# Properties

 Label 1800.4.a.e.1.1 Level $1800$ Weight $4$ Character 1800.1 Self dual yes Analytic conductor $106.203$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1800 = 2^{3} \cdot 3^{2} \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 1800.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$106.203438010$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 120) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## Embedding invariants

 Embedding label 1.1 Character $$\chi$$ $$=$$ 1800.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q-20.0000 q^{7} +O(q^{10})$$ $$q-20.0000 q^{7} -16.0000 q^{11} -58.0000 q^{13} +38.0000 q^{17} +4.00000 q^{19} -80.0000 q^{23} -82.0000 q^{29} -8.00000 q^{31} -426.000 q^{37} +246.000 q^{41} +524.000 q^{43} -464.000 q^{47} +57.0000 q^{49} -702.000 q^{53} +592.000 q^{59} +574.000 q^{61} +172.000 q^{67} -768.000 q^{71} +558.000 q^{73} +320.000 q^{77} +408.000 q^{79} +164.000 q^{83} +510.000 q^{89} +1160.00 q^{91} -514.000 q^{97} +O(q^{100})$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 0 0
$$4$$ 0 0
$$5$$ 0 0
$$6$$ 0 0
$$7$$ −20.0000 −1.07990 −0.539949 0.841698i $$-0.681557\pi$$
−0.539949 + 0.841698i $$0.681557\pi$$
$$8$$ 0 0
$$9$$ 0 0
$$10$$ 0 0
$$11$$ −16.0000 −0.438562 −0.219281 0.975662i $$-0.570371\pi$$
−0.219281 + 0.975662i $$0.570371\pi$$
$$12$$ 0 0
$$13$$ −58.0000 −1.23741 −0.618704 0.785624i $$-0.712342\pi$$
−0.618704 + 0.785624i $$0.712342\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ 38.0000 0.542138 0.271069 0.962560i $$-0.412623\pi$$
0.271069 + 0.962560i $$0.412623\pi$$
$$18$$ 0 0
$$19$$ 4.00000 0.0482980 0.0241490 0.999708i $$-0.492312\pi$$
0.0241490 + 0.999708i $$0.492312\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ −80.0000 −0.725268 −0.362634 0.931932i $$-0.618122\pi$$
−0.362634 + 0.931932i $$0.618122\pi$$
$$24$$ 0 0
$$25$$ 0 0
$$26$$ 0 0
$$27$$ 0 0
$$28$$ 0 0
$$29$$ −82.0000 −0.525070 −0.262535 0.964923i $$-0.584558\pi$$
−0.262535 + 0.964923i $$0.584558\pi$$
$$30$$ 0 0
$$31$$ −8.00000 −0.0463498 −0.0231749 0.999731i $$-0.507377\pi$$
−0.0231749 + 0.999731i $$0.507377\pi$$
$$32$$ 0 0
$$33$$ 0 0
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ −426.000 −1.89281 −0.946405 0.322982i $$-0.895315\pi$$
−0.946405 + 0.322982i $$0.895315\pi$$
$$38$$ 0 0
$$39$$ 0 0
$$40$$ 0 0
$$41$$ 246.000 0.937043 0.468521 0.883452i $$-0.344787\pi$$
0.468521 + 0.883452i $$0.344787\pi$$
$$42$$ 0 0
$$43$$ 524.000 1.85835 0.929177 0.369634i $$-0.120517\pi$$
0.929177 + 0.369634i $$0.120517\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ −464.000 −1.44003 −0.720014 0.693959i $$-0.755865\pi$$
−0.720014 + 0.693959i $$0.755865\pi$$
$$48$$ 0 0
$$49$$ 57.0000 0.166181
$$50$$ 0 0
$$51$$ 0 0
$$52$$ 0 0
$$53$$ −702.000 −1.81938 −0.909690 0.415288i $$-0.863681\pi$$
−0.909690 + 0.415288i $$0.863681\pi$$
$$54$$ 0 0
$$55$$ 0 0
$$56$$ 0 0
$$57$$ 0 0
$$58$$ 0 0
$$59$$ 592.000 1.30630 0.653151 0.757228i $$-0.273447\pi$$
0.653151 + 0.757228i $$0.273447\pi$$
$$60$$ 0 0
$$61$$ 574.000 1.20481 0.602403 0.798192i $$-0.294210\pi$$
0.602403 + 0.798192i $$0.294210\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 0 0
$$65$$ 0 0
$$66$$ 0 0
$$67$$ 172.000 0.313629 0.156815 0.987628i $$-0.449878\pi$$
0.156815 + 0.987628i $$0.449878\pi$$
$$68$$ 0 0
$$69$$ 0 0
$$70$$ 0 0
$$71$$ −768.000 −1.28373 −0.641865 0.766818i $$-0.721839\pi$$
−0.641865 + 0.766818i $$0.721839\pi$$
$$72$$ 0 0
$$73$$ 558.000 0.894643 0.447322 0.894373i $$-0.352378\pi$$
0.447322 + 0.894373i $$0.352378\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ 320.000 0.473602
$$78$$ 0 0
$$79$$ 408.000 0.581058 0.290529 0.956866i $$-0.406169\pi$$
0.290529 + 0.956866i $$0.406169\pi$$
$$80$$ 0 0
$$81$$ 0 0
$$82$$ 0 0
$$83$$ 164.000 0.216884 0.108442 0.994103i $$-0.465414\pi$$
0.108442 + 0.994103i $$0.465414\pi$$
$$84$$ 0 0
$$85$$ 0 0
