# Properties

 Label 1800.4.a.p.1.1 Level $1800$ Weight $4$ Character 1800.1 Self dual yes Analytic conductor $106.203$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1800,4,Mod(1,1800)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1800, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 4, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1800.1");

S:= CuspForms(chi, 4);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1800 = 2^{3} \cdot 3^{2} \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 1800.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$106.203438010$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 200) Fricke sign: $$+1$$ Sato-Tate group: $\mathrm{SU}(2)$

## Embedding invariants

 Embedding label 1.1 Character $$\chi$$ $$=$$ 1800.1

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q-2.00000 q^{7} +O(q^{10})$$ $$q-2.00000 q^{7} -39.0000 q^{11} -84.0000 q^{13} -61.0000 q^{17} +151.000 q^{19} -58.0000 q^{23} -192.000 q^{29} -18.0000 q^{31} +138.000 q^{37} -229.000 q^{41} +164.000 q^{43} -212.000 q^{47} -339.000 q^{49} +578.000 q^{53} +336.000 q^{59} +858.000 q^{61} +209.000 q^{67} +780.000 q^{71} +403.000 q^{73} +78.0000 q^{77} -230.000 q^{79} -1293.00 q^{83} +1369.00 q^{89} +168.000 q^{91} -382.000 q^{97} +O(q^{100})$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 0 0
$$4$$ 0 0
$$5$$ 0 0
$$6$$ 0 0
$$7$$ −2.00000 −0.107990 −0.0539949 0.998541i $$-0.517195\pi$$
−0.0539949 + 0.998541i $$0.517195\pi$$
$$8$$ 0 0
$$9$$ 0 0
$$10$$ 0 0
$$11$$ −39.0000 −1.06899 −0.534497 0.845170i $$-0.679499\pi$$
−0.534497 + 0.845170i $$0.679499\pi$$
$$12$$ 0 0
$$13$$ −84.0000 −1.79211 −0.896054 0.443945i $$-0.853579\pi$$
−0.896054 + 0.443945i $$0.853579\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ −61.0000 −0.870275 −0.435137 0.900364i $$-0.643300\pi$$
−0.435137 + 0.900364i $$0.643300\pi$$
$$18$$ 0 0
$$19$$ 151.000 1.82325 0.911626 0.411021i $$-0.134828\pi$$
0.911626 + 0.411021i $$0.134828\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ −58.0000 −0.525819 −0.262909 0.964821i $$-0.584682\pi$$
−0.262909 + 0.964821i $$0.584682\pi$$
$$24$$ 0 0
$$25$$ 0 0
$$26$$ 0 0
$$27$$ 0 0
$$28$$ 0 0
$$29$$ −192.000 −1.22943 −0.614716 0.788749i $$-0.710729\pi$$
−0.614716 + 0.788749i $$0.710729\pi$$
$$30$$ 0 0
$$31$$ −18.0000 −0.104287 −0.0521435 0.998640i $$-0.516605\pi$$
−0.0521435 + 0.998640i $$0.516605\pi$$
$$32$$ 0 0
$$33$$ 0 0
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ 138.000 0.613164 0.306582 0.951844i $$-0.400815\pi$$
0.306582 + 0.951844i $$0.400815\pi$$
$$38$$ 0 0
$$39$$ 0 0
$$40$$ 0 0
$$41$$ −229.000 −0.872288 −0.436144 0.899877i $$-0.643656\pi$$
−0.436144 + 0.899877i $$0.643656\pi$$
$$42$$ 0 0
$$43$$ 164.000 0.581622 0.290811 0.956780i $$-0.406075\pi$$
0.290811 + 0.956780i $$0.406075\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ −212.000 −0.657944 −0.328972 0.944340i $$-0.606702\pi$$
−0.328972 + 0.944340i $$0.606702\pi$$
$$48$$ 0 0
$$49$$ −339.000 −0.988338
$$50$$ 0 0
$$51$$ 0 0
$$52$$ 0 0
$$53$$ 578.000 1.49801 0.749004 0.662566i $$-0.230532\pi$$
0.749004 + 0.662566i $$0.230532\pi$$
$$54$$ 0 0
$$55$$ 0 0
$$56$$ 0 0
$$57$$ 0 0
$$58$$ 0 0
$$59$$ 336.000 0.741415 0.370707 0.928750i $$-0.379115\pi$$
0.370707 + 0.928750i $$0.379115\pi$$
$$60$$ 0 0
$$61$$ 858.000 1.80091 0.900456 0.434947i $$-0.143233\pi$$
0.900456 + 0.434947i $$0.143233\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 0 0
$$65$$ 0 0
$$66$$ 0 0
$$67$$ 209.000 0.381096 0.190548 0.981678i $$-0.438974\pi$$
0.190548 + 0.981678i $$0.438974\pi$$
$$68$$ 0 0
$$69$$ 0 0
$$70$$ 0 0
$$71$$ 780.000 1.30379 0.651894 0.758310i $$-0.273975\pi$$
0.651894 + 0.758310i $$0.273975\pi$$
$$72$$ 0 0
$$73$$ 403.000 0.646131 0.323066 0.946377i $$-0.395287\pi$$
0.323066 + 0.946377i $$0.395287\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ 78.0000 0.115441
$$78$$ 0 0
