# Properties

 Label 1800.4.a.j.1.1 Level $1800$ Weight $4$ Character 1800.1 Self dual yes Analytic conductor $106.203$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1800,4,Mod(1,1800)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1800, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 4, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1800.1");

S:= CuspForms(chi, 4);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1800 = 2^{3} \cdot 3^{2} \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 1800.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$106.203438010$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 120) Fricke sign: $$+1$$ Sato-Tate group: $\mathrm{SU}(2)$

## Embedding invariants

 Embedding label 1.1 Character $$\chi$$ $$=$$ 1800.1

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q-10.0000 q^{7} +O(q^{10})$$ $$q-10.0000 q^{7} +46.0000 q^{11} +34.0000 q^{13} +66.0000 q^{17} +104.000 q^{19} +164.000 q^{23} -224.000 q^{29} -72.0000 q^{31} +22.0000 q^{37} -194.000 q^{41} -108.000 q^{43} -480.000 q^{47} -243.000 q^{49} +286.000 q^{53} -426.000 q^{59} +698.000 q^{61} -328.000 q^{67} -188.000 q^{71} +740.000 q^{73} -460.000 q^{77} +1168.00 q^{79} +412.000 q^{83} -1206.00 q^{89} -340.000 q^{91} +1384.00 q^{97} +O(q^{100})$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 0 0
$$4$$ 0 0
$$5$$ 0 0
$$6$$ 0 0
$$7$$ −10.0000 −0.539949 −0.269975 0.962867i $$-0.587015\pi$$
−0.269975 + 0.962867i $$0.587015\pi$$
$$8$$ 0 0
$$9$$ 0 0
$$10$$ 0 0
$$11$$ 46.0000 1.26087 0.630433 0.776244i $$-0.282877\pi$$
0.630433 + 0.776244i $$0.282877\pi$$
$$12$$ 0 0
$$13$$ 34.0000 0.725377 0.362689 0.931910i $$-0.381859\pi$$
0.362689 + 0.931910i $$0.381859\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ 66.0000 0.941609 0.470804 0.882238i $$-0.343964\pi$$
0.470804 + 0.882238i $$0.343964\pi$$
$$18$$ 0 0
$$19$$ 104.000 1.25575 0.627875 0.778314i $$-0.283925\pi$$
0.627875 + 0.778314i $$0.283925\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ 164.000 1.48680 0.743399 0.668848i $$-0.233212\pi$$
0.743399 + 0.668848i $$0.233212\pi$$
$$24$$ 0 0
$$25$$ 0 0
$$26$$ 0 0
$$27$$ 0 0
$$28$$ 0 0
$$29$$ −224.000 −1.43434 −0.717168 0.696900i $$-0.754562\pi$$
−0.717168 + 0.696900i $$0.754562\pi$$
$$30$$ 0 0
$$31$$ −72.0000 −0.417148 −0.208574 0.978007i $$-0.566882\pi$$
−0.208574 + 0.978007i $$0.566882\pi$$
$$32$$ 0 0
$$33$$ 0 0
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ 22.0000 0.0977507 0.0488754 0.998805i $$-0.484436\pi$$
0.0488754 + 0.998805i $$0.484436\pi$$
$$38$$ 0 0
$$39$$ 0 0
$$40$$ 0 0
$$41$$ −194.000 −0.738969 −0.369484 0.929237i $$-0.620466\pi$$
−0.369484 + 0.929237i $$0.620466\pi$$
$$42$$ 0 0
$$43$$ −108.000 −0.383020 −0.191510 0.981491i $$-0.561338\pi$$
−0.191510 + 0.981491i $$0.561338\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ −480.000 −1.48969 −0.744843 0.667240i $$-0.767475\pi$$
−0.744843 + 0.667240i $$0.767475\pi$$
$$48$$ 0 0
$$49$$ −243.000 −0.708455
$$50$$ 0 0
$$51$$ 0 0
$$52$$ 0 0
$$53$$ 286.000 0.741229 0.370614 0.928787i $$-0.379147\pi$$
0.370614 + 0.928787i $$0.379147\pi$$
$$54$$ 0 0
$$55$$ 0 0
$$56$$ 0 0
$$57$$ 0 0
$$58$$ 0 0
$$59$$ −426.000 −0.940008 −0.470004 0.882664i $$-0.655748\pi$$
−0.470004 + 0.882664i $$0.655748\pi$$
$$60$$ 0 0
$$61$$ 698.000 1.46508 0.732539 0.680725i $$-0.238335\pi$$
0.732539 + 0.680725i $$0.238335\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 0 0
$$65$$ 0 0
$$66$$ 0 0
$$67$$ −328.000 −0.598083 −0.299042 0.954240i $$-0.596667\pi$$
−0.299042 + 0.954240i $$0.596667\pi$$
$$68$$ 0 0
$$69$$ 0 0
$$70$$ 0 0
$$71$$ −188.000 −0.314246 −0.157123 0.987579i $$-0.550222\pi$$
−0.157123 + 0.987579i $$0.550222\pi$$
$$72$$ 0 0
$$73$$ 740.000 1.18644 0.593222 0.805039i $$-0.297856\pi$$
0.593222 + 0.805039i $$0.297856\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ −460.000 −0.680803
$$78$$ 0 0