$$86$$ 0 0
$$87$$ 0 0
$$88$$ 0 0
$$89$$ 510.000 0.607415 0.303707 0.952765i $$-0.401776\pi$$
0.303707 + 0.952765i $$0.401776\pi$$
$$90$$ 0 0
$$91$$ 1160.00 1.33628
$$92$$ 0 0
$$93$$ 0 0
$$94$$ 0 0
$$95$$ 0 0
$$96$$ 0 0
$$97$$ −514.000 −0.538029 −0.269014 0.963136i $$-0.586698\pi$$
−0.269014 + 0.963136i $$0.586698\pi$$
$$98$$ 0 0
$$99$$ 0 0
$$100$$ 0 0
$$101$$ −666.000 −0.656133 −0.328067 0.944655i $$-0.606397\pi$$
−0.328067 + 0.944655i $$0.606397\pi$$
$$102$$ 0 0
$$103$$ 1100.00 1.05229 0.526147 0.850394i $$-0.323636\pi$$
0.526147 + 0.850394i $$0.323636\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ 1212.00 1.09503 0.547516 0.836795i $$-0.315573\pi$$
0.547516 + 0.836795i $$0.315573\pi$$
$$108$$ 0 0
$$109$$ 2078.00 1.82602 0.913011 0.407936i $$-0.133751\pi$$
0.913011 + 0.407936i $$0.133751\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ 0 0
$$113$$ −1458.00 −1.21378 −0.606890 0.794786i $$-0.707583\pi$$
−0.606890 + 0.794786i $$0.707583\pi$$
$$114$$ 0 0
$$115$$ 0 0
$$116$$ 0 0
$$117$$ 0 0
$$118$$ 0 0
$$119$$ −760.000 −0.585455
$$120$$ 0 0
$$121$$ −1075.00 −0.807663
$$122$$ 0 0
$$123$$ 0 0
$$124$$ 0 0
$$125$$ 0 0
$$126$$ 0 0
$$127$$ 2436.00 1.70205 0.851024 0.525127i $$-0.175982\pi$$
0.851024 + 0.525127i $$0.175982\pi$$
$$128$$ 0 0
$$129$$ 0 0
$$130$$ 0 0
$$131$$ −2544.00 −1.69672 −0.848360 0.529420i $$-0.822410\pi$$
−0.848360 + 0.529420i $$0.822410\pi$$
$$132$$ 0 0
$$133$$ −80.0000 −0.0521570
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ 694.000 0.432791 0.216396 0.976306i $$-0.430570\pi$$
0.216396 + 0.976306i $$0.430570\pi$$
$$138$$ 0 0
$$139$$ 516.000 0.314867 0.157434 0.987530i $$-0.449678\pi$$
0.157434 + 0.987530i $$0.449678\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ 928.000 0.542680
$$144$$ 0 0
$$145$$ 0 0
$$146$$ 0 0
$$147$$ 0 0
$$148$$ 0 0
$$149$$ −770.000 −0.423361 −0.211681 0.977339i $$-0.567894\pi$$
−0.211681 + 0.977339i $$0.567894\pi$$
$$150$$ 0 0
$$151$$ −424.000 −0.228507 −0.114254 0.993452i $$-0.536448\pi$$
−0.114254 + 0.993452i $$0.536448\pi$$
$$152$$ 0 0
$$153$$ 0 0
$$154$$ 0 0
$$155$$ 0 0
$$156$$ 0 0
$$157$$ −922.000 −0.468685 −0.234343 0.972154i $$-0.575294\pi$$
−0.234343 + 0.972154i $$0.575294\pi$$
$$158$$ 0 0
$$159$$ 0 0
$$160$$ 0 0
$$161$$ 1600.00 0.783215
$$162$$ 0 0
$$163$$ 3788.00 1.82024 0.910120 0.414345i $$-0.135989\pi$$
0.910120 + 0.414345i $$0.135989\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ −48.0000 −0.0222416 −0.0111208 0.999938i $$-0.503540\pi$$
−0.0111208 + 0.999938i $$0.503540\pi$$
$$168$$ 0 0
$$169$$ 1167.00 0.531179
$$170$$ 0 0
$$171$$ 0 0
$$172$$ 0 0
$$173$$ 3242.00 1.42477 0.712384 0.701790i $$-0.247616\pi$$
0.712384 + 0.701790i $$0.247616\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ 0 0
$$178$$ 0 0
$$179$$ 2728.00 1.13911 0.569554 0.821954i $$-0.307116\pi$$
0.569554 + 0.821954i $$0.307116\pi$$
$$180$$ 0 0
$$181$$ −4090.00 −1.67960 −0.839799 0.542897i $$-0.817327\pi$$
−0.839799 + 0.542897i $$0.817327\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ 0 0
$$185$$ 0 0
$$186$$ 0 0
$$187$$ −608.000 −0.237761
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ 1480.00 0.560676 0.280338 0.959901i $$-0.409554\pi$$
0.280338 + 0.959901i $$0.409554\pi$$
$$192$$ 0 0
$$193$$ 1622.00 0.604944 0.302472 0.953158i $$-0.402188\pi$$
0.302472 + 0.953158i $$0.402188\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ 2530.00 0.915000 0.457500 0.889210i $$-0.348745\pi$$
0.457500 + 0.889210i $$0.348745\pi$$
$$198$$ 0 0
$$199$$ −2440.00 −0.869181 −0.434590 0.900628i $$-0.643107\pi$$
−0.434590 + 0.900628i $$0.643107\pi$$
$$200$$ 0 0
$$201$$ 0 0
$$202$$ 0 0
$$203$$ 1640.00 0.567022
$$204$$ 0 0
$$205$$ 0 0
$$206$$ 0 0
$$207$$ 0 0
$$208$$ 0 0
$$209$$ −64.0000 −0.0211817
$$210$$ 0 0
$$211$$ −148.000 −0.0482879 −0.0241439 0.999708i $$-0.507686\pi$$
−0.0241439 + 0.999708i $$0.507686\pi$$
