802331 0.996776i \(-0.525566\pi\)
−0.0802331 + 0.996776i \(0.525566\pi\)
\(72\) 0 0
\(73\) 178.000i 0.285388i 0.989767 + 0.142694i \(0.0455765\pi\)
−0.989767 + 0.142694i \(0.954424\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 288.000i 0.426242i
\(78\) 0 0
\(79\) 632.000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 612.000i 0.809346i 0.914461 + 0.404673i \(0.132615\pi\)
−0.914461 + 0.404673i \(0.867385\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 994.000 1.18386 0.591931 0.805988i \(-0.298366\pi\)
0.591931 + 0.805988i \(0.298366\pi\)
\(90\) 0 0
\(91\) −24.0000 −0.0276471
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 1634.00i − 1.71039i −0.518309 0.855194i \(-0.673438\pi\)
0.518309 0.855194i \(-0.326562\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −890.000 −0.876815 −0.438407 0.898776i \(-0.644457\pi\)
−0.438407 + 0.898776i \(0.644457\pi\)
\(102\) 0 0
\(103\) − 524.000i − 0.501274i −0.968081 0.250637i \(-0.919360\pi\)
0.968081 0.250637i \(-0.0806401\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 932.000i 0.842055i 0.907048 + 0.421027i \(0.138330\pi\)
−0.907048 + 0.421027i \(0.861670\pi\)
\(108\) 0 0
\(109\) −446.000 −0.391918 −0.195959 0.980612i \(-0.562782\pi\)
−0.195959 + 0.980612i \(0.562782\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 786.000i 0.654342i 0.944965 + 0.327171i \(0.106095\pi\)
−0.944965 + 0.327171i \(0.893905\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 152.000 0.117091
\(120\) 0 0
\(121\) 3853.00 2.89482
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 716.000i − 0.500273i −0.968211 0.250137i \(-0.919524\pi\)
0.968211 0.250137i \(-0.0804756\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 808.000 0.538895 0.269448 0.963015i \(-0.413159\pi\)
0.269448 + 0.963015i \(0.413159\pi\)
\(132\) 0 0
\(133\) 208.000i 0.135608i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 1770.00i − 1.10381i −0.833909 0.551903i \(-0.813902\pi\)
0.833909 0.551903i \(-0.186098\pi\)
\(138\) 0 0
\(139\) 924.000 0.563832 0.281916 0.959439i \(-0.409030\pi\)
0.281916 + 0.959439i \(0.409030\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 432.000i 0.252627i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −3198.00 −1.75832 −0.879162 0.476522i \(-0.841897\pi\)
−0.879162 + 0.476522i \(0.841897\pi\)
\(150\) 0 0
\(151\) −3384.00 −1.82375 −0.911874 0.410470i \(-0.865365\pi\)
−0.911874 + 0.410470i \(0.865365\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 3302.00i 1.67852i 0.543727 + 0.839262i \(0.317013\pi\)
−0.543727 + 0.839262i \(0.682987\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −608.000 −0.297622
\(162\) 0 0
\(163\) 2252.00i 1.08215i 0.840975 + 0.541074i \(0.181982\pi\)
−0.840975 + 0.541074i \(0.818018\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 184.000i − 0.0852596i −0.999091 0.0426298i \(-0.986426\pi\)
0.999091 0.0426298i \(-0.0135736\pi\)
\(168\) 0 0
\(169\) 2161.00 0.983614
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2646.00i 1.16284i 0.813603 + 0.581421i \(0.197503\pi\)
−0.813603 + 0.581421i \(0.802497\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −608.000 −0.253877 −0.126939 0.991911i \(-0.540515\pi\)
−0.126939 + 0.991911i \(0.540515\pi\)
\(180\) 0 0
\(181\) 2246.00 0.922342 0.461171 0.887311i \(-0.347430\pi\)
0.461171 + 0.887311i \(0.347430\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 2736.00i − 1.06993i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3848.00 1.45776 0.728878 0.684643i \(-0.240042\pi\)
0.728878 + 0.684643i \(0.240042\pi\)
\(192\) 0 0
\(193\) 2058.00i 0.767555i 0.923426 + 0.383777i \(0.125377\pi\)
−0.923426 + 0.383777i \(0.874623\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 3838.00i − 1.38805i −0.719950 0.694026i \(-0.755835\pi\)
