Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1800,4,Mod(1,1800)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1800, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1800.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 1800.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(106.203438010\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{129}) \) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{2} - x - 32 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{11}]\) |
Coefficient ring index: | \( 2 \) |
Twist minimal: | no (minimal twist has level 120) |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Embedding invariants
Embedding label | 1.2 | ||
Root | \(6.17891\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 1800.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 35.0735 | 1.89379 | 0.946894 | − | 0.321545i | \(-0.104202\pi\) | ||||
0.946894 | + | 0.321545i | \(0.104202\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | −25.6422 | −0.702855 | −0.351428 | − | 0.936215i | \(-0.614304\pi\) | ||||
−0.351428 | + | 0.936215i | \(0.614304\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | −37.6422 | −0.803082 | −0.401541 | − | 0.915841i | \(-0.631525\pi\) | ||||
−0.401541 | + | 0.915841i | \(0.631525\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | −95.7891 | −1.36660 | −0.683302 | − | 0.730136i | \(-0.739457\pi\) | ||||
−0.683302 | + | 0.730136i | \(0.739457\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 50.8625 | 0.614140 | 0.307070 | − | 0.951687i | \(-0.400651\pi\) | ||||
0.307070 | + | 0.951687i | \(0.400651\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 110.863 | 1.00506 | 0.502531 | − | 0.864559i | \(-0.332402\pi\) | ||||
0.502531 | + | 0.864559i | \(0.332402\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 54.5047 | 0.349009 | 0.174505 | − | 0.984656i | \(-0.444168\pi\) | ||||
0.174505 | + | 0.984656i | \(0.444168\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 198.441 | 1.14971 | 0.574855 | − | 0.818255i | \(-0.305059\pi\) | ||||
0.574855 | + | 0.818255i | \(0.305059\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | −266.945 | −1.18610 | −0.593048 | − | 0.805167i | \(-0.702076\pi\) | ||||
−0.593048 | + | 0.805167i | \(0.702076\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −103.853 | −0.395589 | −0.197794 | − | 0.980244i | \(-0.563378\pi\) | ||||
−0.197794 | + | 0.980244i | \(0.563378\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | −108.000 | −0.383020 | −0.191510 | − | 0.981491i | \(-0.561338\pi\) | ||||
−0.191510 | + | 0.981491i | \(0.561338\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 597.009 | 1.85283 | 0.926413 | − | 0.376510i | \(-0.122876\pi\) | ||||
0.926413 | + | 0.376510i | \(0.122876\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 887.147 | 2.58643 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | −305.642 | −0.792136 | −0.396068 | − | 0.918221i | \(-0.629625\pi\) | ||||
−0.396068 | + | 0.918221i | \(0.629625\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 223.533 | 0.493246 | 0.246623 | − | 0.969111i | \(-0.420679\pi\) | ||||
0.246623 | + | 0.969111i | \(0.420679\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 485.450 | 1.01894 | 0.509471 | − | 0.860488i | \(-0.329841\pi\) | ||||
0.509471 | + | 0.860488i | \(0.329841\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 876.166 | 1.59762 | 0.798811 | − | 0.601582i | \(-0.205463\pi\) | ||||
0.798811 | + | 0.601582i | \(0.205463\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | −585.597 | −0.978839 | −0.489420 | − | 0.872048i | \(-0.662791\pi\) | ||||
−0.489420 | + | 0.872048i | \(0.662791\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 1137.60 | 1.82391 | 0.911957 | − | 0.410287i | \(-0.134571\pi\) | ||||
0.911957 | + | 0.410287i | \(0.134571\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | −899.360 | −1.33106 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 685.009 | 0.975564 | 0.487782 | − | 0.872965i | \(-0.337806\pi\) | ||||
0.487782 | + | 0.872965i | \(0.337806\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 305.725 | 0.404309 | 0.202155 | − | 0.979354i | \(-0.435206\pi\) | ||||
0.202155 | + | 0.979354i | \(0.435206\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −887.175 | −1.05663 | −0.528317 | − | 0.849047i | \(-0.677177\pi\) | ||||
−0.528317 | + | 0.849047i | \(0.677177\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | −1320.24 | −1.52087 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 556.550 | 0.582568 | 0.291284 | − | 0.956637i | \(-0.405918\pi\) | ||||
0.291284 | + | 0.956637i | \(0.405918\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | −1591.09 | −1.56752 | −0.783760 | − | 0.621063i | \(-0.786701\pi\) | ||||
−0.783760 | + | 0.621063i | \(0.786701\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | −1350.95 | −1.29236 | −0.646178 | − | 0.763187i | \(-0.723634\pi\) | ||||