$$212$$ 0 0
$$213$$ 0 0
$$214$$ 0 0
$$215$$ 0 0
$$216$$ 0 0
$$217$$ 160.000 0.0500530
$$218$$ 0 0
$$219$$ 0 0
$$220$$ 0 0
$$221$$ −2204.00 −0.670847
$$222$$ 0 0
$$223$$ 676.000 0.202997 0.101498 0.994836i $$-0.467636\pi$$
0.101498 + 0.994836i $$0.467636\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ −6276.00 −1.83503 −0.917517 0.397696i $$-0.869810\pi$$
−0.917517 + 0.397696i $$0.869810\pi$$
$$228$$ 0 0
$$229$$ 6190.00 1.78623 0.893115 0.449828i $$-0.148515\pi$$
0.893115 + 0.449828i $$0.148515\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ 5406.00 1.52000 0.759998 0.649926i $$-0.225200\pi$$
0.759998 + 0.649926i $$0.225200\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ 0 0
$$237$$ 0 0
$$238$$ 0 0
$$239$$ 600.000 0.162388 0.0811941 0.996698i $$-0.474127\pi$$
0.0811941 + 0.996698i $$0.474127\pi$$
$$240$$ 0 0
$$241$$ −1054.00 −0.281718 −0.140859 0.990030i $$-0.544986\pi$$
−0.140859 + 0.990030i $$0.544986\pi$$
$$242$$ 0 0
$$243$$ 0 0
$$244$$ 0 0
$$245$$ 0 0
$$246$$ 0 0
$$247$$ −232.000 −0.0597644
$$248$$ 0 0
$$249$$ 0 0
$$250$$ 0 0
$$251$$ 2232.00 0.561285 0.280643 0.959812i $$-0.409452\pi$$
0.280643 + 0.959812i $$0.409452\pi$$
$$252$$ 0 0
$$253$$ 1280.00 0.318075
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ 3630.00 0.881063 0.440531 0.897737i $$-0.354790\pi$$
0.440531 + 0.897737i $$0.354790\pi$$
$$258$$ 0 0
$$259$$ 8520.00 2.04404
$$260$$ 0 0
$$261$$ 0 0
$$262$$ 0 0
$$263$$ 6960.00 1.63183 0.815916 0.578170i $$-0.196233\pi$$
0.815916 + 0.578170i $$0.196233\pi$$
$$264$$ 0 0
$$265$$ 0 0
$$266$$ 0 0
$$267$$ 0 0
$$268$$ 0 0
$$269$$ 2062.00 0.467369 0.233685 0.972312i $$-0.424922\pi$$
0.233685 + 0.972312i $$0.424922\pi$$
$$270$$ 0 0
$$271$$ −2544.00 −0.570247 −0.285124 0.958491i $$-0.592035\pi$$
−0.285124 + 0.958491i $$0.592035\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ 0 0
$$276$$ 0 0
$$277$$ 694.000 0.150536 0.0752679 0.997163i $$-0.476019\pi$$
0.0752679 + 0.997163i $$0.476019\pi$$
$$278$$ 0 0
$$279$$ 0 0
$$280$$ 0 0
$$281$$ 1982.00 0.420769 0.210385 0.977619i $$-0.432528\pi$$
0.210385 + 0.977619i $$0.432528\pi$$
$$282$$ 0 0
$$283$$ −5228.00 −1.09814 −0.549068 0.835778i $$-0.685017\pi$$
−0.549068 + 0.835778i $$0.685017\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ −4920.00 −1.01191
$$288$$ 0 0
$$289$$ −3469.00 −0.706086
$$290$$ 0 0
$$291$$ 0 0
$$292$$ 0 0
$$293$$ −7454.00 −1.48624 −0.743118 0.669160i $$-0.766654\pi$$
−0.743118 + 0.669160i $$0.766654\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ 0 0
$$297$$ 0 0
$$298$$ 0 0
$$299$$ 4640.00 0.897452
$$300$$ 0 0
$$301$$ −10480.0 −2.00683
$$302$$ 0 0
$$303$$ 0 0
$$304$$ 0 0
$$305$$ 0 0
$$306$$ 0 0
$$307$$ 1316.00 0.244652 0.122326 0.992490i $$-0.460965\pi$$
0.122326 + 0.992490i $$0.460965\pi$$
$$308$$ 0 0
$$309$$ 0 0
$$310$$ 0 0
$$311$$ 832.000 0.151699 0.0758495 0.997119i $$-0.475833\pi$$
0.0758495 + 0.997119i $$0.475833\pi$$
$$312$$ 0 0
$$313$$ −6770.00 −1.22257 −0.611283 0.791412i $$-0.709346\pi$$
−0.611283 + 0.791412i $$0.709346\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ −6582.00 −1.16619 −0.583095 0.812404i $$-0.698158\pi$$
−0.583095 + 0.812404i $$0.698158\pi$$
$$318$$ 0 0
$$319$$ 1312.00 0.230276
$$320$$ 0 0
$$321$$ 0 0
$$322$$ 0 0
$$323$$ 152.000 0.0261842
$$324$$ 0 0
$$325$$ 0 0
$$326$$ 0 0
$$327$$ 0 0
$$328$$ 0 0
$$329$$ 9280.00 1.55508
$$330$$ 0 0
$$331$$ 11292.0 1.87512 0.937560 0.347825i $$-0.113080\pi$$
0.937560 + 0.347825i $$0.113080\pi$$
$$332$$ 0 0
$$333$$ 0 0
$$334$$ 0 0
$$335$$ 0 0
$$336$$ 0 0
$$337$$ 8006.00 1.29411 0.647054 0.762444i $$-0.276001\pi$$
0.647054 + 0.762444i $$0.276001\pi$$
$$338$$ 0 0
$$339$$ 0 0
$$340$$ 0 0
$$341$$ 128.000 0.0203272
$$342$$ 0 0
$$343$$ 5720.00 0.900440
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ −316.000 −0.0488869 −0.0244435 0.999701i $$-0.507781\pi$$