$$79$$ 1168.00 1.66342 0.831711 0.555209i $$-0.187362\pi$$
0.831711 + 0.555209i $$0.187362\pi$$
$$80$$ 0 0
$$81$$ 0 0
$$82$$ 0 0
$$83$$ 412.000 0.544854 0.272427 0.962176i $$-0.412174\pi$$
0.272427 + 0.962176i $$0.412174\pi$$
$$84$$ 0 0
$$85$$ 0 0
$$86$$ 0 0
$$87$$ 0 0
$$88$$ 0 0
$$89$$ −1206.00 −1.43636 −0.718178 0.695859i $$-0.755024\pi$$
−0.718178 + 0.695859i $$0.755024\pi$$
$$90$$ 0 0
$$91$$ −340.000 −0.391667
$$92$$ 0 0
$$93$$ 0 0
$$94$$ 0 0
$$95$$ 0 0
$$96$$ 0 0
$$97$$ 1384.00 1.44870 0.724350 0.689432i $$-0.242140\pi$$
0.724350 + 0.689432i $$0.242140\pi$$
$$98$$ 0 0
$$99$$ 0 0
$$100$$ 0 0
$$101$$ 1128.00 1.11129 0.555645 0.831420i $$-0.312472\pi$$
0.555645 + 0.831420i $$0.312472\pi$$
$$102$$ 0 0
$$103$$ 758.000 0.725126 0.362563 0.931959i $$-0.381902\pi$$
0.362563 + 0.931959i $$0.381902\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ 1324.00 1.19622 0.598112 0.801413i $$-0.295918\pi$$
0.598112 + 0.801413i $$0.295918\pi$$
$$108$$ 0 0
$$109$$ 1602.00 1.40774 0.703871 0.710328i $$-0.251454\pi$$
0.703871 + 0.710328i $$0.251454\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ 0 0
$$113$$ −2074.00 −1.72660 −0.863299 0.504693i $$-0.831606\pi$$
−0.863299 + 0.504693i $$0.831606\pi$$
$$114$$ 0 0
$$115$$ 0 0
$$116$$ 0 0
$$117$$ 0 0
$$118$$ 0 0
$$119$$ −660.000 −0.508421
$$120$$ 0 0
$$121$$ 785.000 0.589782
$$122$$ 0 0
$$123$$ 0 0
$$124$$ 0 0
$$125$$ 0 0
$$126$$ 0 0
$$127$$ 534.000 0.373109 0.186554 0.982445i $$-0.440268\pi$$
0.186554 + 0.982445i $$0.440268\pi$$
$$128$$ 0 0
$$129$$ 0 0
$$130$$ 0 0
$$131$$ −1806.00 −1.20451 −0.602256 0.798303i $$-0.705731\pi$$
−0.602256 + 0.798303i $$0.705731\pi$$
$$132$$ 0 0
$$133$$ −1040.00 −0.678041
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ 1822.00 1.13623 0.568117 0.822948i $$-0.307672\pi$$
0.568117 + 0.822948i $$0.307672\pi$$
$$138$$ 0 0
$$139$$ 532.000 0.324631 0.162315 0.986739i $$-0.448104\pi$$
0.162315 + 0.986739i $$0.448104\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ 1564.00 0.914603
$$144$$ 0 0
$$145$$ 0 0
$$146$$ 0 0
$$147$$ 0 0
$$148$$ 0 0
$$149$$ 1284.00 0.705969 0.352984 0.935629i $$-0.385167\pi$$
0.352984 + 0.935629i $$0.385167\pi$$
$$150$$ 0 0
$$151$$ 184.000 0.0991636 0.0495818 0.998770i $$-0.484211\pi$$
0.0495818 + 0.998770i $$0.484211\pi$$
$$152$$ 0 0
$$153$$ 0 0
$$154$$ 0 0
$$155$$ 0 0
$$156$$ 0 0
$$157$$ 3746.00 1.90423 0.952113 0.305748i $$-0.0989064\pi$$
0.952113 + 0.305748i $$0.0989064\pi$$
$$158$$ 0 0
$$159$$ 0 0
$$160$$ 0 0
$$161$$ −1640.00 −0.802796
$$162$$ 0 0
$$163$$ −1504.00 −0.722714 −0.361357 0.932428i $$-0.617686\pi$$
−0.361357 + 0.932428i $$0.617686\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ 3012.00 1.39566 0.697831 0.716262i $$-0.254149\pi$$
0.697831 + 0.716262i $$0.254149\pi$$
$$168$$ 0 0
$$169$$ −1041.00 −0.473828
$$170$$ 0 0
$$171$$ 0 0
$$172$$ 0 0
$$173$$ −438.000 −0.192489 −0.0962443 0.995358i $$-0.530683\pi$$
−0.0962443 + 0.995358i $$0.530683\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ 0 0
$$178$$ 0 0
$$179$$ 1462.00 0.610475 0.305237 0.952276i $$-0.401264\pi$$
0.305237 + 0.952276i $$0.401264\pi$$
$$180$$ 0 0
$$181$$ 586.000 0.240647 0.120323 0.992735i $$-0.461607\pi$$
0.120323 + 0.992735i $$0.461607\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ 0 0
$$185$$ 0 0
$$186$$ 0 0
$$187$$ 3036.00 1.18724
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ −60.0000 −0.0227301 −0.0113650 0.999935i $$-0.503618\pi$$
−0.0113650 + 0.999935i $$0.503618\pi$$
$$192$$ 0 0
$$193$$ 4676.00 1.74397 0.871984 0.489534i $$-0.162833\pi$$
0.871984 + 0.489534i $$0.162833\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ 2286.00 0.826755 0.413378 0.910560i $$-0.364349\pi$$
0.413378 + 0.910560i $$0.364349\pi$$
$$198$$ 0 0
$$199$$ −3536.00 −1.25960 −0.629800 0.776757i $$-0.716863\pi$$
−0.629800 + 0.776757i $$0.716863\pi$$
$$200$$ 0 0
$$201$$ 0 0
$$202$$ 0 0
$$203$$ 2240.00 0.774469
$$204$$ 0 0
$$205$$ 0 0
$$206$$ 0 0