0.719950 0.694026i \(-0.244165\pi\)
\(198\) 0 0
\(199\) 1992.00 0.709594 0.354797 0.934943i \(-0.384550\pi\)
0.354797 + 0.934943i \(0.384550\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 312.000i 0.107872i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 3744.00 1.23913
\(210\) 0 0
\(211\) 4764.00 1.55435 0.777174 0.629286i \(-0.216653\pi\)
0.777174 + 0.629286i \(0.216653\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 480.000i − 0.150159i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 228.000 0.0693979
\(222\) 0 0
\(223\) 4092.00i 1.22879i 0.788998 + 0.614396i \(0.210600\pi\)
−0.788998 + 0.614396i \(0.789400\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 468.000i 0.136838i 0.997657 + 0.0684191i \(0.0217955\pi\)
−0.997657 + 0.0684191i \(0.978205\pi\)
\(228\) 0 0
\(229\) 5586.00 1.61194 0.805968 0.591959i \(-0.201645\pi\)
0.805968 + 0.591959i \(0.201645\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1058.00i 0.297476i 0.988877 + 0.148738i \(0.0475211\pi\)
−0.988877 + 0.148738i \(0.952479\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 6840.00 1.85123 0.925613 0.378472i \(-0.123550\pi\)
0.925613 + 0.378472i \(0.123550\pi\)
\(240\) 0 0
\(241\) −6430.00 −1.71864 −0.859321 0.511437i \(-0.829113\pi\)
−0.859321 + 0.511437i \(0.829113\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 312.000i 0.0803728i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 6352.00 1.59735 0.798675 0.601763i \(-0.205535\pi\)
0.798675 + 0.601763i \(0.205535\pi\)
\(252\) 0 0
\(253\) 10944.0i 2.71954i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1422.00i 0.345144i 0.984997 + 0.172572i \(0.0552077\pi\)
−0.984997 + 0.172572i \(0.944792\pi\)
\(258\) 0 0
\(259\) 600.000 0.143947
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 7224.00i − 1.69373i −0.531808 0.846865i \(-0.678487\pi\)
0.531808 0.846865i \(-0.321513\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3186.00 0.722133 0.361067 0.932540i \(-0.382413\pi\)
0.361067 + 0.932540i \(0.382413\pi\)
\(270\) 0 0
\(271\) −256.000 −0.0573834 −0.0286917 0.999588i \(-0.509134\pi\)
−0.0286917 + 0.999588i \(0.509134\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 5942.00i 1.28888i 0.764654 + 0.644441i \(0.222910\pi\)
−0.764654 + 0.644441i \(0.777090\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −3202.00 −0.679770 −0.339885 0.940467i \(-0.610388\pi\)
−0.339885 + 0.940467i \(0.610388\pi\)
\(282\) 0 0
\(283\) 3940.00i 0.827593i 0.910370 + 0.413796i \(0.135797\pi\)
−0.910370 + 0.413796i \(0.864203\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1448.00i 0.297814i
\(288\) 0 0
\(289\) 3469.00 0.706086
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 1826.00i − 0.364082i −0.983291 0.182041i \(-0.941730\pi\)
0.983291 0.182041i \(-0.0582704\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −912.000 −0.176396
\(300\) 0 0
\(301\) −1936.00 −0.370728
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 6580.00i − 1.22326i −0.791144 0.611629i \(-0.790514\pi\)
0.791144 0.611629i \(-0.209486\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 5728.00 1.04439 0.522195 0.852826i \(-0.325113\pi\)
0.522195 + 0.852826i \(0.325113\pi\)
\(312\) 0 0
\(313\) − 1742.00i − 0.314580i −0.987552 0.157290i \(-0.949724\pi\)
0.987552 0.157290i \(-0.0502758\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 8746.00i 1.54960i 0.632204 + 0.774802i \(0.282150\pi\)
−0.632204 + 0.774802i \(0.717850\pi\)
\(318\) 0 0
\(319\) 5616.00 0.985692
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 1976.00i − 0.340395i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1120.00 0.187683
\(330\) 0 0
\(331\) −2564.00 −0.425771 −0.212885 0.977077i \(-0.568286\pi\)
−0.212885 + 0.977077i \(0.568286\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 4166.00i 0.673402i 0.941612 + 0.336701i \(0.109311\pi\)