−0.646178 | + | 0.763187i | \(0.723634\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 1333.51 | 1.20481 | 0.602406 | − | 0.798190i | \(-0.294209\pi\) | ||||
0.602406 | + | 0.798190i | \(0.294209\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −609.910 | −0.535952 | −0.267976 | − | 0.963426i | \(-0.586355\pi\) | ||||
−0.267976 | + | 0.963426i | \(0.586355\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 241.808 | 0.201304 | 0.100652 | − | 0.994922i | \(-0.467907\pi\) | ||||
0.100652 | + | 0.994922i | \(0.467907\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | −3359.65 | −2.58806 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −673.478 | −0.505994 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 1045.94 | 0.730802 | 0.365401 | − | 0.930850i | \(-0.380932\pi\) | ||||
0.365401 | + | 0.930850i | \(0.380932\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 886.524 | 0.591267 | 0.295633 | − | 0.955301i | \(-0.404469\pi\) | ||||
0.295633 | + | 0.955301i | \(0.404469\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 1783.92 | 1.16305 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | −160.723 | −0.100230 | −0.0501150 | − | 0.998743i | \(-0.515959\pi\) | ||||
−0.0501150 | + | 0.998743i | \(0.515959\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −57.2655 | −0.0349439 | −0.0174719 | − | 0.999847i | \(-0.505562\pi\) | ||||
−0.0174719 | + | 0.999847i | \(0.505562\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 965.228 | 0.564450 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 1105.15 | 0.607633 | 0.303817 | − | 0.952731i | \(-0.401739\pi\) | ||||
0.303817 | + | 0.952731i | \(0.401739\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 2289.63 | 1.23396 | 0.616980 | − | 0.786979i | \(-0.288356\pi\) | ||||
0.616980 | + | 0.786979i | \(0.288356\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 161.514 | 0.0821034 | 0.0410517 | − | 0.999157i | \(-0.486929\pi\) | ||||
0.0410517 | + | 0.999157i | \(0.486929\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 3888.33 | 1.90338 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | −1594.15 | −0.766032 | −0.383016 | − | 0.923742i | \(-0.625115\pi\) | ||||
−0.383016 | + | 0.923742i | \(0.625115\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 1017.39 | 0.471427 | 0.235713 | − | 0.971823i | \(-0.424257\pi\) | ||||
0.235713 | + | 0.971823i | \(0.424257\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | −780.066 | −0.355060 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | −2444.49 | −1.07428 | −0.537142 | − | 0.843492i | \(-0.680496\pi\) | ||||
−0.537142 | + | 0.843492i | \(0.680496\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −222.780 | −0.0930242 | −0.0465121 | − | 0.998918i | \(-0.514811\pi\) | ||||
−0.0465121 | + | 0.998918i | \(0.514811\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −100.034 | −0.0410798 | −0.0205399 | − | 0.999789i | \(-0.506539\pi\) | ||||
−0.0205399 | + | 0.999789i | \(0.506539\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 2456.24 | 0.960525 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | −702.403 | −0.266095 | −0.133047 | − | 0.991110i | \(-0.542476\pi\) | ||||
−0.133047 | + | 0.991110i | \(0.542476\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 4126.63 | 1.53907 | 0.769537 | − | 0.638602i | \(-0.220487\pi\) | ||||
0.769537 | + | 0.638602i | \(0.220487\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 3104.45 | 1.12276 | 0.561378 | − | 0.827559i | \(-0.310271\pi\) | ||||
0.561378 | + | 0.827559i | \(0.310271\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −367.616 | −0.130953 | −0.0654764 | − | 0.997854i | \(-0.520857\pi\) | ||||
−0.0654764 | + | 0.997854i | \(0.520857\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 1911.67 | 0.660950 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | −1304.23 | −0.431652 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 2594.85 | 0.846619 | 0.423310 | − | 0.905985i | \(-0.360868\pi\) | ||||
0.423310 | + | 0.905985i | \(0.360868\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 6960.00 | 2.17731 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 3605.71 | 1.09749 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 1834.41 | 0.550857 | 0.275429 | − | 0.961321i | \(-0.411180\pi\) | ||||
0.275429 | + | 0.961321i | \(0.411180\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 175.811 | 0.0514053 | 0.0257027 | − | 0.999670i | \(-0.491818\pi\) | ||||
0.0257027 | + | 0.999670i | \(0.491818\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 1622.35 | 0.468158 | 0.234079 | − | 0.972218i | \(-0.424793\pi\) | ||||
0.234079 | + | 0.972218i | \(0.424793\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 3965.65 | 1.11501 | 0.557507 | − | 0.830172i | \(-0.311758\pi\) | ||||
0.557507 | + | 0.830172i | \(0.311758\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 6323.25 | 1.71137 | 0.855685 | − | 0.517497i | \(-0.173136\pi\) | ||||