$$79$$ −230.000 −0.327557 −0.163779 0.986497i $$-0.552368\pi$$
−0.163779 + 0.986497i $$0.552368\pi$$
$$80$$ 0 0
$$81$$ 0 0
$$82$$ 0 0
$$83$$ −1293.00 −1.70994 −0.854971 0.518676i $$-0.826425\pi$$
−0.854971 + 0.518676i $$0.826425\pi$$
$$84$$ 0 0
$$85$$ 0 0
$$86$$ 0 0
$$87$$ 0 0
$$88$$ 0 0
$$89$$ 1369.00 1.63049 0.815246 0.579115i $$-0.196602\pi$$
0.815246 + 0.579115i $$0.196602\pi$$
$$90$$ 0 0
$$91$$ 168.000 0.193530
$$92$$ 0 0
$$93$$ 0 0
$$94$$ 0 0
$$95$$ 0 0
$$96$$ 0 0
$$97$$ −382.000 −0.399858 −0.199929 0.979810i $$-0.564071\pi$$
−0.199929 + 0.979810i $$0.564071\pi$$
$$98$$ 0 0
$$99$$ 0 0
$$100$$ 0 0
$$101$$ 794.000 0.782237 0.391119 0.920340i $$-0.372088\pi$$
0.391119 + 0.920340i $$0.372088\pi$$
$$102$$ 0 0
$$103$$ 1348.00 1.28954 0.644769 0.764378i $$-0.276954\pi$$
0.644769 + 0.764378i $$0.276954\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ −775.000 −0.700206 −0.350103 0.936711i $$-0.613853\pi$$
−0.350103 + 0.936711i $$0.613853\pi$$
$$108$$ 0 0
$$109$$ 446.000 0.391918 0.195959 0.980612i $$-0.437218\pi$$
0.195959 + 0.980612i $$0.437218\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ 0 0
$$113$$ −231.000 −0.192307 −0.0961533 0.995367i $$-0.530654\pi$$
−0.0961533 + 0.995367i $$0.530654\pi$$
$$114$$ 0 0
$$115$$ 0 0
$$116$$ 0 0
$$117$$ 0 0
$$118$$ 0 0
$$119$$ 122.000 0.0939809
$$120$$ 0 0
$$121$$ 190.000 0.142750
$$122$$ 0 0
$$123$$ 0 0
$$124$$ 0 0
$$125$$ 0 0
$$126$$ 0 0
$$127$$ −2386.00 −1.66711 −0.833556 0.552435i $$-0.813699\pi$$
−0.833556 + 0.552435i $$0.813699\pi$$
$$128$$ 0 0
$$129$$ 0 0
$$130$$ 0 0
$$131$$ −2452.00 −1.63536 −0.817680 0.575673i $$-0.804740\pi$$
−0.817680 + 0.575673i $$0.804740\pi$$
$$132$$ 0 0
$$133$$ −302.000 −0.196893
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ −1125.00 −0.701571 −0.350786 0.936456i $$-0.614085\pi$$
−0.350786 + 0.936456i $$0.614085\pi$$
$$138$$ 0 0
$$139$$ −1377.00 −0.840256 −0.420128 0.907465i $$-0.638015\pi$$
−0.420128 + 0.907465i $$0.638015\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ 3276.00 1.91575
$$144$$ 0 0
$$145$$ 0 0
$$146$$ 0 0
$$147$$ 0 0
$$148$$ 0 0
$$149$$ −1920.00 −1.05565 −0.527827 0.849352i $$-0.676993\pi$$
−0.527827 + 0.849352i $$0.676993\pi$$
$$150$$ 0 0
$$151$$ 1854.00 0.999181 0.499591 0.866262i $$-0.333484\pi$$
0.499591 + 0.866262i $$0.333484\pi$$
$$152$$ 0 0
$$153$$ 0 0
$$154$$ 0 0
$$155$$ 0 0
$$156$$ 0 0
$$157$$ 634.000 0.322285 0.161142 0.986931i $$-0.448482\pi$$
0.161142 + 0.986931i $$0.448482\pi$$
$$158$$ 0 0
$$159$$ 0 0
$$160$$ 0 0
$$161$$ 116.000 0.0567831
$$162$$ 0 0
$$163$$ −103.000 −0.0494944 −0.0247472 0.999694i $$-0.507878\pi$$
−0.0247472 + 0.999694i $$0.507878\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ 44.0000 0.0203882 0.0101941 0.999948i $$-0.496755\pi$$
0.0101941 + 0.999948i $$0.496755\pi$$
$$168$$ 0 0
$$169$$ 4859.00 2.21165
$$170$$ 0 0
$$171$$ 0 0
$$172$$ 0 0
$$173$$ −1128.00 −0.495724 −0.247862 0.968795i $$-0.579728\pi$$
−0.247862 + 0.968795i $$0.579728\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ 0 0
$$178$$ 0 0
$$179$$ 2245.00 0.937426 0.468713 0.883351i $$-0.344718\pi$$
0.468713 + 0.883351i $$0.344718\pi$$
$$180$$ 0 0
$$181$$ 3050.00 1.25251 0.626256 0.779617i $$-0.284586\pi$$
0.626256 + 0.779617i $$0.284586\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ 0 0
$$185$$ 0 0
$$186$$ 0 0
$$187$$ 2379.00 0.930319
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ 4222.00 1.59944 0.799720 0.600373i $$-0.204981\pi$$
0.799720 + 0.600373i $$0.204981\pi$$
$$192$$ 0 0
$$193$$ 3357.00 1.25203 0.626016 0.779810i $$-0.284684\pi$$
0.626016 + 0.779810i $$0.284684\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ −166.000 −0.0600356 −0.0300178 0.999549i $$-0.509556\pi$$
−0.0300178 + 0.999549i $$0.509556\pi$$
$$198$$ 0 0
$$199$$ 3372.00 1.20118 0.600590 0.799557i $$-0.294932\pi$$
0.600590 + 0.799557i $$0.294932\pi$$
$$200$$ 0 0
$$201$$ 0 0
$$202$$ 0 0