−0.941612 + 0.336701i \(0.890689\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −8640.00 −1.37209
\(342\) 0 0
\(343\) − 2680.00i − 0.421885i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 9444.00i − 1.46104i −0.682892 0.730519i \(-0.739278\pi\)
0.682892 0.730519i \(-0.260722\pi\)
\(348\) 0 0
\(349\) 9218.00 1.41383 0.706917 0.707296i \(-0.250085\pi\)
0.706917 + 0.707296i \(0.250085\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 4698.00i 0.708355i 0.935178 + 0.354177i \(0.115239\pi\)
−0.935178 + 0.354177i \(0.884761\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −6056.00 −0.890316 −0.445158 0.895452i \(-0.646852\pi\)
−0.445158 + 0.895452i \(0.646852\pi\)
\(360\) 0 0
\(361\) −4155.00 −0.605773
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 8228.00i 1.17029i 0.810927 + 0.585147i \(0.198963\pi\)
−0.810927 + 0.585147i \(0.801037\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 2680.00 0.375037
\(372\) 0 0
\(373\) 5954.00i 0.826505i 0.910616 + 0.413253i \(0.135607\pi\)
−0.910616 + 0.413253i \(0.864393\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 468.000i 0.0639343i
\(378\) 0 0
\(379\) −5284.00 −0.716150 −0.358075 0.933693i \(-0.616567\pi\)
−0.358075 + 0.933693i \(0.616567\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 9832.00i − 1.31173i −0.754879 0.655864i \(-0.772305\pi\)
0.754879 0.655864i \(-0.227695\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −222.000 −0.0289353 −0.0144677 0.999895i \(-0.504605\pi\)
−0.0144677 + 0.999895i \(0.504605\pi\)
\(390\) 0 0
\(391\) 5776.00 0.747071
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 12098.0i − 1.52942i −0.644372 0.764712i \(-0.722881\pi\)
0.644372 0.764712i \(-0.277119\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 5958.00 0.741966 0.370983 0.928640i \(-0.379021\pi\)
0.370983 + 0.928640i \(0.379021\pi\)
\(402\) 0 0
\(403\) − 720.000i − 0.0889969i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 10800.0i − 1.31532i
\(408\) 0 0
\(409\) −1930.00 −0.233331 −0.116665 0.993171i \(-0.537221\pi\)
−0.116665 + 0.993171i \(0.537221\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 2784.00i − 0.331699i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 4744.00 0.553125 0.276563 0.960996i \(-0.410805\pi\)
0.276563 + 0.960996i \(0.410805\pi\)
\(420\) 0 0
\(421\) 1614.00 0.186845 0.0934223 0.995627i \(-0.470219\pi\)
0.0934223 + 0.995627i \(0.470219\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 888.000i − 0.100640i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −9296.00 −1.03892 −0.519458 0.854496i \(-0.673866\pi\)
−0.519458 + 0.854496i \(0.673866\pi\)
\(432\) 0 0
\(433\) − 3494.00i − 0.387785i −0.981023 0.193893i \(-0.937889\pi\)
0.981023 0.193893i \(-0.0621113\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 7904.00i 0.865216i
\(438\) 0 0
\(439\) 12584.0 1.36811 0.684056 0.729429i \(-0.260214\pi\)
0.684056 + 0.729429i \(0.260214\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 12852.0i 1.37837i 0.724586 + 0.689184i \(0.242031\pi\)
−0.724586 + 0.689184i \(0.757969\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 14458.0 1.51963 0.759816 0.650138i \(-0.225289\pi\)
0.759816 + 0.650138i \(0.225289\pi\)
\(450\) 0 0
\(451\) 26064.0 2.72130
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 4310.00i 0.441167i 0.975368 + 0.220583i \(0.0707961\pi\)
−0.975368 + 0.220583i \(0.929204\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −5338.00 −0.539296 −0.269648 0.962959i \(-0.586907\pi\)
−0.269648 + 0.962959i \(0.586907\pi\)
\(462\) 0 0
\(463\) 1156.00i 0.116034i 0.998316 + 0.0580171i \(0.0184778\pi\)
−0.998316 + 0.0580171i \(0.981522\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 5948.00i 0.589380i 0.955593 + 0.294690i \(0.0952164\pi\)