−0.0244435 + 0.999701i $$0.507781\pi$$
$$348$$ 0 0
$$349$$ 4926.00 0.755538 0.377769 0.925900i $$-0.376691\pi$$
0.377769 + 0.925900i $$0.376691\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ 2438.00 0.367597 0.183798 0.982964i $$-0.441161\pi$$
0.183798 + 0.982964i $$0.441161\pi$$
$$354$$ 0 0
$$355$$ 0 0
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ 3336.00 0.490438 0.245219 0.969468i $$-0.421140\pi$$
0.245219 + 0.969468i $$0.421140\pi$$
$$360$$ 0 0
$$361$$ −6843.00 −0.997667
$$362$$ 0 0
$$363$$ 0 0
$$364$$ 0 0
$$365$$ 0 0
$$366$$ 0 0
$$367$$ −44.0000 −0.00625826 −0.00312913 0.999995i $$-0.500996\pi$$
−0.00312913 + 0.999995i $$0.500996\pi$$
$$368$$ 0 0
$$369$$ 0 0
$$370$$ 0 0
$$371$$ 14040.0 1.96475
$$372$$ 0 0
$$373$$ 11966.0 1.66106 0.830531 0.556973i $$-0.188037\pi$$
0.830531 + 0.556973i $$0.188037\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ 4756.00 0.649725
$$378$$ 0 0
$$379$$ 12676.0 1.71800 0.859001 0.511975i $$-0.171086\pi$$
0.859001 + 0.511975i $$0.171086\pi$$
$$380$$ 0 0
$$381$$ 0 0
$$382$$ 0 0
$$383$$ 6672.00 0.890139 0.445070 0.895496i $$-0.353179\pi$$
0.445070 + 0.895496i $$0.353179\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ 0 0
$$388$$ 0 0
$$389$$ −354.000 −0.0461401 −0.0230701 0.999734i $$-0.507344\pi$$
−0.0230701 + 0.999734i $$0.507344\pi$$
$$390$$ 0 0
$$391$$ −3040.00 −0.393195
$$392$$ 0 0
$$393$$ 0 0
$$394$$ 0 0
$$395$$ 0 0
$$396$$ 0 0
$$397$$ 5054.00 0.638924 0.319462 0.947599i $$-0.396498\pi$$
0.319462 + 0.947599i $$0.396498\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ −10266.0 −1.27845 −0.639226 0.769019i $$-0.720745\pi$$
−0.639226 + 0.769019i $$0.720745\pi$$
$$402$$ 0 0
$$403$$ 464.000 0.0573536
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ 6816.00 0.830114
$$408$$ 0 0
$$409$$ −1526.00 −0.184489 −0.0922443 0.995736i $$-0.529404\pi$$
−0.0922443 + 0.995736i $$0.529404\pi$$
$$410$$ 0 0
$$411$$ 0 0
$$412$$ 0 0
$$413$$ −11840.0 −1.41067
$$414$$ 0 0
$$415$$ 0 0
$$416$$ 0 0
$$417$$ 0 0
$$418$$ 0 0
$$419$$ −2064.00 −0.240652 −0.120326 0.992734i $$-0.538394\pi$$
−0.120326 + 0.992734i $$0.538394\pi$$
$$420$$ 0 0
$$421$$ 4590.00 0.531361 0.265680 0.964061i $$-0.414403\pi$$
0.265680 + 0.964061i $$0.414403\pi$$
$$422$$ 0 0
$$423$$ 0 0
$$424$$ 0 0
$$425$$ 0 0
$$426$$ 0 0
$$427$$ −11480.0 −1.30107
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ 5536.00 0.618700 0.309350 0.950948i $$-0.399889\pi$$
0.309350 + 0.950948i $$0.399889\pi$$
$$432$$ 0 0
$$433$$ −1850.00 −0.205324 −0.102662 0.994716i $$-0.532736\pi$$
−0.102662 + 0.994716i $$0.532736\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ −320.000 −0.0350290
$$438$$ 0 0
$$439$$ 11704.0 1.27244 0.636220 0.771507i $$-0.280497\pi$$
0.636220 + 0.771507i $$0.280497\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ 0 0
$$443$$ 6948.00 0.745168 0.372584 0.927998i $$-0.378472\pi$$
0.372584 + 0.927998i $$0.378472\pi$$
$$444$$ 0 0
$$445$$ 0 0
$$446$$ 0 0
$$447$$ 0 0
$$448$$ 0 0
$$449$$ −12090.0 −1.27074 −0.635370 0.772208i $$-0.719152\pi$$
−0.635370 + 0.772208i $$0.719152\pi$$
$$450$$ 0 0
$$451$$ −3936.00 −0.410951
$$452$$ 0 0
$$453$$ 0 0
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ −11626.0 −1.19002 −0.595012 0.803717i $$-0.702853\pi$$
−0.595012 + 0.803717i $$0.702853\pi$$
$$458$$ 0 0
$$459$$ 0 0
$$460$$ 0 0
$$461$$ −16314.0 −1.64820 −0.824098 0.566447i $$-0.808318\pi$$
−0.824098 + 0.566447i $$0.808318\pi$$
$$462$$ 0 0
$$463$$ 15756.0 1.58152 0.790760 0.612127i $$-0.209686\pi$$
0.790760 + 0.612127i $$0.209686\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ 5684.00 0.563221 0.281610 0.959529i $$-0.409131\pi$$
0.281610 + 0.959529i $$0.409131\pi$$
$$468$$ 0 0
$$469$$ −3440.00 −0.338688
$$470$$ 0 0
$$471$$ 0 0
$$472$$ 0 0
$$473$$ −8384.00 −0.815004
$$474$$ 0 0
$$475$$ 0 0
$$476$$ 0 0
$$477$$ 0 0
$$478$$ 0 0