$$203$$ 384.000 0.132766
$$204$$ 0 0
$$205$$ 0 0
$$206$$ 0 0
$$207$$ 0 0
$$208$$ 0 0
$$209$$ −5889.00 −1.94905
$$210$$ 0 0
$$211$$ 5601.00 1.82743 0.913717 0.406350i $$-0.133199\pi$$
0.913717 + 0.406350i $$0.133199\pi$$
$$212$$ 0 0
$$213$$ 0 0
$$214$$ 0 0
$$215$$ 0 0
$$216$$ 0 0
$$217$$ 36.0000 0.0112619
$$218$$ 0 0
$$219$$ 0 0
$$220$$ 0 0
$$221$$ 5124.00 1.55963
$$222$$ 0 0
$$223$$ −828.000 −0.248641 −0.124321 0.992242i $$-0.539675\pi$$
−0.124321 + 0.992242i $$0.539675\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ −2388.00 −0.698225 −0.349113 0.937081i $$-0.613517\pi$$
−0.349113 + 0.937081i $$0.613517\pi$$
$$228$$ 0 0
$$229$$ −2844.00 −0.820685 −0.410342 0.911932i $$-0.634591\pi$$
−0.410342 + 0.911932i $$0.634591\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ 5962.00 1.67632 0.838162 0.545421i $$-0.183630\pi$$
0.838162 + 0.545421i $$0.183630\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ 0 0
$$237$$ 0 0
$$238$$ 0 0
$$239$$ 4320.00 1.16919 0.584597 0.811324i $$-0.301252\pi$$
0.584597 + 0.811324i $$0.301252\pi$$
$$240$$ 0 0
$$241$$ 3857.00 1.03092 0.515459 0.856914i $$-0.327621\pi$$
0.515459 + 0.856914i $$0.327621\pi$$
$$242$$ 0 0
$$243$$ 0 0
$$244$$ 0 0
$$245$$ 0 0
$$246$$ 0 0
$$247$$ −12684.0 −3.26746
$$248$$ 0 0
$$249$$ 0 0
$$250$$ 0 0
$$251$$ 287.000 0.0721724 0.0360862 0.999349i $$-0.488511\pi$$
0.0360862 + 0.999349i $$0.488511\pi$$
$$252$$ 0 0
$$253$$ 2262.00 0.562098
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ 2130.00 0.516987 0.258494 0.966013i $$-0.416774\pi$$
0.258494 + 0.966013i $$0.416774\pi$$
$$258$$ 0 0
$$259$$ −276.000 −0.0662155
$$260$$ 0 0
$$261$$ 0 0
$$262$$ 0 0
$$263$$ −3066.00 −0.718850 −0.359425 0.933174i $$-0.617027\pi$$
−0.359425 + 0.933174i $$0.617027\pi$$
$$264$$ 0 0
$$265$$ 0 0
$$266$$ 0 0
$$267$$ 0 0
$$268$$ 0 0
$$269$$ 3744.00 0.848609 0.424304 0.905520i $$-0.360519\pi$$
0.424304 + 0.905520i $$0.360519\pi$$
$$270$$ 0 0
$$271$$ −3346.00 −0.750019 −0.375009 0.927021i $$-0.622360\pi$$
−0.375009 + 0.927021i $$0.622360\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ 0 0
$$276$$ 0 0
$$277$$ −7040.00 −1.52705 −0.763525 0.645779i $$-0.776533\pi$$
−0.763525 + 0.645779i $$0.776533\pi$$
$$278$$ 0 0
$$279$$ 0 0
$$280$$ 0 0
$$281$$ 3010.00 0.639009 0.319505 0.947585i $$-0.396484\pi$$
0.319505 + 0.947585i $$0.396484\pi$$
$$282$$ 0 0
$$283$$ 6001.00 1.26050 0.630252 0.776391i $$-0.282952\pi$$
0.630252 + 0.776391i $$0.282952\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 458.000 0.0941982
$$288$$ 0 0
$$289$$ −1192.00 −0.242622
$$290$$ 0 0
$$291$$ 0 0
$$292$$ 0 0
$$293$$ 4802.00 0.957460 0.478730 0.877962i $$-0.341097\pi$$
0.478730 + 0.877962i $$0.341097\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ 0 0
$$297$$ 0 0
$$298$$ 0 0
$$299$$ 4872.00 0.942325
$$300$$ 0 0
$$301$$ −328.000 −0.0628093
$$302$$ 0 0
$$303$$ 0 0
$$304$$ 0 0
$$305$$ 0 0
$$306$$ 0 0
$$307$$ −6149.00 −1.14313 −0.571567 0.820556i $$-0.693664\pi$$
−0.571567 + 0.820556i $$0.693664\pi$$
$$308$$ 0 0
$$309$$ 0 0
$$310$$ 0 0
$$311$$ 878.000 0.160086 0.0800431 0.996791i $$-0.474494\pi$$
0.0800431 + 0.996791i $$0.474494\pi$$
$$312$$ 0 0
$$313$$ 4042.00 0.729928 0.364964 0.931022i $$-0.381081\pi$$
0.364964 + 0.931022i $$0.381081\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ 3844.00 0.681074 0.340537 0.940231i $$-0.389391\pi$$
0.340537 + 0.940231i $$0.389391\pi$$
$$318$$ 0 0
$$319$$ 7488.00 1.31426
$$320$$ 0 0
$$321$$ 0 0
$$322$$ 0 0
$$323$$ −9211.00 −1.58673
$$324$$ 0 0
$$325$$ 0 0
$$326$$ 0 0
$$327$$ 0 0
$$328$$ 0 0
$$329$$ 424.000 0.0710513
$$330$$ 0 0
$$331$$ −2717.00 −0.451178 −0.225589 0.974223i $$-0.572431\pi$$
−0.225589 + 0.974223i $$0.572431\pi$$
$$332$$ 0 0
$$333$$ 0 0
$$334$$ 0 0
$$335$$ 0 0
$$336$$ 0 0
$$337$$ 1603.00 0.259113 0.129556 0.991572i $$-0.458645\pi$$
0.129556 + 0.991572i $$0.458645\pi$$
$$338$$ 0 0
$$339$$ 0 0
$$340$$ 0 0
$$341$$ 702.000 0.111482