−0.955593 + 0.294690i \(0.904784\pi\)
\(468\) 0 0
\(469\) 16.0000 0.00157529
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 34848.0i 3.38755i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 6888.00 0.657037 0.328519 0.944498i \(-0.393451\pi\)
0.328519 + 0.944498i \(0.393451\pi\)
\(480\) 0 0
\(481\) 900.000 0.0853149
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 2892.00i − 0.269095i −0.990907 0.134547i \(-0.957042\pi\)
0.990907 0.134547i \(-0.0429580\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −4096.00 −0.376476 −0.188238 0.982123i \(-0.560278\pi\)
−0.188238 + 0.982123i \(0.560278\pi\)
\(492\) 0 0
\(493\) − 2964.00i − 0.270775i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 384.000i 0.0346575i
\(498\) 0 0
\(499\) −11060.0 −0.992212 −0.496106 0.868262i \(-0.665237\pi\)
−0.496106 + 0.868262i \(0.665237\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 9648.00i 0.855235i 0.903960 + 0.427617i \(0.140647\pi\)
−0.903960 + 0.427617i \(0.859353\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −10062.0 −0.876209 −0.438104 0.898924i \(-0.644350\pi\)
−0.438104 + 0.898924i \(0.644350\pi\)
\(510\) 0 0
\(511\) 712.000 0.0616380
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 20160.0i − 1.71496i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 7966.00 0.669859 0.334930 0.942243i \(-0.391287\pi\)
0.334930 + 0.942243i \(0.391287\pi\)
\(522\) 0 0
\(523\) 7668.00i 0.641106i 0.947231 + 0.320553i \(0.103869\pi\)
−0.947231 + 0.320553i \(0.896131\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4560.00i 0.376920i
\(528\) 0 0
\(529\) −10937.0 −0.898907
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 2172.00i 0.176510i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −23544.0 −1.88147
\(540\) 0 0
\(541\) 6590.00 0.523708 0.261854 0.965107i \(-0.415666\pi\)
0.261854 + 0.965107i \(0.415666\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 4700.00i 0.367381i 0.982984 + 0.183691i \(0.0588044\pi\)
−0.982984 + 0.183691i \(0.941196\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 4056.00 0.313596
\(552\) 0 0
\(553\) − 2528.00i − 0.194397i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 15766.0i − 1.19933i −0.800251 0.599665i \(-0.795300\pi\)
0.800251 0.599665i \(-0.204700\pi\)
\(558\) 0 0
\(559\) −2904.00 −0.219725
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 22788.0i − 1.70586i −0.522025 0.852930i \(-0.674823\pi\)
0.522025 0.852930i \(-0.325177\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3358.00 −0.247407 −0.123704 0.992319i \(-0.539477\pi\)
−0.123704 + 0.992319i \(0.539477\pi\)
\(570\) 0 0
\(571\) −11444.0 −0.838733 −0.419366 0.907817i \(-0.637748\pi\)
−0.419366 + 0.907817i \(0.637748\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 10622.0i 0.766377i 0.923670 + 0.383189i \(0.125174\pi\)
−0.923670 + 0.383189i \(0.874826\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 2448.00 0.174802
\(582\) 0 0
\(583\) − 48240.0i − 3.42692i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 6588.00i − 0.463230i −0.972808 0.231615i \(-0.925599\pi\)
0.972808 0.231615i \(-0.0744009\pi\)
\(588\) 0 0
\(589\) −6240.00 −0.436528
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 11362.0i 0.786815i 0.919364 + 0.393408i \(0.128704\pi\)
−0.919364 + 0.393408i \(0.871296\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1624.00 0.110776 0.0553880 0.998465i \(-0.482360\pi\)
0.0553880 + 0.998465i \(0.482360\pi\)
\(600\) 0 0
\(601\) −14950.0 −1.01468 −0.507340 0.861746i \(-0.669371\pi\)
−0.507340 + 0.861746i \(0.669371\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 8244.00i − 0.551258i −0.961264 0.275629i \(-0.911114\pi\)
0.961264 0.275629i \(-0.0888861\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1680.00 0.111237