$$207$$ 0 0
$$208$$ 0 0
$$209$$ 4784.00 1.58333
$$210$$ 0 0
$$211$$ −3500.00 −1.14194 −0.570971 0.820970i $$-0.693433\pi$$
−0.570971 + 0.820970i $$0.693433\pi$$
$$212$$ 0 0
$$213$$ 0 0
$$214$$ 0 0
$$215$$ 0 0
$$216$$ 0 0
$$217$$ 720.000 0.225239
$$218$$ 0 0
$$219$$ 0 0
$$220$$ 0 0
$$221$$ 2244.00 0.683022
$$222$$ 0 0
$$223$$ −5874.00 −1.76391 −0.881955 0.471333i $$-0.843773\pi$$
−0.881955 + 0.471333i $$0.843773\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ −124.000 −0.0362563 −0.0181281 0.999836i $$-0.505771\pi$$
−0.0181281 + 0.999836i $$0.505771\pi$$
$$228$$ 0 0
$$229$$ −1362.00 −0.393028 −0.196514 0.980501i $$-0.562962\pi$$
−0.196514 + 0.980501i $$0.562962\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ −3870.00 −1.08812 −0.544060 0.839046i $$-0.683114\pi$$
−0.544060 + 0.839046i $$0.683114\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ 0 0
$$237$$ 0 0
$$238$$ 0 0
$$239$$ −6116.00 −1.65528 −0.827638 0.561262i $$-0.810316\pi$$
−0.827638 + 0.561262i $$0.810316\pi$$
$$240$$ 0 0
$$241$$ −5962.00 −1.59355 −0.796776 0.604274i $$-0.793463\pi$$
−0.796776 + 0.604274i $$0.793463\pi$$
$$242$$ 0 0
$$243$$ 0 0
$$244$$ 0 0
$$245$$ 0 0
$$246$$ 0 0
$$247$$ 3536.00 0.910892
$$248$$ 0 0
$$249$$ 0 0
$$250$$ 0 0
$$251$$ 1490.00 0.374693 0.187347 0.982294i $$-0.440011\pi$$
0.187347 + 0.982294i $$0.440011\pi$$
$$252$$ 0 0
$$253$$ 7544.00 1.87465
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ −5394.00 −1.30922 −0.654608 0.755969i $$-0.727166\pi$$
−0.654608 + 0.755969i $$0.727166\pi$$
$$258$$ 0 0
$$259$$ −220.000 −0.0527804
$$260$$ 0 0
$$261$$ 0 0
$$262$$ 0 0
$$263$$ −636.000 −0.149116 −0.0745579 0.997217i $$-0.523755\pi$$
−0.0745579 + 0.997217i $$0.523755\pi$$
$$264$$ 0 0
$$265$$ 0 0
$$266$$ 0 0
$$267$$ 0 0
$$268$$ 0 0
$$269$$ 3360.00 0.761572 0.380786 0.924663i $$-0.375653\pi$$
0.380786 + 0.924663i $$0.375653\pi$$
$$270$$ 0 0
$$271$$ 5768.00 1.29292 0.646459 0.762948i $$-0.276249\pi$$
0.646459 + 0.762948i $$0.276249\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ 0 0
$$276$$ 0 0
$$277$$ 1398.00 0.303241 0.151620 0.988439i $$-0.451551\pi$$
0.151620 + 0.988439i $$0.451551\pi$$
$$278$$ 0 0
$$279$$ 0 0
$$280$$ 0 0
$$281$$ 4194.00 0.890367 0.445183 0.895439i $$-0.353138\pi$$
0.445183 + 0.895439i $$0.353138\pi$$
$$282$$ 0 0
$$283$$ 8256.00 1.73416 0.867082 0.498166i $$-0.165993\pi$$
0.867082 + 0.498166i $$0.165993\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 1940.00 0.399006
$$288$$ 0 0
$$289$$ −557.000 −0.113373
$$290$$ 0 0
$$291$$ 0 0
$$292$$ 0 0
$$293$$ 5534.00 1.10341 0.551706 0.834039i $$-0.313977\pi$$
0.551706 + 0.834039i $$0.313977\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ 0 0
$$297$$ 0 0
$$298$$ 0 0
$$299$$ 5576.00 1.07849
$$300$$ 0 0
$$301$$ 1080.00 0.206811
$$302$$ 0 0
$$303$$ 0 0
$$304$$ 0 0
$$305$$ 0 0
$$306$$ 0 0
$$307$$ 484.000 0.0899783 0.0449892 0.998987i $$-0.485675\pi$$
0.0449892 + 0.998987i $$0.485675\pi$$
$$308$$ 0 0
$$309$$ 0 0
$$310$$ 0 0
$$311$$ 2724.00 0.496668 0.248334 0.968674i $$-0.420117\pi$$
0.248334 + 0.968674i $$0.420117\pi$$
$$312$$ 0 0
$$313$$ −5308.00 −0.958549 −0.479275 0.877665i $$-0.659100\pi$$
−0.479275 + 0.877665i $$0.659100\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ 4218.00 0.747339 0.373670 0.927562i $$-0.378099\pi$$
0.373670 + 0.927562i $$0.378099\pi$$
$$318$$ 0 0
$$319$$ −10304.0 −1.80851
$$320$$ 0 0
$$321$$ 0 0
$$322$$ 0 0
$$323$$ 6864.00 1.18242
$$324$$ 0 0
$$325$$ 0 0
$$326$$ 0 0
$$327$$ 0 0
$$328$$ 0 0
$$329$$ 4800.00 0.804354
$$330$$ 0 0
$$331$$ −4640.00 −0.770506 −0.385253 0.922811i $$-0.625886\pi$$
−0.385253 + 0.922811i $$0.625886\pi$$
$$332$$ 0 0
$$333$$ 0 0
$$334$$ 0 0
$$335$$ 0 0
$$336$$ 0 0
$$337$$ 8156.00 1.31835 0.659177 0.751987i $$-0.270905\pi$$
0.659177 + 0.751987i $$0.270905\pi$$
$$338$$ 0 0
$$339$$ 0 0
$$340$$ 0 0
$$341$$ −3312.00 −0.525967
$$342$$ 0 0
$$343$$ 5860.00 0.922479