$$342$$ 0 0
$$343$$ 1364.00 0.214720
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ −11607.0 −1.79567 −0.897833 0.440335i $$-0.854860\pi$$
−0.897833 + 0.440335i $$0.854860\pi$$
$$348$$ 0 0
$$349$$ 4030.00 0.618112 0.309056 0.951044i $$-0.399987\pi$$
0.309056 + 0.951044i $$0.399987\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ 2106.00 0.317538 0.158769 0.987316i $$-0.449247\pi$$
0.158769 + 0.987316i $$0.449247\pi$$
$$354$$ 0 0
$$355$$ 0 0
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ −7394.00 −1.08702 −0.543510 0.839402i $$-0.682905\pi$$
−0.543510 + 0.839402i $$0.682905\pi$$
$$360$$ 0 0
$$361$$ 15942.0 2.32425
$$362$$ 0 0
$$363$$ 0 0
$$364$$ 0 0
$$365$$ 0 0
$$366$$ 0 0
$$367$$ 6940.00 0.987098 0.493549 0.869718i $$-0.335699\pi$$
0.493549 + 0.869718i $$0.335699\pi$$
$$368$$ 0 0
$$369$$ 0 0
$$370$$ 0 0
$$371$$ −1156.00 −0.161770
$$372$$ 0 0
$$373$$ −7486.00 −1.03917 −0.519585 0.854419i $$-0.673913\pi$$
−0.519585 + 0.854419i $$0.673913\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ 16128.0 2.20327
$$378$$ 0 0
$$379$$ 1285.00 0.174158 0.0870792 0.996201i $$-0.472247\pi$$
0.0870792 + 0.996201i $$0.472247\pi$$
$$380$$ 0 0
$$381$$ 0 0
$$382$$ 0 0
$$383$$ 9622.00 1.28371 0.641855 0.766826i $$-0.278165\pi$$
0.641855 + 0.766826i $$0.278165\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ 0 0
$$388$$ 0 0
$$389$$ −1974.00 −0.257290 −0.128645 0.991691i $$-0.541063\pi$$
−0.128645 + 0.991691i $$0.541063\pi$$
$$390$$ 0 0
$$391$$ 3538.00 0.457607
$$392$$ 0 0
$$393$$ 0 0
$$394$$ 0 0
$$395$$ 0 0
$$396$$ 0 0
$$397$$ 8084.00 1.02198 0.510988 0.859588i $$-0.329280\pi$$
0.510988 + 0.859588i $$0.329280\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ 5667.00 0.705727 0.352863 0.935675i $$-0.385208\pi$$
0.352863 + 0.935675i $$0.385208\pi$$
$$402$$ 0 0
$$403$$ 1512.00 0.186894
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ −5382.00 −0.655469
$$408$$ 0 0
$$409$$ −4835.00 −0.584536 −0.292268 0.956336i $$-0.594410\pi$$
−0.292268 + 0.956336i $$0.594410\pi$$
$$410$$ 0 0
$$411$$ 0 0
$$412$$ 0 0
$$413$$ −672.000 −0.0800653
$$414$$ 0 0
$$415$$ 0 0
$$416$$ 0 0
$$417$$ 0 0
$$418$$ 0 0
$$419$$ −4619.00 −0.538551 −0.269276 0.963063i $$-0.586784\pi$$
−0.269276 + 0.963063i $$0.586784\pi$$
$$420$$ 0 0
$$421$$ 7476.00 0.865458 0.432729 0.901524i $$-0.357551\pi$$
0.432729 + 0.901524i $$0.357551\pi$$
$$422$$ 0 0
$$423$$ 0 0
$$424$$ 0 0
$$425$$ 0 0
$$426$$ 0 0
$$427$$ −1716.00 −0.194480
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ −7810.00 −0.872841 −0.436420 0.899743i $$-0.643754\pi$$
−0.436420 + 0.899743i $$0.643754\pi$$
$$432$$ 0 0
$$433$$ 2029.00 0.225191 0.112595 0.993641i $$-0.464084\pi$$
0.112595 + 0.993641i $$0.464084\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ −8758.00 −0.958700
$$438$$ 0 0
$$439$$ 3208.00 0.348769 0.174384 0.984678i $$-0.444206\pi$$
0.174384 + 0.984678i $$0.444206\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ 0 0
$$443$$ 13227.0 1.41859 0.709293 0.704914i $$-0.249014\pi$$
0.709293 + 0.704914i $$0.249014\pi$$
$$444$$ 0 0
$$445$$ 0 0
$$446$$ 0 0
$$447$$ 0 0
$$448$$ 0 0
$$449$$ −3617.00 −0.380171 −0.190086 0.981768i $$-0.560877\pi$$
−0.190086 + 0.981768i $$0.560877\pi$$
$$450$$ 0 0
$$451$$ 8931.00 0.932471
$$452$$ 0 0
$$453$$ 0 0
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ −6215.00 −0.636161 −0.318080 0.948064i $$-0.603038\pi$$
−0.318080 + 0.948064i $$0.603038\pi$$
$$458$$ 0 0
$$459$$ 0 0
$$460$$ 0 0
$$461$$ 7108.00 0.718118 0.359059 0.933315i $$-0.383098\pi$$
0.359059 + 0.933315i $$0.383098\pi$$
$$462$$ 0 0
$$463$$ 3364.00 0.337664 0.168832 0.985645i $$-0.446000\pi$$
0.168832 + 0.985645i $$0.446000\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ −18964.0 −1.87912 −0.939560 0.342384i $$-0.888766\pi$$
−0.939560 + 0.342384i $$0.888766\pi$$
$$468$$ 0 0
$$469$$ −418.000 −0.0411545
$$470$$ 0 0
$$471$$ 0 0
$$472$$ 0 0