\(612\) 0 0
\(613\) 6698.00i 0.441321i 0.975351 + 0.220660i \(0.0708213\pi\)
−0.975351 + 0.220660i \(0.929179\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 22670.0i 1.47919i 0.673053 + 0.739595i \(0.264983\pi\)
−0.673053 + 0.739595i \(0.735017\pi\)
\(618\) 0 0
\(619\) 10060.0 0.653224 0.326612 0.945159i \(-0.394093\pi\)
0.326612 + 0.945159i \(0.394093\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 3976.00i − 0.255690i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −5700.00 −0.361326
\(630\) 0 0
\(631\) 10240.0 0.646035 0.323017 0.946393i \(-0.395303\pi\)
0.323017 + 0.946393i \(0.395303\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 1962.00i − 0.122037i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −13218.0 −0.814477 −0.407238 0.913322i \(-0.633508\pi\)
−0.407238 + 0.913322i \(0.633508\pi\)
\(642\) 0 0
\(643\) − 23412.0i − 1.43589i −0.696098 0.717946i \(-0.745082\pi\)
0.696098 0.717946i \(-0.254918\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 15264.0i − 0.927496i −0.885967 0.463748i \(-0.846504\pi\)
0.885967 0.463748i \(-0.153496\pi\)
\(648\) 0 0
\(649\) −50112.0 −3.03092
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 1482.00i − 0.0888134i −0.999014 0.0444067i \(-0.985860\pi\)
0.999014 0.0444067i \(-0.0141397\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −18920.0 −1.11839 −0.559195 0.829036i \(-0.688890\pi\)
−0.559195 + 0.829036i \(0.688890\pi\)
\(660\) 0 0
\(661\) −24218.0 −1.42507 −0.712535 0.701637i \(-0.752453\pi\)
−0.712535 + 0.701637i \(0.752453\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 11856.0i 0.688255i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −15984.0 −0.919606
\(672\) 0 0
\(673\) 890.000i 0.0509762i 0.999675 + 0.0254881i \(0.00811399\pi\)
−0.999675 + 0.0254881i \(0.991886\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 29250.0i 1.66052i 0.557380 + 0.830258i \(0.311807\pi\)
−0.557380 + 0.830258i \(0.688193\pi\)
\(678\) 0 0
\(679\) −6536.00 −0.369409
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 14580.0i − 0.816820i −0.912799 0.408410i \(-0.866083\pi\)
0.912799 0.408410i \(-0.133917\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 4020.00 0.222278
\(690\) 0 0
\(691\) 23668.0 1.30300 0.651500 0.758649i \(-0.274140\pi\)
0.651500 + 0.758649i \(0.274140\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 13756.0i − 0.747555i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −32402.0 −1.74580 −0.872901 0.487898i \(-0.837764\pi\)
−0.872901 + 0.487898i \(0.837764\pi\)
\(702\) 0 0
\(703\) − 7800.00i − 0.418467i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 3560.00i 0.189374i
\(708\) 0 0
\(709\) 30626.0 1.62226 0.811131 0.584865i \(-0.198852\pi\)
0.811131 + 0.584865i \(0.198852\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 18240.0i − 0.958055i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 13440.0 0.697117 0.348559 0.937287i \(-0.386671\pi\)
0.348559 + 0.937287i \(0.386671\pi\)
\(720\) 0 0
\(721\) −2096.00 −0.108265
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 24820.0i 1.26619i 0.774073 + 0.633097i \(0.218217\pi\)
−0.774073 + 0.633097i \(0.781783\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 18392.0 0.930578
\(732\) 0 0
\(733\) 21986.0i 1.10787i 0.832559 + 0.553937i \(0.186875\pi\)
−0.832559 + 0.553937i \(0.813125\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 288.000i − 0.0143943i
\(738\) 0 0
\(739\) −4420.00 −0.220017 −0.110008 0.993931i \(-0.535088\pi\)
−0.110008 + 0.993931i \(0.535088\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 34560.0i − 1.70644i −0.521553 0.853219i \(-0.674647\pi\)
0.521553 0.853219i \(-0.325353\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 3728.00 0.181867
\(750\) 0 0