$$479$$ 3368.00 0.321269 0.160634 0.987014i $$-0.448646\pi$$
0.160634 + 0.987014i $$0.448646\pi$$
$$480$$ 0 0
$$481$$ 24708.0 2.34218
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ 0 0
$$486$$ 0 0
$$487$$ 5588.00 0.519952 0.259976 0.965615i $$-0.416285\pi$$
0.259976 + 0.965615i $$0.416285\pi$$
$$488$$ 0 0
$$489$$ 0 0
$$490$$ 0 0
$$491$$ −10584.0 −0.972809 −0.486405 0.873734i $$-0.661692\pi$$
−0.486405 + 0.873734i $$0.661692\pi$$
$$492$$ 0 0
$$493$$ −3116.00 −0.284660
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ 15360.0 1.38630
$$498$$ 0 0
$$499$$ −12220.0 −1.09628 −0.548139 0.836388i $$-0.684663\pi$$
−0.548139 + 0.836388i $$0.684663\pi$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ 0 0
$$503$$ 16152.0 1.43177 0.715887 0.698216i $$-0.246023\pi$$
0.715887 + 0.698216i $$0.246023\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ 0 0
$$507$$ 0 0
$$508$$ 0 0
$$509$$ −10642.0 −0.926716 −0.463358 0.886171i $$-0.653356\pi$$
−0.463358 + 0.886171i $$0.653356\pi$$
$$510$$ 0 0
$$511$$ −11160.0 −0.966124
$$512$$ 0 0
$$513$$ 0 0
$$514$$ 0 0
$$515$$ 0 0
$$516$$ 0 0
$$517$$ 7424.00 0.631542
$$518$$ 0 0
$$519$$ 0 0
$$520$$ 0 0
$$521$$ −22882.0 −1.92414 −0.962072 0.272797i $$-0.912051\pi$$
−0.962072 + 0.272797i $$0.912051\pi$$
$$522$$ 0 0
$$523$$ 10052.0 0.840427 0.420213 0.907425i $$-0.361955\pi$$
0.420213 + 0.907425i $$0.361955\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ −304.000 −0.0251280
$$528$$ 0 0
$$529$$ −5767.00 −0.473987
$$530$$ 0 0
$$531$$ 0 0
$$532$$ 0 0
$$533$$ −14268.0 −1.15950
$$534$$ 0 0
$$535$$ 0 0
$$536$$ 0 0
$$537$$ 0 0
$$538$$ 0 0
$$539$$ −912.000 −0.0728806
$$540$$ 0 0
$$541$$ −6530.00 −0.518940 −0.259470 0.965751i $$-0.583548\pi$$
−0.259470 + 0.965751i $$0.583548\pi$$
$$542$$ 0 0
$$543$$ 0 0
$$544$$ 0 0
$$545$$ 0 0
$$546$$ 0 0
$$547$$ −16652.0 −1.30162 −0.650812 0.759239i $$-0.725571\pi$$
−0.650812 + 0.759239i $$0.725571\pi$$
$$548$$ 0 0
$$549$$ 0 0
$$550$$ 0 0
$$551$$ −328.000 −0.0253598
$$552$$ 0 0
$$553$$ −8160.00 −0.627484
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ −12886.0 −0.980247 −0.490123 0.871653i $$-0.663048\pi$$
−0.490123 + 0.871653i $$0.663048\pi$$
$$558$$ 0 0
$$559$$ −30392.0 −2.29954
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ −11108.0 −0.831521 −0.415761 0.909474i $$-0.636485\pi$$
−0.415761 + 0.909474i $$0.636485\pi$$
$$564$$ 0 0
$$565$$ 0 0
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 0 0
$$569$$ 9214.00 0.678859 0.339430 0.940631i $$-0.389766\pi$$
0.339430 + 0.940631i $$0.389766\pi$$
$$570$$ 0 0
$$571$$ −4052.00 −0.296972 −0.148486 0.988915i $$-0.547440\pi$$
−0.148486 + 0.988915i $$0.547440\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ 0 0
$$576$$ 0 0
$$577$$ 8446.00 0.609379 0.304689 0.952452i $$-0.401447\pi$$
0.304689 + 0.952452i $$0.401447\pi$$
$$578$$ 0 0
$$579$$ 0 0
$$580$$ 0 0
$$581$$ −3280.00 −0.234212
$$582$$ 0 0
$$583$$ 11232.0 0.797911
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ 2172.00 0.152722 0.0763612 0.997080i $$-0.475670\pi$$
0.0763612 + 0.997080i $$0.475670\pi$$
$$588$$ 0 0
$$589$$ −32.0000 −0.00223860
$$590$$ 0 0
$$591$$ 0 0
$$592$$ 0 0
$$593$$ −1218.00 −0.0843461 −0.0421731 0.999110i $$-0.513428\pi$$
−0.0421731 + 0.999110i $$0.513428\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ 0 0
$$598$$ 0 0
$$599$$ −21240.0 −1.44882 −0.724410 0.689370i $$-0.757888\pi$$
−0.724410 + 0.689370i $$0.757888\pi$$
$$600$$ 0 0
$$601$$ 17626.0 1.19631 0.598153 0.801382i $$-0.295902\pi$$
0.598153 + 0.801382i $$0.295902\pi$$
$$602$$ 0 0
$$603$$ 0 0
$$604$$ 0 0
$$605$$ 0 0
$$606$$ 0 0
$$607$$ −2580.00 −0.172519 −0.0862594 0.996273i $$-0.527491\pi$$
−0.0862594 + 0.996273i $$0.527491\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ 26912.0 1.78190
$$612$$ 0 0
$$613$$ 14166.0 0.933376 0.466688 0.884422i $$-0.345447\pi$$