$$473$$ −6396.00 −0.621751
$$474$$ 0 0
$$475$$ 0 0
$$476$$ 0 0
$$477$$ 0 0
$$478$$ 0 0
$$479$$ 10926.0 1.04222 0.521108 0.853491i $$-0.325519\pi$$
0.521108 + 0.853491i $$0.325519\pi$$
$$480$$ 0 0
$$481$$ −11592.0 −1.09886
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ 0 0
$$486$$ 0 0
$$487$$ 4350.00 0.404758 0.202379 0.979307i $$-0.435133\pi$$
0.202379 + 0.979307i $$0.435133\pi$$
$$488$$ 0 0
$$489$$ 0 0
$$490$$ 0 0
$$491$$ 1324.00 0.121693 0.0608465 0.998147i $$-0.480620\pi$$
0.0608465 + 0.998147i $$0.480620\pi$$
$$492$$ 0 0
$$493$$ 11712.0 1.06994
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ −1560.00 −0.140796
$$498$$ 0 0
$$499$$ 9068.00 0.813506 0.406753 0.913538i $$-0.366661\pi$$
0.406753 + 0.913538i $$0.366661\pi$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ 0 0
$$503$$ −19836.0 −1.75834 −0.879169 0.476511i $$-0.841901\pi$$
−0.879169 + 0.476511i $$0.841901\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ 0 0
$$507$$ 0 0
$$508$$ 0 0
$$509$$ −2682.00 −0.233551 −0.116776 0.993158i $$-0.537256\pi$$
−0.116776 + 0.993158i $$0.537256\pi$$
$$510$$ 0 0
$$511$$ −806.000 −0.0697756
$$512$$ 0 0
$$513$$ 0 0
$$514$$ 0 0
$$515$$ 0 0
$$516$$ 0 0
$$517$$ 8268.00 0.703339
$$518$$ 0 0
$$519$$ 0 0
$$520$$ 0 0
$$521$$ 3035.00 0.255213 0.127606 0.991825i $$-0.459271\pi$$
0.127606 + 0.991825i $$0.459271\pi$$
$$522$$ 0 0
$$523$$ −7701.00 −0.643865 −0.321932 0.946763i $$-0.604332\pi$$
−0.321932 + 0.946763i $$0.604332\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ 1098.00 0.0907583
$$528$$ 0 0
$$529$$ −8803.00 −0.723514
$$530$$ 0 0
$$531$$ 0 0
$$532$$ 0 0
$$533$$ 19236.0 1.56323
$$534$$ 0 0
$$535$$ 0 0
$$536$$ 0 0
$$537$$ 0 0
$$538$$ 0 0
$$539$$ 13221.0 1.05653
$$540$$ 0 0
$$541$$ −18112.0 −1.43936 −0.719682 0.694304i $$-0.755712\pi$$
−0.719682 + 0.694304i $$0.755712\pi$$
$$542$$ 0 0
$$543$$ 0 0
$$544$$ 0 0
$$545$$ 0 0
$$546$$ 0 0
$$547$$ −19541.0 −1.52745 −0.763723 0.645544i $$-0.776631\pi$$
−0.763723 + 0.645544i $$0.776631\pi$$
$$548$$ 0 0
$$549$$ 0 0
$$550$$ 0 0
$$551$$ −28992.0 −2.24156
$$552$$ 0 0
$$553$$ 460.000 0.0353729
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ 13508.0 1.02756 0.513781 0.857921i $$-0.328244\pi$$
0.513781 + 0.857921i $$0.328244\pi$$
$$558$$ 0 0
$$559$$ −13776.0 −1.04233
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ −8712.00 −0.652162 −0.326081 0.945342i $$-0.605728\pi$$
−0.326081 + 0.945342i $$0.605728\pi$$
$$564$$ 0 0
$$565$$ 0 0
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 0 0
$$569$$ 9623.00 0.708993 0.354497 0.935057i $$-0.384652\pi$$
0.354497 + 0.935057i $$0.384652\pi$$
$$570$$ 0 0
$$571$$ 604.000 0.0442673 0.0221336 0.999755i $$-0.492954\pi$$
0.0221336 + 0.999755i $$0.492954\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ 0 0
$$576$$ 0 0
$$577$$ −3629.00 −0.261832 −0.130916 0.991393i $$-0.541792\pi$$
−0.130916 + 0.991393i $$0.541792\pi$$
$$578$$ 0 0
$$579$$ 0 0
$$580$$ 0 0
$$581$$ 2586.00 0.184656
$$582$$ 0 0
$$583$$ −22542.0 −1.60136
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ 9219.00 0.648226 0.324113 0.946018i $$-0.394934\pi$$
0.324113 + 0.946018i $$0.394934\pi$$
$$588$$ 0 0
$$589$$ −2718.00 −0.190141
$$590$$ 0 0
$$591$$ 0 0
$$592$$ 0 0
$$593$$ −19111.0 −1.32343 −0.661716 0.749755i $$-0.730171\pi$$
−0.661716 + 0.749755i $$0.730171\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ 0 0
$$598$$ 0 0
$$599$$ 17086.0 1.16547 0.582734 0.812663i $$-0.301983\pi$$
0.582734 + 0.812663i $$0.301983\pi$$
$$600$$ 0 0
$$601$$ 9035.00 0.613220 0.306610 0.951835i $$-0.400805\pi$$
0.306610 + 0.951835i $$0.400805\pi$$
$$602$$ 0 0
$$603$$ 0 0
$$604$$ 0 0
$$605$$ 0 0
$$606$$ 0 0
$$607$$ 14784.0 0.988573 0.494287 0.869299i $$-0.335429\pi$$
0.494287 + 0.869299i $$0.335429\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ 17808.0 1.17911
$$612$$ 0 0
$$613$$ 17846.0 1.17585 0.587923 0.808917i $$-0.299946\pi$$