\(751\) −24792.0 −1.20462 −0.602312 0.798261i \(-0.705754\pi\)
−0.602312 + 0.798261i \(0.705754\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 2166.00i 0.103996i 0.998647 + 0.0519978i \(0.0165589\pi\)
−0.998647 + 0.0519978i \(0.983441\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 10622.0 0.505975 0.252988 0.967470i \(-0.418587\pi\)
0.252988 + 0.967470i \(0.418587\pi\)
\(762\) 0 0
\(763\) 1784.00i 0.0846463i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 4176.00i − 0.196593i
\(768\) 0 0
\(769\) −29826.0 −1.39864 −0.699319 0.714809i \(-0.746513\pi\)
−0.699319 + 0.714809i \(0.746513\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 6386.00i − 0.297139i −0.988902 0.148570i \(-0.952533\pi\)
0.988902 0.148570i \(-0.0474669\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 18824.0 0.865776
\(780\) 0 0
\(781\) 6912.00 0.316685
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 3516.00i − 0.159253i −0.996825 0.0796263i \(-0.974627\pi\)
0.996825 0.0796263i \(-0.0253727\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 3144.00 0.141325
\(792\) 0 0
\(793\) − 1332.00i − 0.0596478i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 25030.0i − 1.11243i −0.831038 0.556216i \(-0.812253\pi\)
0.831038 0.556216i \(-0.187747\pi\)
\(798\) 0 0
\(799\) −10640.0 −0.471109
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 12816.0i − 0.563221i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 7962.00 0.346019 0.173009 0.984920i \(-0.444651\pi\)
0.173009 + 0.984920i \(0.444651\pi\)
\(810\) 0 0
\(811\) −34668.0 −1.50106 −0.750529 0.660837i \(-0.770201\pi\)
−0.750529 + 0.660837i \(0.770201\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 25168.0i 1.07774i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −250.000 −0.0106274 −0.00531368 0.999986i \(-0.501691\pi\)
−0.00531368 + 0.999986i \(0.501691\pi\)
\(822\) 0 0
\(823\) − 6388.00i − 0.270561i −0.990807 0.135280i \(-0.956806\pi\)
0.990807 0.135280i \(-0.0431936\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 3932.00i 0.165331i 0.996577 + 0.0826657i \(0.0263434\pi\)
−0.996577 + 0.0826657i \(0.973657\pi\)
\(828\) 0 0
\(829\) 25906.0 1.08535 0.542673 0.839944i \(-0.317412\pi\)
0.542673 + 0.839944i \(0.317412\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 12426.0i 0.516849i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −9944.00 −0.409184 −0.204592 0.978847i \(-0.565587\pi\)
−0.204592 + 0.978847i \(0.565587\pi\)
\(840\) 0 0
\(841\) −18305.0 −0.750543
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 15412.0i − 0.625221i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 22800.0 0.918418
\(852\) 0 0
\(853\) − 14630.0i − 0.587247i −0.955921 0.293623i \(-0.905139\pi\)
0.955921 0.293623i \(-0.0948612\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 478.000i 0.0190527i 0.999955 + 0.00952635i \(0.00303238\pi\)
−0.999955 + 0.00952635i \(0.996968\pi\)
\(858\) 0 0
\(859\) −24132.0 −0.958525 −0.479263 0.877672i \(-0.659096\pi\)
−0.479263 + 0.877672i \(0.659096\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 15776.0i − 0.622273i −0.950365 0.311136i \(-0.899290\pi\)
0.950365 0.311136i \(-0.100710\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −45504.0 −1.77631
\(870\) 0 0
\(871\) 24.0000 0.000933650 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 33542.0i 1.29149i 0.763555 + 0.645743i \(0.223452\pi\)
−0.763555 + 0.645743i \(0.776548\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −22858.0 −0.874127 −0.437063 0.899431i \(-0.643981\pi\)
−0.437063 + 0.899431i \(0.643981\pi\)
\(882\) 0 0
\(883\) 2764.00i 0.105341i 0.998612 + 0.0526704i \(0.0167733\pi\)
−0.998612 + 0.0526704i \(0.983227\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 6216.00i 0.235302i 0.993055 + 0.117651i \(0.0375364\pi\)