0.466688 + 0.884422i $$0.345447\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ −21426.0 −1.39802 −0.699010 0.715112i $$-0.746376\pi$$
−0.699010 + 0.715112i $$0.746376\pi$$
$$618$$ 0 0
$$619$$ 3668.00 0.238173 0.119087 0.992884i $$-0.462003\pi$$
0.119087 + 0.992884i $$0.462003\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ −10200.0 −0.655946
$$624$$ 0 0
$$625$$ 0 0
$$626$$ 0 0
$$627$$ 0 0
$$628$$ 0 0
$$629$$ −16188.0 −1.02617
$$630$$ 0 0
$$631$$ 20032.0 1.26381 0.631903 0.775048i $$-0.282274\pi$$
0.631903 + 0.775048i $$0.282274\pi$$
$$632$$ 0 0
$$633$$ 0 0
$$634$$ 0 0
$$635$$ 0 0
$$636$$ 0 0
$$637$$ −3306.00 −0.205633
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ −7458.00 −0.459553 −0.229776 0.973243i $$-0.573799\pi$$
−0.229776 + 0.973243i $$0.573799\pi$$
$$642$$ 0 0
$$643$$ −7092.00 −0.434963 −0.217481 0.976064i $$-0.569784\pi$$
−0.217481 + 0.976064i $$0.569784\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ 3384.00 0.205624 0.102812 0.994701i $$-0.467216\pi$$
0.102812 + 0.994701i $$0.467216\pi$$
$$648$$ 0 0
$$649$$ −9472.00 −0.572894
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ −29398.0 −1.76177 −0.880883 0.473335i $$-0.843050\pi$$
−0.880883 + 0.473335i $$0.843050\pi$$
$$654$$ 0 0
$$655$$ 0 0
$$656$$ 0 0
$$657$$ 0 0
$$658$$ 0 0
$$659$$ 6624.00 0.391554 0.195777 0.980648i $$-0.437277\pi$$
0.195777 + 0.980648i $$0.437277\pi$$
$$660$$ 0 0
$$661$$ 8646.00 0.508760 0.254380 0.967104i $$-0.418129\pi$$
0.254380 + 0.967104i $$0.418129\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ 6560.00 0.380816
$$668$$ 0 0
$$669$$ 0 0
$$670$$ 0 0
$$671$$ −9184.00 −0.528382
$$672$$ 0 0
$$673$$ −28698.0 −1.64372 −0.821862 0.569686i $$-0.807065\pi$$
−0.821862 + 0.569686i $$0.807065\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ 19426.0 1.10281 0.551405 0.834238i $$-0.314092\pi$$
0.551405 + 0.834238i $$0.314092\pi$$
$$678$$ 0 0
$$679$$ 10280.0 0.581016
$$680$$ 0 0
$$681$$ 0 0
$$682$$ 0 0
$$683$$ 8604.00 0.482025 0.241012 0.970522i $$-0.422521\pi$$
0.241012 + 0.970522i $$0.422521\pi$$
$$684$$ 0 0
$$685$$ 0 0
$$686$$ 0 0
$$687$$ 0 0
$$688$$ 0 0
$$689$$ 40716.0 2.25132
$$690$$ 0 0
$$691$$ 12980.0 0.714591 0.357296 0.933991i $$-0.383699\pi$$
0.357296 + 0.933991i $$0.383699\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ 0 0
$$696$$ 0 0
$$697$$ 9348.00 0.508007
$$698$$ 0 0
$$699$$ 0 0
$$700$$ 0 0
$$701$$ 19630.0 1.05765 0.528827 0.848730i $$-0.322632\pi$$
0.528827 + 0.848730i $$0.322632\pi$$
$$702$$ 0 0
$$703$$ −1704.00 −0.0914190
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ 13320.0 0.708558
$$708$$ 0 0
$$709$$ 8030.00 0.425350 0.212675 0.977123i $$-0.431782\pi$$
0.212675 + 0.977123i $$0.431782\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ 0 0
$$713$$ 640.000 0.0336160
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 0 0
$$717$$ 0 0
$$718$$ 0 0
$$719$$ −22720.0 −1.17846 −0.589230 0.807965i $$-0.700569\pi$$
−0.589230 + 0.807965i $$0.700569\pi$$
$$720$$ 0 0
$$721$$ −22000.0 −1.13637
$$722$$ 0 0
$$723$$ 0 0
$$724$$ 0 0
$$725$$ 0 0
$$726$$ 0 0
$$727$$ −27116.0 −1.38332 −0.691662 0.722221i $$-0.743121\pi$$
−0.691662 + 0.722221i $$0.743121\pi$$
$$728$$ 0 0
$$729$$ 0 0
$$730$$ 0 0
$$731$$ 19912.0 1.00749
$$732$$ 0 0
$$733$$ −30882.0 −1.55614 −0.778071 0.628176i $$-0.783802\pi$$
−0.778071 + 0.628176i $$0.783802\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ −2752.00 −0.137546
$$738$$ 0 0
$$739$$ −13836.0 −0.688722 −0.344361 0.938837i $$-0.611904\pi$$
−0.344361 + 0.938837i $$0.611904\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ 32712.0 1.61519 0.807595 0.589737i $$-0.200769\pi$$
0.807595 + 0.589737i $$0.200769\pi$$
$$744$$ 0 0
$$745$$ 0 0
$$746$$ 0 0
$$747$$ 0 0
$$748$$ 0 0
$$749$$ −24240.0 −1.18252
$$750$$ 0 0
$$751$$ −8472.00 −0.411648 −0.205824 0.978589i $$-0.565987\pi$$
−0.205824 + 0.978589i $$0.565987\pi$$
$$752$$ 0 0