0.587923 + 0.808917i $$0.299946\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ 11618.0 0.758060 0.379030 0.925384i $$-0.376258\pi$$
0.379030 + 0.925384i $$0.376258\pi$$
$$618$$ 0 0
$$619$$ −9556.00 −0.620498 −0.310249 0.950655i $$-0.600412\pi$$
−0.310249 + 0.950655i $$0.600412\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ −2738.00 −0.176076
$$624$$ 0 0
$$625$$ 0 0
$$626$$ 0 0
$$627$$ 0 0
$$628$$ 0 0
$$629$$ −8418.00 −0.533621
$$630$$ 0 0
$$631$$ −19394.0 −1.22355 −0.611777 0.791030i $$-0.709545\pi$$
−0.611777 + 0.791030i $$0.709545\pi$$
$$632$$ 0 0
$$633$$ 0 0
$$634$$ 0 0
$$635$$ 0 0
$$636$$ 0 0
$$637$$ 28476.0 1.77121
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ −12138.0 −0.747929 −0.373964 0.927443i $$-0.622002\pi$$
−0.373964 + 0.927443i $$0.622002\pi$$
$$642$$ 0 0
$$643$$ −27036.0 −1.65816 −0.829079 0.559131i $$-0.811135\pi$$
−0.829079 + 0.559131i $$0.811135\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ −17556.0 −1.06677 −0.533383 0.845874i $$-0.679080\pi$$
−0.533383 + 0.845874i $$0.679080\pi$$
$$648$$ 0 0
$$649$$ −13104.0 −0.792569
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ −17262.0 −1.03448 −0.517239 0.855841i $$-0.673040\pi$$
−0.517239 + 0.855841i $$0.673040\pi$$
$$654$$ 0 0
$$655$$ 0 0
$$656$$ 0 0
$$657$$ 0 0
$$658$$ 0 0
$$659$$ −10517.0 −0.621675 −0.310838 0.950463i $$-0.600610\pi$$
−0.310838 + 0.950463i $$0.600610\pi$$
$$660$$ 0 0
$$661$$ 1408.00 0.0828515 0.0414258 0.999142i $$-0.486810\pi$$
0.0414258 + 0.999142i $$0.486810\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ 11136.0 0.646458
$$668$$ 0 0
$$669$$ 0 0
$$670$$ 0 0
$$671$$ −33462.0 −1.92517
$$672$$ 0 0
$$673$$ 9626.00 0.551345 0.275672 0.961252i $$-0.411100\pi$$
0.275672 + 0.961252i $$0.411100\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ 28464.0 1.61589 0.807947 0.589255i $$-0.200579\pi$$
0.807947 + 0.589255i $$0.200579\pi$$
$$678$$ 0 0
$$679$$ 764.000 0.0431806
$$680$$ 0 0
$$681$$ 0 0
$$682$$ 0 0
$$683$$ −3963.00 −0.222020 −0.111010 0.993819i $$-0.535409\pi$$
−0.111010 + 0.993819i $$0.535409\pi$$
$$684$$ 0 0
$$685$$ 0 0
$$686$$ 0 0
$$687$$ 0 0
$$688$$ 0 0
$$689$$ −48552.0 −2.68459
$$690$$ 0 0
$$691$$ −31781.0 −1.74965 −0.874824 0.484442i $$-0.839023\pi$$
−0.874824 + 0.484442i $$0.839023\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ 0 0
$$696$$ 0 0
$$697$$ 13969.0 0.759130
$$698$$ 0 0
$$699$$ 0 0
$$700$$ 0 0
$$701$$ 28004.0 1.50884 0.754420 0.656392i $$-0.227918\pi$$
0.754420 + 0.656392i $$0.227918\pi$$
$$702$$ 0 0
$$703$$ 20838.0 1.11795
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ −1588.00 −0.0844737
$$708$$ 0 0
$$709$$ −35228.0 −1.86603 −0.933015 0.359837i $$-0.882832\pi$$
−0.933015 + 0.359837i $$0.882832\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ 0 0
$$713$$ 1044.00 0.0548361
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 0 0
$$717$$ 0 0
$$718$$ 0 0
$$719$$ 8658.00 0.449081 0.224540 0.974465i $$-0.427912\pi$$
0.224540 + 0.974465i $$0.427912\pi$$
$$720$$ 0 0
$$721$$ −2696.00 −0.139257
$$722$$ 0 0
$$723$$ 0 0
$$724$$ 0 0
$$725$$ 0 0
$$726$$ 0 0
$$727$$ −5728.00 −0.292214 −0.146107 0.989269i $$-0.546674\pi$$
−0.146107 + 0.989269i $$0.546674\pi$$
$$728$$ 0 0
$$729$$ 0 0
$$730$$ 0 0
$$731$$ −10004.0 −0.506171
$$732$$ 0 0
$$733$$ −21460.0 −1.08137 −0.540684 0.841226i $$-0.681835\pi$$
−0.540684 + 0.841226i $$0.681835\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ −8151.00 −0.407389
$$738$$ 0 0
$$739$$ 29164.0 1.45171 0.725856 0.687847i $$-0.241444\pi$$
0.725856 + 0.687847i $$0.241444\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ 29478.0 1.45551 0.727754 0.685838i $$-0.240564\pi$$
0.727754 + 0.685838i $$0.240564\pi$$
$$744$$ 0 0
$$745$$ 0 0
$$746$$ 0 0
$$747$$ 0 0
$$748$$ 0 0
$$749$$ 1550.00 0.0756152
$$750$$ 0 0
$$751$$ 576.000 0.0279874 0.0139937 0.999902i $$-0.495546\pi$$
0.0139937 + 0.999902i $$0.495546\pi$$