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ 4124.00 0.638006 0.319003 0.947754i $$-0.396652\pi$$
0.319003 + 0.947754i $$0.396652\pi$$
$$348$$ 0 0
$$349$$ 3650.00 0.559828 0.279914 0.960025i $$-0.409694\pi$$
0.279914 + 0.960025i $$0.409694\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ 6834.00 1.03042 0.515208 0.857065i $$-0.327715\pi$$
0.515208 + 0.857065i $$0.327715\pi$$
$$354$$ 0 0
$$355$$ 0 0
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ −3904.00 −0.573942 −0.286971 0.957939i $$-0.592648\pi$$
−0.286971 + 0.957939i $$0.592648\pi$$
$$360$$ 0 0
$$361$$ 3957.00 0.576906
$$362$$ 0 0
$$363$$ 0 0
$$364$$ 0 0
$$365$$ 0 0
$$366$$ 0 0
$$367$$ 13174.0 1.87378 0.936890 0.349624i $$-0.113691\pi$$
0.936890 + 0.349624i $$0.113691\pi$$
$$368$$ 0 0
$$369$$ 0 0
$$370$$ 0 0
$$371$$ −2860.00 −0.400226
$$372$$ 0 0
$$373$$ 1090.00 0.151308 0.0756542 0.997134i $$-0.475895\pi$$
0.0756542 + 0.997134i $$0.475895\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ −7616.00 −1.04043
$$378$$ 0 0
$$379$$ −9220.00 −1.24960 −0.624802 0.780784i $$-0.714820\pi$$
−0.624802 + 0.780784i $$0.714820\pi$$
$$380$$ 0 0
$$381$$ 0 0
$$382$$ 0 0
$$383$$ −3960.00 −0.528320 −0.264160 0.964479i $$-0.585095\pi$$
−0.264160 + 0.964479i $$0.585095\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ 0 0
$$388$$ 0 0
$$389$$ 1788.00 0.233047 0.116523 0.993188i $$-0.462825\pi$$
0.116523 + 0.993188i $$0.462825\pi$$
$$390$$ 0 0
$$391$$ 10824.0 1.39998
$$392$$ 0 0
$$393$$ 0 0
$$394$$ 0 0
$$395$$ 0 0
$$396$$ 0 0
$$397$$ −9642.00 −1.21894 −0.609469 0.792810i $$-0.708617\pi$$
−0.609469 + 0.792810i $$0.708617\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ 410.000 0.0510584 0.0255292 0.999674i $$-0.491873\pi$$
0.0255292 + 0.999674i $$0.491873\pi$$
$$402$$ 0 0
$$403$$ −2448.00 −0.302589
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ 1012.00 0.123251
$$408$$ 0 0
$$409$$ 13766.0 1.66427 0.832133 0.554576i $$-0.187120\pi$$
0.832133 + 0.554576i $$0.187120\pi$$
$$410$$ 0 0
$$411$$ 0 0
$$412$$ 0 0
$$413$$ 4260.00 0.507557
$$414$$ 0 0
$$415$$ 0 0
$$416$$ 0 0
$$417$$ 0 0
$$418$$ 0 0
$$419$$ −16998.0 −1.98188 −0.990939 0.134315i $$-0.957117\pi$$
−0.990939 + 0.134315i $$0.957117\pi$$
$$420$$ 0 0
$$421$$ −2450.00 −0.283624 −0.141812 0.989894i $$-0.545293\pi$$
−0.141812 + 0.989894i $$0.545293\pi$$
$$422$$ 0 0
$$423$$ 0 0
$$424$$ 0 0
$$425$$ 0 0
$$426$$ 0 0
$$427$$ −6980.00 −0.791068
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ 9248.00 1.03355 0.516776 0.856121i $$-0.327132\pi$$
0.516776 + 0.856121i $$0.327132\pi$$
$$432$$ 0 0
$$433$$ 5028.00 0.558038 0.279019 0.960286i $$-0.409991\pi$$
0.279019 + 0.960286i $$0.409991\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ 17056.0 1.86705
$$438$$ 0 0
$$439$$ 3120.00 0.339202 0.169601 0.985513i $$-0.445752\pi$$
0.169601 + 0.985513i $$0.445752\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ 0 0
$$443$$ −8220.00 −0.881589 −0.440795 0.897608i $$-0.645303\pi$$
−0.440795 + 0.897608i $$0.645303\pi$$
$$444$$ 0 0
$$445$$ 0 0
$$446$$ 0 0
$$447$$ 0 0
$$448$$ 0 0
$$449$$ 5826.00 0.612352 0.306176 0.951975i $$-0.400950\pi$$
0.306176 + 0.951975i $$0.400950\pi$$
$$450$$ 0 0
$$451$$ −8924.00 −0.931740
$$452$$ 0 0
$$453$$ 0 0
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ 16896.0 1.72946 0.864728 0.502240i $$-0.167491\pi$$
0.864728 + 0.502240i $$0.167491\pi$$
$$458$$ 0 0
$$459$$ 0 0
$$460$$ 0 0
$$461$$ 996.000 0.100625 0.0503127 0.998734i $$-0.483978\pi$$
0.0503127 + 0.998734i $$0.483978\pi$$
$$462$$ 0 0
$$463$$ −10046.0 −1.00837 −0.504187 0.863594i $$-0.668208\pi$$
−0.504187 + 0.863594i $$0.668208\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ −8388.00 −0.831157 −0.415579 0.909557i $$-0.636421\pi$$
−0.415579 + 0.909557i $$0.636421\pi$$
$$468$$ 0 0
$$469$$ 3280.00 0.322935
$$470$$ 0 0
$$471$$ 0 0
$$472$$ 0 0
$$473$$ −4968.00 −0.482936
$$474$$ 0 0
$$475$$ 0 0
$$476$$ 0 0
$$477$$ 0 0