$$753$$ 0 0
$$754$$ 0 0
$$755$$ 0 0
$$756$$ 0 0
$$757$$ −9866.00 −0.473693 −0.236847 0.971547i $$-0.576114\pi$$
−0.236847 + 0.971547i $$0.576114\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ 3774.00 0.179773 0.0898866 0.995952i $$-0.471350\pi$$
0.0898866 + 0.995952i $$0.471350\pi$$
$$762$$ 0 0
$$763$$ −41560.0 −1.97192
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ −34336.0 −1.61643
$$768$$ 0 0
$$769$$ −28670.0 −1.34443 −0.672215 0.740356i $$-0.734657\pi$$
−0.672215 + 0.740356i $$0.734657\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ 0 0
$$773$$ −3246.00 −0.151036 −0.0755178 0.997144i $$-0.524061\pi$$
−0.0755178 + 0.997144i $$0.524061\pi$$
$$774$$ 0 0
$$775$$ 0 0
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ 984.000 0.0452573
$$780$$ 0 0
$$781$$ 12288.0 0.562995
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 0 0
$$785$$ 0 0
$$786$$ 0 0
$$787$$ 19372.0 0.877430 0.438715 0.898626i $$-0.355434\pi$$
0.438715 + 0.898626i $$0.355434\pi$$
$$788$$ 0 0
$$789$$ 0 0
$$790$$ 0 0
$$791$$ 29160.0 1.31076
$$792$$ 0 0
$$793$$ −33292.0 −1.49084
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ −11814.0 −0.525061 −0.262530 0.964924i $$-0.584557\pi$$
−0.262530 + 0.964924i $$0.584557\pi$$
$$798$$ 0 0
$$799$$ −17632.0 −0.780695
$$800$$ 0 0
$$801$$ 0 0
$$802$$ 0 0
$$803$$ −8928.00 −0.392357
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 0 0
$$807$$ 0 0
$$808$$ 0 0
$$809$$ 30054.0 1.30611 0.653055 0.757311i $$-0.273487\pi$$
0.653055 + 0.757311i $$0.273487\pi$$
$$810$$ 0 0
$$811$$ 2852.00 0.123486 0.0617431 0.998092i $$-0.480334\pi$$
0.0617431 + 0.998092i $$0.480334\pi$$
$$812$$ 0 0
$$813$$ 0 0
$$814$$ 0 0
$$815$$ 0 0
$$816$$ 0 0
$$817$$ 2096.00 0.0897549
$$818$$ 0 0
$$819$$ 0 0
$$820$$ 0 0
$$821$$ −2170.00 −0.0922455 −0.0461227 0.998936i $$-0.514687\pi$$
−0.0461227 + 0.998936i $$0.514687\pi$$
$$822$$ 0 0
$$823$$ −19804.0 −0.838790 −0.419395 0.907804i $$-0.637758\pi$$
−0.419395 + 0.907804i $$0.637758\pi$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 0 0
$$827$$ 5508.00 0.231598 0.115799 0.993273i $$-0.463057\pi$$
0.115799 + 0.993273i $$0.463057\pi$$
$$828$$ 0 0
$$829$$ 33262.0 1.39353 0.696765 0.717299i $$-0.254622\pi$$
0.696765 + 0.717299i $$0.254622\pi$$
$$830$$ 0 0
$$831$$ 0 0
$$832$$ 0 0
$$833$$ 2166.00 0.0900930
$$834$$ 0 0
$$835$$ 0 0
$$836$$ 0 0
$$837$$ 0 0
$$838$$ 0 0
$$839$$ 4600.00 0.189284 0.0946422 0.995511i $$-0.469829\pi$$
0.0946422 + 0.995511i $$0.469829\pi$$
$$840$$ 0 0
$$841$$ −17665.0 −0.724302
$$842$$ 0 0
$$843$$ 0 0
$$844$$ 0 0
$$845$$ 0 0
$$846$$ 0 0
$$847$$ 21500.0 0.872195
$$848$$ 0 0
$$849$$ 0 0
$$850$$ 0 0
$$851$$ 34080.0 1.37279
$$852$$ 0 0
$$853$$ 4198.00 0.168507 0.0842537 0.996444i $$-0.473149\pi$$
0.0842537 + 0.996444i $$0.473149\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 0 0
$$857$$ −5826.00 −0.232220 −0.116110 0.993236i $$-0.537042\pi$$
−0.116110 + 0.993236i $$0.537042\pi$$
$$858$$ 0 0
$$859$$ −3004.00 −0.119319 −0.0596596 0.998219i $$-0.519002\pi$$
−0.0596596 + 0.998219i $$0.519002\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ 0 0
$$863$$ −36936.0 −1.45691 −0.728457 0.685092i $$-0.759762\pi$$
−0.728457 + 0.685092i $$0.759762\pi$$
$$864$$ 0 0
$$865$$ 0 0
$$866$$ 0 0
$$867$$ 0 0
$$868$$ 0 0
$$869$$ −6528.00 −0.254830
$$870$$ 0 0
$$871$$ −9976.00 −0.388087
$$872$$ 0 0
$$873$$ 0 0
$$874$$ 0 0
$$875$$ 0 0
$$876$$ 0 0
$$877$$ −5434.00 −0.209228 −0.104614 0.994513i $$-0.533361\pi$$
−0.104614 + 0.994513i $$0.533361\pi$$
$$878$$ 0 0
$$879$$ 0 0
$$880$$ 0 0
$$881$$ 4758.00 0.181954 0.0909768 0.995853i $$-0.471001\pi$$
0.0909768 + 0.995853i $$0.471001\pi$$
$$882$$ 0 0
$$883$$ −15476.0 −0.589818 −0.294909 0.955525i $$-0.595289\pi$$
−0.294909 + 0.955525i $$0.595289\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ −27440.0 −1.03872 −0.519360 0.854555i $$-0.673830\pi$$