$$752$$ 0 0
$$753$$ 0 0
$$754$$ 0 0
$$755$$ 0 0
$$756$$ 0 0
$$757$$ −2880.00 −0.138277 −0.0691383 0.997607i $$-0.522025\pi$$
−0.0691383 + 0.997607i $$0.522025\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ −20789.0 −0.990277 −0.495138 0.868814i $$-0.664883\pi$$
−0.495138 + 0.868814i $$0.664883\pi$$
$$762$$ 0 0
$$763$$ −892.000 −0.0423232
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ −28224.0 −1.32870
$$768$$ 0 0
$$769$$ 26421.0 1.23897 0.619484 0.785010i $$-0.287342\pi$$
0.619484 + 0.785010i $$0.287342\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ 0 0
$$773$$ 32504.0 1.51240 0.756202 0.654339i $$-0.227053\pi$$
0.756202 + 0.654339i $$0.227053\pi$$
$$774$$ 0 0
$$775$$ 0 0
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ −34579.0 −1.59040
$$780$$ 0 0
$$781$$ −30420.0 −1.39374
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 0 0
$$785$$ 0 0
$$786$$ 0 0
$$787$$ −996.000 −0.0451125 −0.0225563 0.999746i $$-0.507180\pi$$
−0.0225563 + 0.999746i $$0.507180\pi$$
$$788$$ 0 0
$$789$$ 0 0
$$790$$ 0 0
$$791$$ 462.000 0.0207672
$$792$$ 0 0
$$793$$ −72072.0 −3.22743
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ 15134.0 0.672615 0.336307 0.941752i $$-0.390822\pi$$
0.336307 + 0.941752i $$0.390822\pi$$
$$798$$ 0 0
$$799$$ 12932.0 0.572592
$$800$$ 0 0
$$801$$ 0 0
$$802$$ 0 0
$$803$$ −15717.0 −0.690711
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 0 0
$$807$$ 0 0
$$808$$ 0 0
$$809$$ 36942.0 1.60545 0.802727 0.596347i $$-0.203382\pi$$
0.802727 + 0.596347i $$0.203382\pi$$
$$810$$ 0 0
$$811$$ −11748.0 −0.508666 −0.254333 0.967117i $$-0.581856\pi$$
−0.254333 + 0.967117i $$0.581856\pi$$
$$812$$ 0 0
$$813$$ 0 0
$$814$$ 0 0
$$815$$ 0 0
$$816$$ 0 0
$$817$$ 24764.0 1.06044
$$818$$ 0 0
$$819$$ 0 0
$$820$$ 0 0
$$821$$ 1198.00 0.0509263 0.0254631 0.999676i $$-0.491894\pi$$
0.0254631 + 0.999676i $$0.491894\pi$$
$$822$$ 0 0
$$823$$ 6788.00 0.287503 0.143751 0.989614i $$-0.454083\pi$$
0.143751 + 0.989614i $$0.454083\pi$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 0 0
$$827$$ 33011.0 1.38803 0.694017 0.719958i $$-0.255839\pi$$
0.694017 + 0.719958i $$0.255839\pi$$
$$828$$ 0 0
$$829$$ 17732.0 0.742892 0.371446 0.928454i $$-0.378862\pi$$
0.371446 + 0.928454i $$0.378862\pi$$
$$830$$ 0 0
$$831$$ 0 0
$$832$$ 0 0
$$833$$ 20679.0 0.860126
$$834$$ 0 0
$$835$$ 0 0
$$836$$ 0 0
$$837$$ 0 0
$$838$$ 0 0
$$839$$ −8480.00 −0.348942 −0.174471 0.984662i $$-0.555821\pi$$
−0.174471 + 0.984662i $$0.555821\pi$$
$$840$$ 0 0
$$841$$ 12475.0 0.511501
$$842$$ 0 0
$$843$$ 0 0
$$844$$ 0 0
$$845$$ 0 0
$$846$$ 0 0
$$847$$ −380.000 −0.0154155
$$848$$ 0 0
$$849$$ 0 0
$$850$$ 0 0
$$851$$ −8004.00 −0.322413
$$852$$ 0 0
$$853$$ −30014.0 −1.20476 −0.602380 0.798210i $$-0.705781\pi$$
−0.602380 + 0.798210i $$0.705781\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 0 0
$$857$$ 21643.0 0.862673 0.431337 0.902191i $$-0.358042\pi$$
0.431337 + 0.902191i $$0.358042\pi$$
$$858$$ 0 0
$$859$$ 2799.00 0.111177 0.0555883 0.998454i $$-0.482297\pi$$
0.0555883 + 0.998454i $$0.482297\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ 0 0
$$863$$ −19384.0 −0.764588 −0.382294 0.924041i $$-0.624866\pi$$
−0.382294 + 0.924041i $$0.624866\pi$$
$$864$$ 0 0
$$865$$ 0 0
$$866$$ 0 0
$$867$$ 0 0
$$868$$ 0 0
$$869$$ 8970.00 0.350157
$$870$$ 0 0
$$871$$ −17556.0 −0.682965
$$872$$ 0 0
$$873$$ 0 0
$$874$$ 0 0
$$875$$ 0 0
$$876$$ 0 0
$$877$$ −5132.00 −0.197600 −0.0988001 0.995107i $$-0.531500\pi$$
−0.0988001 + 0.995107i $$0.531500\pi$$
$$878$$ 0 0
$$879$$ 0 0
$$880$$ 0 0
$$881$$ −4430.00 −0.169410 −0.0847052 0.996406i $$-0.526995\pi$$
−0.0847052 + 0.996406i $$0.526995\pi$$
$$882$$ 0 0
$$883$$ −24317.0 −0.926764 −0.463382 0.886159i $$-0.653364\pi$$
−0.463382 + 0.886159i $$0.653364\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ −26100.0 −0.987996 −0.493998 0.869463i $$-0.664465\pi$$
−0.493998 + 0.869463i $$0.664465\pi$$