$$478$$ 0 0
$$479$$ −11396.0 −1.08705 −0.543525 0.839393i $$-0.682911\pi$$
−0.543525 + 0.839393i $$0.682911\pi$$
$$480$$ 0 0
$$481$$ 748.000 0.0709062
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ 0 0
$$486$$ 0 0
$$487$$ −6454.00 −0.600531 −0.300266 0.953856i $$-0.597075\pi$$
−0.300266 + 0.953856i $$0.597075\pi$$
$$488$$ 0 0
$$489$$ 0 0
$$490$$ 0 0
$$491$$ −18638.0 −1.71308 −0.856539 0.516083i $$-0.827390\pi$$
−0.856539 + 0.516083i $$0.827390\pi$$
$$492$$ 0 0
$$493$$ −14784.0 −1.35058
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ 1880.00 0.169677
$$498$$ 0 0
$$499$$ 17768.0 1.59400 0.796999 0.603981i $$-0.206420\pi$$
0.796999 + 0.603981i $$0.206420\pi$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ 0 0
$$503$$ −7952.00 −0.704895 −0.352447 0.935832i $$-0.614650\pi$$
−0.352447 + 0.935832i $$0.614650\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ 0 0
$$507$$ 0 0
$$508$$ 0 0
$$509$$ 12896.0 1.12300 0.561498 0.827478i $$-0.310225\pi$$
0.561498 + 0.827478i $$0.310225\pi$$
$$510$$ 0 0
$$511$$ −7400.00 −0.640620
$$512$$ 0 0
$$513$$ 0 0
$$514$$ 0 0
$$515$$ 0 0
$$516$$ 0 0
$$517$$ −22080.0 −1.87829
$$518$$ 0 0
$$519$$ 0 0
$$520$$ 0 0
$$521$$ 2714.00 0.228220 0.114110 0.993468i $$-0.463598\pi$$
0.114110 + 0.993468i $$0.463598\pi$$
$$522$$ 0 0
$$523$$ 13792.0 1.15312 0.576560 0.817055i $$-0.304395\pi$$
0.576560 + 0.817055i $$0.304395\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ −4752.00 −0.392790
$$528$$ 0 0
$$529$$ 14729.0 1.21057
$$530$$ 0 0
$$531$$ 0 0
$$532$$ 0 0
$$533$$ −6596.00 −0.536031
$$534$$ 0 0
$$535$$ 0 0
$$536$$ 0 0
$$537$$ 0 0
$$538$$ 0 0
$$539$$ −11178.0 −0.893266
$$540$$ 0 0
$$541$$ 6802.00 0.540556 0.270278 0.962782i $$-0.412884\pi$$
0.270278 + 0.962782i $$0.412884\pi$$
$$542$$ 0 0
$$543$$ 0 0
$$544$$ 0 0
$$545$$ 0 0
$$546$$ 0 0
$$547$$ 18188.0 1.42169 0.710843 0.703350i $$-0.248313\pi$$
0.710843 + 0.703350i $$0.248313\pi$$
$$548$$ 0 0
$$549$$ 0 0
$$550$$ 0 0
$$551$$ −23296.0 −1.80117
$$552$$ 0 0
$$553$$ −11680.0 −0.898163
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ 21462.0 1.63263 0.816314 0.577608i $$-0.196014\pi$$
0.816314 + 0.577608i $$0.196014\pi$$
$$558$$ 0 0
$$559$$ −3672.00 −0.277834
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ −17244.0 −1.29085 −0.645424 0.763824i $$-0.723319\pi$$
−0.645424 + 0.763824i $$0.723319\pi$$
$$564$$ 0 0
$$565$$ 0 0
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 0 0
$$569$$ −8790.00 −0.647620 −0.323810 0.946122i $$-0.604964\pi$$
−0.323810 + 0.946122i $$0.604964\pi$$
$$570$$ 0 0
$$571$$ −5984.00 −0.438568 −0.219284 0.975661i $$-0.570372\pi$$
−0.219284 + 0.975661i $$0.570372\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ 0 0
$$576$$ 0 0
$$577$$ 9344.00 0.674170 0.337085 0.941474i $$-0.390559\pi$$
0.337085 + 0.941474i $$0.390559\pi$$
$$578$$ 0 0
$$579$$ 0 0
$$580$$ 0 0
$$581$$ −4120.00 −0.294193
$$582$$ 0 0
$$583$$ 13156.0 0.934590
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ −6932.00 −0.487418 −0.243709 0.969848i $$-0.578364\pi$$
−0.243709 + 0.969848i $$0.578364\pi$$
$$588$$ 0 0
$$589$$ −7488.00 −0.523833
$$590$$ 0 0
$$591$$ 0 0
$$592$$ 0 0
$$593$$ 9382.00 0.649701 0.324850 0.945765i $$-0.394686\pi$$
0.324850 + 0.945765i $$0.394686\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ 0 0
$$598$$ 0 0
$$599$$ −4096.00 −0.279396 −0.139698 0.990194i $$-0.544613\pi$$
−0.139698 + 0.990194i $$0.544613\pi$$
$$600$$ 0 0
$$601$$ 22962.0 1.55847 0.779234 0.626733i $$-0.215608\pi$$
0.779234 + 0.626733i $$0.215608\pi$$
$$602$$ 0 0
$$603$$ 0 0
$$604$$ 0 0
$$605$$ 0 0
$$606$$ 0 0
$$607$$ 3490.00 0.233369 0.116684 0.993169i $$-0.462773\pi$$
0.116684 + 0.993169i $$0.462773\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ −16320.0 −1.08058
$$612$$ 0 0
$$613$$ −6386.00 −0.420764 −0.210382 0.977619i $$-0.567471\pi$$
−0.210382 + 0.977619i $$0.567471\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ −19534.0 −1.27457 −0.637285 0.770629i $$-0.719942\pi$$