−0.519360 + 0.854555i $$0.673830\pi$$
$$888$$ 0 0
$$889$$ −48720.0 −1.83804
$$890$$ 0 0
$$891$$ 0 0
$$892$$ 0 0
$$893$$ −1856.00 −0.0695506
$$894$$ 0 0
$$895$$ 0 0
$$896$$ 0 0
$$897$$ 0 0
$$898$$ 0 0
$$899$$ 656.000 0.0243368
$$900$$ 0 0
$$901$$ −26676.0 −0.986356
$$902$$ 0 0
$$903$$ 0 0
$$904$$ 0 0
$$905$$ 0 0
$$906$$ 0 0
$$907$$ 48924.0 1.79106 0.895532 0.444997i $$-0.146795\pi$$
0.895532 + 0.444997i $$0.146795\pi$$
$$908$$ 0 0
$$909$$ 0 0
$$910$$ 0 0
$$911$$ 3440.00 0.125107 0.0625534 0.998042i $$-0.480076\pi$$
0.0625534 + 0.998042i $$0.480076\pi$$
$$912$$ 0 0
$$913$$ −2624.00 −0.0951169
$$914$$ 0 0
$$915$$ 0 0
$$916$$ 0 0
$$917$$ 50880.0 1.83229
$$918$$ 0 0
$$919$$ −27184.0 −0.975753 −0.487877 0.872913i $$-0.662228\pi$$
−0.487877 + 0.872913i $$0.662228\pi$$
$$920$$ 0 0
$$921$$ 0 0
$$922$$ 0 0
$$923$$ 44544.0 1.58850
$$924$$ 0 0
$$925$$ 0 0
$$926$$ 0 0
$$927$$ 0 0
$$928$$ 0 0
$$929$$ −42490.0 −1.50059 −0.750297 0.661101i $$-0.770089\pi$$
−0.750297 + 0.661101i $$0.770089\pi$$
$$930$$ 0 0
$$931$$ 228.000 0.00802621
$$932$$ 0 0
$$933$$ 0 0
$$934$$ 0 0
$$935$$ 0 0
$$936$$ 0 0
$$937$$ −37354.0 −1.30235 −0.651175 0.758928i $$-0.725724\pi$$
−0.651175 + 0.758928i $$0.725724\pi$$
$$938$$ 0 0
$$939$$ 0 0
$$940$$ 0 0
$$941$$ 24470.0 0.847714 0.423857 0.905729i $$-0.360676\pi$$
0.423857 + 0.905729i $$0.360676\pi$$
$$942$$ 0 0
$$943$$ −19680.0 −0.679607
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ −34100.0 −1.17012 −0.585059 0.810991i $$-0.698929\pi$$
−0.585059 + 0.810991i $$0.698929\pi$$
$$948$$ 0 0
$$949$$ −32364.0 −1.10704
$$950$$ 0 0
$$951$$ 0 0
$$952$$ 0 0
$$953$$ 1878.00 0.0638346 0.0319173 0.999491i $$-0.489839\pi$$
0.0319173 + 0.999491i $$0.489839\pi$$
$$954$$ 0 0
$$955$$ 0 0
$$956$$ 0 0
$$957$$ 0 0
$$958$$ 0 0
$$959$$ −13880.0 −0.467371
$$960$$ 0 0
$$961$$ −29727.0 −0.997852
$$962$$ 0 0
$$963$$ 0 0
$$964$$ 0 0
$$965$$ 0 0
$$966$$ 0 0
$$967$$ −38484.0 −1.27980 −0.639898 0.768460i $$-0.721023\pi$$
−0.639898 + 0.768460i $$0.721023\pi$$
$$968$$ 0 0
$$969$$ 0 0
$$970$$ 0 0
$$971$$ −45272.0 −1.49624 −0.748119 0.663564i $$-0.769043\pi$$
−0.748119 + 0.663564i $$0.769043\pi$$
$$972$$ 0 0
$$973$$ −10320.0 −0.340025
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ −25354.0 −0.830242 −0.415121 0.909766i $$-0.636261\pi$$
−0.415121 + 0.909766i $$0.636261\pi$$
$$978$$ 0 0
$$979$$ −8160.00 −0.266389
$$980$$ 0 0
$$981$$ 0 0
$$982$$ 0 0
$$983$$ −18744.0 −0.608180 −0.304090 0.952643i $$-0.598352\pi$$
−0.304090 + 0.952643i $$0.598352\pi$$
$$984$$ 0 0
$$985$$ 0 0
$$986$$ 0 0
$$987$$ 0 0
$$988$$ 0 0
$$989$$ −41920.0 −1.34780
$$990$$ 0 0
$$991$$ 59600.0 1.91045 0.955225 0.295880i $$-0.0956127\pi$$
0.955225 + 0.295880i $$0.0956127\pi$$
$$992$$ 0 0
$$993$$ 0 0
$$994$$ 0 0
$$995$$ 0 0
$$996$$ 0 0
$$997$$ 17886.0 0.568160 0.284080 0.958801i $$-0.408312\pi$$
0.284080 + 0.958801i $$0.408312\pi$$
$$998$$ 0 0
$$999$$ 0 0
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1800.4.a.e.1.1 1
3.2 odd 2 600.4.a.a.1.1 1
5.2 odd 4 1800.4.f.k.649.1 2
5.3 odd 4 1800.4.f.k.649.2 2
5.4 even 2 360.4.a.m.1.1 1
12.11 even 2 1200.4.a.bj.1.1 1
15.2 even 4 600.4.f.f.49.2 2
15.8 even 4 600.4.f.f.49.1 2
15.14 odd 2 120.4.a.e.1.1 1
20.19 odd 2 720.4.a.s.1.1 1
60.23 odd 4 1200.4.f.h.49.2 2
60.47 odd 4 1200.4.f.h.49.1 2
60.59 even 2 240.4.a.a.1.1 1
120.29 odd 2 960.4.a.q.1.1 1
120.59 even 2 960.4.a.bd.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
120.4.a.e.1.1 1 15.14 odd 2
240.4.a.a.1.1 1 60.59 even 2
360.4.a.m.1.1 1 5.4 even 2
600.4.a.a.1.1 1 3.2 odd 2
600.4.f.f.49.1 2 15.8 even 4
600.4.f.f.49.2 2 15.2 even 4
720.4.a.s.1.1 1 20.19 odd 2
960.4.a.q.1.1 1 120.29 odd 2
960.4.a.bd.1.1 1 120.59 even 2
1200.4.a.bj.1.1 1 12.11 even 2
1200.4.f.h.49.1 2 60.47 odd 4
1200.4.f.h.49.2 2 60.23 odd 4
1800.4.a.e.1.1 1 1.1 even 1 trivial
1800.4.f.k.649.1 2 5.2 odd 4
1800.4.f.k.649.2 2 5.3 odd 4