$$888$$ 0 0
$$889$$ 4772.00 0.180031
$$890$$ 0 0
$$891$$ 0 0
$$892$$ 0 0
$$893$$ −32012.0 −1.19960
$$894$$ 0 0
$$895$$ 0 0
$$896$$ 0 0
$$897$$ 0 0
$$898$$ 0 0
$$899$$ 3456.00 0.128214
$$900$$ 0 0
$$901$$ −35258.0 −1.30368
$$902$$ 0 0
$$903$$ 0 0
$$904$$ 0 0
$$905$$ 0 0
$$906$$ 0 0
$$907$$ −24356.0 −0.891651 −0.445826 0.895120i $$-0.647090\pi$$
−0.445826 + 0.895120i $$0.647090\pi$$
$$908$$ 0 0
$$909$$ 0 0
$$910$$ 0 0
$$911$$ 29900.0 1.08741 0.543705 0.839276i $$-0.317021\pi$$
0.543705 + 0.839276i $$0.317021\pi$$
$$912$$ 0 0
$$913$$ 50427.0 1.82792
$$914$$ 0 0
$$915$$ 0 0
$$916$$ 0 0
$$917$$ 4904.00 0.176602
$$918$$ 0 0
$$919$$ −34838.0 −1.25049 −0.625245 0.780429i $$-0.715001\pi$$
−0.625245 + 0.780429i $$0.715001\pi$$
$$920$$ 0 0
$$921$$ 0 0
$$922$$ 0 0
$$923$$ −65520.0 −2.33653
$$924$$ 0 0
$$925$$ 0 0
$$926$$ 0 0
$$927$$ 0 0
$$928$$ 0 0
$$929$$ −26334.0 −0.930022 −0.465011 0.885305i $$-0.653950\pi$$
−0.465011 + 0.885305i $$0.653950\pi$$
$$930$$ 0 0
$$931$$ −51189.0 −1.80199
$$932$$ 0 0
$$933$$ 0 0
$$934$$ 0 0
$$935$$ 0 0
$$936$$ 0 0
$$937$$ −30949.0 −1.07904 −0.539520 0.841973i $$-0.681394\pi$$
−0.539520 + 0.841973i $$0.681394\pi$$
$$938$$ 0 0
$$939$$ 0 0
$$940$$ 0 0
$$941$$ −25276.0 −0.875637 −0.437818 0.899063i $$-0.644249\pi$$
−0.437818 + 0.899063i $$0.644249\pi$$
$$942$$ 0 0
$$943$$ 13282.0 0.458665
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ −1216.00 −0.0417262 −0.0208631 0.999782i $$-0.506641\pi$$
−0.0208631 + 0.999782i $$0.506641\pi$$
$$948$$ 0 0
$$949$$ −33852.0 −1.15794
$$950$$ 0 0
$$951$$ 0 0
$$952$$ 0 0
$$953$$ −6033.00 −0.205066 −0.102533 0.994730i $$-0.532695\pi$$
−0.102533 + 0.994730i $$0.532695\pi$$
$$954$$ 0 0
$$955$$ 0 0
$$956$$ 0 0
$$957$$ 0 0
$$958$$ 0 0
$$959$$ 2250.00 0.0757626
$$960$$ 0 0
$$961$$ −29467.0 −0.989124
$$962$$ 0 0
$$963$$ 0 0
$$964$$ 0 0
$$965$$ 0 0
$$966$$ 0 0
$$967$$ 41792.0 1.38980 0.694902 0.719105i $$-0.255448\pi$$
0.694902 + 0.719105i $$0.255448\pi$$
$$968$$ 0 0
$$969$$ 0 0
$$970$$ 0 0
$$971$$ 2105.00 0.0695702 0.0347851 0.999395i $$-0.488925\pi$$
0.0347851 + 0.999395i $$0.488925\pi$$
$$972$$ 0 0
$$973$$ 2754.00 0.0907391
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ 30119.0 0.986277 0.493138 0.869951i $$-0.335850\pi$$
0.493138 + 0.869951i $$0.335850\pi$$
$$978$$ 0 0
$$979$$ −53391.0 −1.74299
$$980$$ 0 0
$$981$$ 0 0
$$982$$ 0 0
$$983$$ 18438.0 0.598251 0.299126 0.954214i $$-0.403305\pi$$
0.299126 + 0.954214i $$0.403305\pi$$
$$984$$ 0 0
$$985$$ 0 0
$$986$$ 0 0
$$987$$ 0 0
$$988$$ 0 0
$$989$$ −9512.00 −0.305828
$$990$$ 0 0
$$991$$ −2230.00 −0.0714816 −0.0357408 0.999361i $$-0.511379\pi$$
−0.0357408 + 0.999361i $$0.511379\pi$$
$$992$$ 0 0
$$993$$ 0 0
$$994$$ 0 0
$$995$$ 0 0
$$996$$ 0 0
$$997$$ 6804.00 0.216133 0.108067 0.994144i $$-0.465534\pi$$
0.108067 + 0.994144i $$0.465534\pi$$
$$998$$ 0 0
$$999$$ 0 0
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1800.4.a.p.1.1 1
3.2 odd 2 200.4.a.c.1.1 1
5.2 odd 4 1800.4.f.c.649.1 2
5.3 odd 4 1800.4.f.c.649.2 2
5.4 even 2 1800.4.a.t.1.1 1
12.11 even 2 400.4.a.q.1.1 1
15.2 even 4 200.4.c.d.49.2 2
15.8 even 4 200.4.c.d.49.1 2
15.14 odd 2 200.4.a.h.1.1 yes 1
24.5 odd 2 1600.4.a.bn.1.1 1
24.11 even 2 1600.4.a.n.1.1 1
60.23 odd 4 400.4.c.g.49.2 2
60.47 odd 4 400.4.c.g.49.1 2
60.59 even 2 400.4.a.f.1.1 1
120.29 odd 2 1600.4.a.m.1.1 1
120.59 even 2 1600.4.a.bo.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
200.4.a.c.1.1 1 3.2 odd 2
200.4.a.h.1.1 yes 1 15.14 odd 2
200.4.c.d.49.1 2 15.8 even 4
200.4.c.d.49.2 2 15.2 even 4
400.4.a.f.1.1 1 60.59 even 2
400.4.a.q.1.1 1 12.11 even 2
400.4.c.g.49.1 2 60.47 odd 4
400.4.c.g.49.2 2 60.23 odd 4
1600.4.a.m.1.1 1 120.29 odd 2
1600.4.a.n.1.1 1 24.11 even 2
1600.4.a.bn.1.1 1 24.5 odd 2
1600.4.a.bo.1.1 1 120.59 even 2
1800.4.a.p.1.1 1 1.1 even 1 trivial
1800.4.a.t.1.1 1 5.4 even 2
1800.4.f.c.649.1 2 5.2 odd 4
1800.4.f.c.649.2 2 5.3 odd 4