−0.637285 + 0.770629i $$0.719942\pi$$
$$618$$ 0 0
$$619$$ 8764.00 0.569071 0.284535 0.958666i $$-0.408161\pi$$
0.284535 + 0.958666i $$0.408161\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ 12060.0 0.775560
$$624$$ 0 0
$$625$$ 0 0
$$626$$ 0 0
$$627$$ 0 0
$$628$$ 0 0
$$629$$ 1452.00 0.0920430
$$630$$ 0 0
$$631$$ 7856.00 0.495630 0.247815 0.968807i $$-0.420288\pi$$
0.247815 + 0.968807i $$0.420288\pi$$
$$632$$ 0 0
$$633$$ 0 0
$$634$$ 0 0
$$635$$ 0 0
$$636$$ 0 0
$$637$$ −8262.00 −0.513897
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ 22974.0 1.41563 0.707815 0.706398i $$-0.249681\pi$$
0.707815 + 0.706398i $$0.249681\pi$$
$$642$$ 0 0
$$643$$ 6216.00 0.381237 0.190618 0.981664i $$-0.438951\pi$$
0.190618 + 0.981664i $$0.438951\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ 13384.0 0.813260 0.406630 0.913593i $$-0.366704\pi$$
0.406630 + 0.913593i $$0.366704\pi$$
$$648$$ 0 0
$$649$$ −19596.0 −1.18522
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ 12882.0 0.771993 0.385997 0.922500i $$-0.373858\pi$$
0.385997 + 0.922500i $$0.373858\pi$$
$$654$$ 0 0
$$655$$ 0 0
$$656$$ 0 0
$$657$$ 0 0
$$658$$ 0 0
$$659$$ 2082.00 0.123070 0.0615351 0.998105i $$-0.480400\pi$$
0.0615351 + 0.998105i $$0.480400\pi$$
$$660$$ 0 0
$$661$$ −9430.00 −0.554893 −0.277447 0.960741i $$-0.589488\pi$$
−0.277447 + 0.960741i $$0.589488\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ −36736.0 −2.13257
$$668$$ 0 0
$$669$$ 0 0
$$670$$ 0 0
$$671$$ 32108.0 1.84727
$$672$$ 0 0
$$673$$ −3268.00 −0.187180 −0.0935900 0.995611i $$-0.529834\pi$$
−0.0935900 + 0.995611i $$0.529834\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ −15606.0 −0.885949 −0.442974 0.896534i $$-0.646077\pi$$
−0.442974 + 0.896534i $$0.646077\pi$$
$$678$$ 0 0
$$679$$ −13840.0 −0.782225
$$680$$ 0 0
$$681$$ 0 0
$$682$$ 0 0
$$683$$ 428.000 0.0239780 0.0119890 0.999928i $$-0.496184\pi$$
0.0119890 + 0.999928i $$0.496184\pi$$
$$684$$ 0 0
$$685$$ 0 0
$$686$$ 0 0
$$687$$ 0 0
$$688$$ 0 0
$$689$$ 9724.00 0.537670
$$690$$ 0 0
$$691$$ −6384.00 −0.351460 −0.175730 0.984438i $$-0.556229\pi$$
−0.175730 + 0.984438i $$0.556229\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ 0 0
$$696$$ 0 0
$$697$$ −12804.0 −0.695819
$$698$$ 0 0
$$699$$ 0 0
$$700$$ 0 0
$$701$$ 12224.0 0.658622 0.329311 0.944221i $$-0.393184\pi$$
0.329311 + 0.944221i $$0.393184\pi$$
$$702$$ 0 0
$$703$$ 2288.00 0.122750
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ −11280.0 −0.600040
$$708$$ 0 0
$$709$$ 19510.0 1.03345 0.516723 0.856153i $$-0.327152\pi$$
0.516723 + 0.856153i $$0.327152\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ 0 0
$$713$$ −11808.0 −0.620215
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 0 0
$$717$$ 0 0
$$718$$ 0 0
$$719$$ 3368.00 0.174694 0.0873472 0.996178i $$-0.472161\pi$$
0.0873472 + 0.996178i $$0.472161\pi$$
$$720$$ 0 0
$$721$$ −7580.00 −0.391531
$$722$$ 0 0
$$723$$ 0 0
$$724$$ 0 0
$$725$$ 0 0
$$726$$ 0 0
$$727$$ −22134.0 −1.12917 −0.564584 0.825376i $$-0.690963\pi$$
−0.564584 + 0.825376i $$0.690963\pi$$
$$728$$ 0 0
$$729$$ 0 0
$$730$$ 0 0
$$731$$ −7128.00 −0.360655
$$732$$ 0 0
$$733$$ −32298.0 −1.62750 −0.813748 0.581219i $$-0.802576\pi$$
−0.813748 + 0.581219i $$0.802576\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ −15088.0 −0.754103
$$738$$ 0 0
$$739$$ 25104.0 1.24962 0.624808 0.780779i $$-0.285177\pi$$
0.624808 + 0.780779i $$0.285177\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ −27696.0 −1.36752 −0.683760 0.729707i $$-0.739657\pi$$
−0.683760 + 0.729707i $$0.739657\pi$$
$$744$$ 0 0
$$745$$ 0 0
$$746$$ 0 0
$$747$$ 0 0
$$748$$ 0 0
$$749$$ −13240.0 −0.645900
$$750$$ 0 0
$$751$$ −2176.00 −0.105730 −0.0528651 0.998602i $$-0.516835\pi$$
−0.0528651 + 0.998602i $$0.516835\pi$$
$$752$$ 0 0
$$753$$ 0 0
$$754$$ 0 0
$$755$$ 0 0
$$756$$ 0 0
$$757$$ −25514.0 −1.22500 −0.612498 0.790472i $$-0.709835\pi$$