−0.993055 + 0.117651i \(0.962464\pi\)
\(888\) 0 0
\(889\) −2864.00 −0.108049
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 14560.0i − 0.545612i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −9360.00 −0.347245
\(900\) 0 0
\(901\) −25460.0 −0.941394
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 18884.0i 0.691326i 0.938359 + 0.345663i \(0.112346\pi\)
−0.938359 + 0.345663i \(0.887654\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 15232.0 0.553961 0.276981 0.960876i \(-0.410666\pi\)
0.276981 + 0.960876i \(0.410666\pi\)
\(912\) 0 0
\(913\) − 44064.0i − 1.59727i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 3232.00i − 0.116390i
\(918\) 0 0
\(919\) −7744.00 −0.277966 −0.138983 0.990295i \(-0.544383\pi\)
−0.138983 + 0.990295i \(0.544383\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 576.000i 0.0205409i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 22266.0 0.786355 0.393177 0.919463i \(-0.371376\pi\)
0.393177 + 0.919463i \(0.371376\pi\)
\(930\) 0 0
\(931\) −17004.0 −0.598586
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 16202.0i − 0.564884i −0.959284 0.282442i \(-0.908856\pi\)
0.959284 0.282442i \(-0.0911445\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 53494.0 1.85319 0.926596 0.376057i \(-0.122720\pi\)
0.926596 + 0.376057i \(0.122720\pi\)
\(942\) 0 0
\(943\) 55024.0i 1.90014i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 2332.00i − 0.0800209i −0.999199 0.0400105i \(-0.987261\pi\)
0.999199 0.0400105i \(-0.0127391\pi\)
\(948\) 0 0
\(949\) 1068.00 0.0365319
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 15414.0i − 0.523933i −0.965077 0.261967i \(-0.915629\pi\)
0.965077 0.261967i \(-0.0843710\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −7080.00 −0.238400
\(960\) 0 0
\(961\) −15391.0 −0.516633
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 35012.0i − 1.16433i −0.813070 0.582167i \(-0.802205\pi\)
0.813070 0.582167i \(-0.197795\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −11360.0 −0.375448 −0.187724 0.982222i \(-0.560111\pi\)
−0.187724 + 0.982222i \(0.560111\pi\)
\(972\) 0 0
\(973\) − 3696.00i − 0.121776i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 24586.0i − 0.805093i −0.915400 0.402546i \(-0.868125\pi\)
0.915400 0.402546i \(-0.131875\pi\)
\(978\) 0 0
\(979\) −71568.0 −2.33639
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 8832.00i − 0.286569i −0.989682 0.143284i \(-0.954234\pi\)
0.989682 0.143284i \(-0.0457663\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −73568.0 −2.36535
\(990\) 0 0
\(991\) −22912.0 −0.734434 −0.367217 0.930135i \(-0.619689\pi\)
−0.367217 + 0.930135i \(0.619689\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 10974.0i 0.348596i 0.984693 + 0.174298i \(0.0557656\pi\)
−0.984693 + 0.174298i \(0.944234\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1800.4.f.a.649.1 2
3.2 odd 2 600.4.f.i.49.1 2
5.2 odd 4 360.4.a.l.1.1 1
5.3 odd 4 1800.4.a.n.1.1 1
5.4 even 2 inner 1800.4.f.a.649.2 2
12.11 even 2 1200.4.f.a.49.2 2
15.2 even 4 120.4.a.a.1.1 1
15.8 even 4 600.4.a.l.1.1 1
15.14 odd 2 600.4.f.i.49.2 2
20.7 even 4 720.4.a.v.1.1 1
60.23 odd 4 1200.4.a.k.1.1 1
60.47 odd 4 240.4.a.h.1.1 1
60.59 even 2 1200.4.f.a.49.1 2
120.77 even 4 960.4.a.bf.1.1 1
120.107 odd 4 960.4.a.o.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.4.a.a.1.1 1 15.2 even 4
240.4.a.h.1.1 1 60.47 odd 4
360.4.a.l.1.1 1 5.2 odd 4
600.4.a.l.1.1 1 15.8 even 4
600.4.f.i.49.1 2 3.2 odd 2
600.4.f.i.49.2 2 15.14 odd 2
720.4.a.v.1.1 1 20.7 even 4
960.4.a.o.1.1 1 120.107 odd 4
960.4.a.bf.1.1 1 120.77 even 4
1200.4.a.k.1.1 1 60.23 odd 4
1200.4.f.a.49.1 2 60.59 even 2
1200.4.f.a.49.2 2 12.11 even 2
1800.4.a.n.1.1 1 5.3 odd 4
1800.4.f.a.649.1 2 1.1 even 1 trivial
1800.4.f.a.649.2 2 5.4 even 2 inner