−0.612498 + 0.790472i $$0.709835\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ −18238.0 −0.868761 −0.434380 0.900730i $$-0.643033\pi$$
−0.434380 + 0.900730i $$0.643033\pi$$
$$762$$ 0 0
$$763$$ −16020.0 −0.760109
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ −14484.0 −0.681860
$$768$$ 0 0
$$769$$ −14462.0 −0.678170 −0.339085 0.940756i $$-0.610118\pi$$
−0.339085 + 0.940756i $$0.610118\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ 0 0
$$773$$ 34034.0 1.58359 0.791797 0.610785i $$-0.209146\pi$$
0.791797 + 0.610785i $$0.209146\pi$$
$$774$$ 0 0
$$775$$ 0 0
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ −20176.0 −0.927959
$$780$$ 0 0
$$781$$ −8648.00 −0.396222
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 0 0
$$785$$ 0 0
$$786$$ 0 0
$$787$$ −22064.0 −0.999360 −0.499680 0.866210i $$-0.666549\pi$$
−0.499680 + 0.866210i $$0.666549\pi$$
$$788$$ 0 0
$$789$$ 0 0
$$790$$ 0 0
$$791$$ 20740.0 0.932275
$$792$$ 0 0
$$793$$ 23732.0 1.06273
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ −23334.0 −1.03705 −0.518527 0.855061i $$-0.673520\pi$$
−0.518527 + 0.855061i $$0.673520\pi$$
$$798$$ 0 0
$$799$$ −31680.0 −1.40270
$$800$$ 0 0
$$801$$ 0 0
$$802$$ 0 0
$$803$$ 34040.0 1.49595
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 0 0
$$807$$ 0 0
$$808$$ 0 0
$$809$$ 7566.00 0.328809 0.164404 0.986393i $$-0.447430\pi$$
0.164404 + 0.986393i $$0.447430\pi$$
$$810$$ 0 0
$$811$$ 5964.00 0.258230 0.129115 0.991630i $$-0.458786\pi$$
0.129115 + 0.991630i $$0.458786\pi$$
$$812$$ 0 0
$$813$$ 0 0
$$814$$ 0 0
$$815$$ 0 0
$$816$$ 0 0
$$817$$ −11232.0 −0.480977
$$818$$ 0 0
$$819$$ 0 0
$$820$$ 0 0
$$821$$ 11880.0 0.505012 0.252506 0.967595i $$-0.418745\pi$$
0.252506 + 0.967595i $$0.418745\pi$$
$$822$$ 0 0
$$823$$ 1762.00 0.0746287 0.0373144 0.999304i $$-0.488120\pi$$
0.0373144 + 0.999304i $$0.488120\pi$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 0 0
$$827$$ −14124.0 −0.593881 −0.296941 0.954896i $$-0.595966\pi$$
−0.296941 + 0.954896i $$0.595966\pi$$
$$828$$ 0 0
$$829$$ −21350.0 −0.894471 −0.447235 0.894416i $$-0.647591\pi$$
−0.447235 + 0.894416i $$0.647591\pi$$
$$830$$ 0 0
$$831$$ 0 0
$$832$$ 0 0
$$833$$ −16038.0 −0.667087
$$834$$ 0 0
$$835$$ 0 0
$$836$$ 0 0
$$837$$ 0 0
$$838$$ 0 0
$$839$$ 26136.0 1.07546 0.537732 0.843116i $$-0.319281\pi$$
0.537732 + 0.843116i $$0.319281\pi$$
$$840$$ 0 0
$$841$$ 25787.0 1.05732
$$842$$ 0 0
$$843$$ 0 0
$$844$$ 0 0
$$845$$ 0 0
$$846$$ 0 0
$$847$$ −7850.00 −0.318452
$$848$$ 0 0
$$849$$ 0 0
$$850$$ 0 0
$$851$$ 3608.00 0.145336
$$852$$ 0 0
$$853$$ 7030.00 0.282184 0.141092 0.989997i $$-0.454939\pi$$
0.141092 + 0.989997i $$0.454939\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 0 0
$$857$$ −9574.00 −0.381612 −0.190806 0.981628i $$-0.561110\pi$$
−0.190806 + 0.981628i $$0.561110\pi$$
$$858$$ 0 0
$$859$$ −43748.0 −1.73767 −0.868837 0.495098i $$-0.835132\pi$$
−0.868837 + 0.495098i $$0.835132\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ 0 0
$$863$$ 41436.0 1.63441 0.817206 0.576345i $$-0.195522\pi$$
0.817206 + 0.576345i $$0.195522\pi$$
$$864$$ 0 0
$$865$$ 0 0
$$866$$ 0 0
$$867$$ 0 0
$$868$$ 0 0
$$869$$ 53728.0 2.09735
$$870$$ 0 0
$$871$$ −11152.0 −0.433836
$$872$$ 0 0
$$873$$ 0 0
$$874$$ 0 0
$$875$$ 0 0
$$876$$ 0 0
$$877$$ −4606.00 −0.177347 −0.0886736 0.996061i $$-0.528263\pi$$
−0.0886736 + 0.996061i $$0.528263\pi$$
$$878$$ 0 0
$$879$$ 0 0
$$880$$ 0 0
$$881$$ 4610.00 0.176294 0.0881469 0.996107i $$-0.471906\pi$$
0.0881469 + 0.996107i $$0.471906\pi$$
$$882$$ 0 0
$$883$$ −23512.0 −0.896084 −0.448042 0.894013i $$-0.647878\pi$$
−0.448042 + 0.894013i $$0.647878\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ −30396.0 −1.15062 −0.575309 0.817936i $$-0.695118\pi$$
−0.575309 + 0.817936i $$0.695118\pi$$
$$888$$ 0 0
$$889$$ −5340.00 −0.201460
$$890$$ 0 0
$$891$$ 0 0
$$892$$ 0 0
$$893$$ −49920.0 −1.87067
$$894$$ 0 0
$$895$$ 0 0
$$896$$ 0 0
$$897$$ 0 0
$$898$$ 0 0
$$899$$ 16128.0 0.598330
$$900$$ 0 0
$$901$$ 18876.0 0.697948
$$902$$ 0 0
$$903$$ 0 0
$$904$$ 0 0
$$905$$ 0 0
$$906$$ 0 0
$$907$$ −3452.00 −0.126375 −0.0631873 0.998002i $$-0.520127\pi$$
−0.0631873 + 0.998002i $$0.520127\pi$$
$$908$$ 0 0
$$909$$ 0 0
$$910$$ 0 0
$$911$$ −14256.0 −0.518466 −0.259233 0.965815i $$-0.583470\pi$$
−0.259233 + 0.965815i $$0.583470\pi$$
$$912$$ 0 0
$$913$$ 18952.0 0.686988
$$914$$ 0 0
$$915$$ 0 0
$$916$$ 0 0
$$917$$ 18060.0 0.650375
$$918$$ 0 0
$$919$$ 8064.00 0.289452 0.144726 0.989472i $$-0.453770\pi$$
0.144726 + 0.989472i $$0.453770\pi$$
$$920$$ 0 0
$$921$$ 0 0
$$922$$ 0 0
$$923$$ −6392.00 −0.227947
$$924$$ 0 0
$$925$$ 0 0
$$926$$ 0 0
$$927$$ 0 0
$$928$$ 0 0
$$929$$ 40930.0 1.44550 0.722750 0.691109i $$-0.242878\pi$$
0.722750 + 0.691109i $$0.242878\pi$$
$$930$$ 0 0
$$931$$ −25272.0 −0.889642
$$932$$ 0 0
$$933$$ 0 0
$$934$$ 0 0
$$935$$ 0 0
$$936$$ 0 0
$$937$$ −9016.00 −0.314344 −0.157172 0.987571i $$-0.550238\pi$$
−0.157172 + 0.987571i $$0.550238\pi$$
$$938$$ 0 0
$$939$$ 0 0
$$940$$ 0 0
$$941$$ 10444.0 0.361812 0.180906 0.983500i $$-0.442097\pi$$
0.180906 + 0.983500i $$0.442097\pi$$
$$942$$ 0 0
$$943$$ −31816.0 −1.09870
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ 21516.0 0.738306 0.369153 0.929369i $$-0.379648\pi$$
0.369153 + 0.929369i $$0.379648\pi$$
$$948$$ 0 0
$$949$$ 25160.0 0.860620
$$950$$ 0 0
$$951$$ 0 0
$$952$$ 0 0
$$953$$ −28098.0 −0.955072 −0.477536 0.878612i $$-0.658470\pi$$
−0.477536 + 0.878612i $$0.658470\pi$$
$$954$$ 0 0
$$955$$ 0 0
$$956$$ 0 0
$$957$$ 0 0
$$958$$ 0 0
$$959$$ −18220.0 −0.613508
$$960$$ 0 0
$$961$$ −24607.0 −0.825988
$$962$$ 0 0
$$963$$ 0 0
$$964$$ 0 0
$$965$$ 0 0
$$966$$ 0 0
$$967$$ 14558.0 0.484130 0.242065 0.970260i $$-0.422175\pi$$
0.242065 + 0.970260i $$0.422175\pi$$
$$968$$ 0 0
$$969$$ 0 0
$$970$$ 0 0
$$971$$ −24846.0 −0.821160 −0.410580 0.911825i $$-0.634674\pi$$
−0.410580 + 0.911825i $$0.634674\pi$$
$$972$$ 0 0
$$973$$ −5320.00 −0.175284
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ −12950.0 −0.424061 −0.212030 0.977263i $$-0.568008\pi$$
−0.212030 + 0.977263i $$0.568008\pi$$
$$978$$ 0 0
$$979$$ −55476.0 −1.81105
$$980$$ 0 0
$$981$$ 0 0
$$982$$ 0 0
$$983$$ −26728.0 −0.867234 −0.433617 0.901097i $$-0.642763\pi$$
−0.433617 + 0.901097i $$0.642763\pi$$
$$984$$ 0 0
$$985$$ 0 0
$$986$$ 0 0
$$987$$ 0 0
$$988$$ 0 0
$$989$$ −17712.0 −0.569473
$$990$$ 0 0
$$991$$ 3880.00 0.124372 0.0621858 0.998065i $$-0.480193\pi$$
0.0621858 + 0.998065i $$0.480193\pi$$
$$992$$ 0 0
$$993$$ 0 0
$$994$$ 0 0
$$995$$ 0 0
$$996$$ 0 0
$$997$$ −18582.0 −0.590269 −0.295134 0.955456i $$-0.595364\pi$$
−0.295134 + 0.955456i $$0.595364\pi$$
$$998$$ 0 0
$$999$$ 0 0
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1800.4.a.j.1.1 1
3.2 odd 2 600.4.a.b.1.1 1
5.2 odd 4 360.4.f.c.289.1 2
5.3 odd 4 360.4.f.c.289.2 2
5.4 even 2 1800.4.a.y.1.1 1
12.11 even 2 1200.4.a.bh.1.1 1
15.2 even 4 120.4.f.a.49.2 yes 2
15.8 even 4 120.4.f.a.49.1 2
15.14 odd 2 600.4.a.o.1.1 1
20.3 even 4 720.4.f.g.289.2 2
20.7 even 4 720.4.f.g.289.1 2
60.23 odd 4 240.4.f.b.49.2 2
60.47 odd 4 240.4.f.b.49.1 2
60.59 even 2 1200.4.a.f.1.1 1
120.53 even 4 960.4.f.l.769.2 2
120.77 even 4 960.4.f.l.769.1 2
120.83 odd 4 960.4.f.g.769.1 2
120.107 odd 4 960.4.f.g.769.2 2

By twisted newform
Twist Min Dim Char Parity Ord Type
120.4.f.a.49.1 2 15.8 even 4
120.4.f.a.49.2 yes 2 15.2 even 4
240.4.f.b.49.1 2 60.47 odd 4
240.4.f.b.49.2 2 60.23 odd 4
360.4.f.c.289.1 2 5.2 odd 4
360.4.f.c.289.2 2 5.3 odd 4
600.4.a.b.1.1 1 3.2 odd 2
600.4.a.o.1.1 1 15.14 odd 2
720.4.f.g.289.1 2 20.7 even 4
720.4.f.g.289.2 2 20.3 even 4
960.4.f.g.769.1 2 120.83 odd 4
960.4.f.g.769.2 2 120.107 odd 4
960.4.f.l.769.1 2 120.77 even 4
960.4.f.l.769.2 2 120.53 even 4
1200.4.a.f.1.1 1 60.59 even 2
1200.4.a.bh.1.1 1 12.11 even 2
1800.4.a.j.1.1 1 1.1 even 1 trivial
1800.4.a.y.1.1 1 5.4 even 2