0.855685 | + | 0.517497i | \(0.173136\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 3407.51 | 0.910775 | 0.455388 | − | 0.890293i | \(-0.349501\pi\) | ||||
0.455388 | + | 0.890293i | \(0.349501\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | −1914.58 | −0.493205 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −1345.81 | −0.338433 | −0.169216 | − | 0.985579i | \(-0.554124\pi\) | ||||
−0.169216 | + | 0.985579i | \(0.554124\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | −2842.76 | −0.706414 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 4697.19 | 1.14009 | 0.570044 | − | 0.821614i | \(-0.306926\pi\) | ||||
0.570044 | + | 0.821614i | \(0.306926\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | −9362.70 | −2.24621 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 4700.66 | 1.10211 | 0.551056 | − | 0.834468i | \(-0.314225\pi\) | ||||
0.551056 | + | 0.834468i | \(0.314225\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 7962.67 | 1.80481 | 0.902403 | − | 0.430894i | \(-0.141802\pi\) | ||||
0.902403 | + | 0.430894i | \(0.141802\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −6122.73 | −1.37243 | −0.686217 | − | 0.727397i | \(-0.740730\pi\) | ||||
−0.686217 | + | 0.727397i | \(0.740730\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 8417.57 | 1.82586 | 0.912930 | − | 0.408117i | \(-0.133814\pi\) | ||||
0.912930 | + | 0.408117i | \(0.133814\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −3030.99 | −0.643466 | −0.321733 | − | 0.946830i | \(-0.604265\pi\) | ||||
−0.321733 | + | 0.946830i | \(0.604265\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | −2890.81 | −0.607211 | −0.303606 | − | 0.952798i | \(-0.598191\pi\) | ||||
−0.303606 | + | 0.952798i | \(0.598191\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | −3642.49 | −0.749161 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 4262.55 | 0.867606 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | −8966.75 | −1.78786 | −0.893930 | − | 0.448206i | \(-0.852063\pi\) | ||||
−0.893930 | + | 0.448206i | \(0.852063\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | −4173.11 | −0.807147 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | −3787.93 | −0.725358 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 3298.42 | 0.613194 | 0.306597 | − | 0.951839i | \(-0.400810\pi\) | ||||
0.306597 | + | 0.951839i | \(0.400810\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 3394.92 | 0.618998 | 0.309499 | − | 0.950900i | \(-0.399839\pi\) | ||||
0.309499 | + | 0.950900i | \(0.399839\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 5946.95 | 1.07393 | 0.536967 | − | 0.843603i | \(-0.319570\pi\) | ||||
0.536967 | + | 0.843603i | \(0.319570\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 2520.83 | 0.446637 | 0.223318 | − | 0.974746i | \(-0.428311\pi\) | ||||
0.223318 | + | 0.974746i | \(0.428311\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | −1397.62 | −0.245303 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | −4872.08 | −0.839286 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 20939.2 | 3.50886 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −4586.86 | −0.761682 | −0.380841 | − | 0.924641i | \(-0.624365\pi\) | ||||
−0.380841 | + | 0.924641i | \(0.624365\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 8582.12 | 1.38723 | 0.693617 | − | 0.720344i | \(-0.256016\pi\) | ||||
0.693617 | + | 0.720344i | \(0.256016\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | −5088.45 | −0.808080 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 19085.1 | 3.00437 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 2539.38 | 0.392857 | 0.196428 | − | 0.980518i | \(-0.437066\pi\) | ||||
0.196428 | + | 0.980518i | \(0.437066\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −9002.82 | −1.38083 | −0.690415 | − | 0.723413i | \(-0.742572\pi\) | ||||
−0.690415 | + | 0.723413i | \(0.742572\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 3928.08 | 0.592267 | 0.296134 | − | 0.955146i | \(-0.404303\pi\) | ||||
0.296134 | + | 0.955146i | \(0.404303\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −10001.7 | −1.47039 | −0.735197 | − | 0.677854i | \(-0.762910\pi\) | ||||
−0.735197 | + | 0.677854i | \(0.762910\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −4272.00 | −0.622832 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | −5967.79 | −0.848818 | −0.424409 | − | 0.905471i | \(-0.639518\pi\) | ||||
−0.424409 | + | 0.905471i | \(0.639518\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | −10719.9 | −1.50014 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | −6931.55 | −0.962204 | −0.481102 | − | 0.876665i | \(-0.659763\pi\) | ||||
−0.481102 | + | 0.876665i | \(0.659763\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | −2051.68 | −0.280283 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 9711.70 | 1.31624 | 0.658122 | − | 0.752911i | \(-0.271351\pi\) | ||||
0.658122 | + | 0.752911i | \(0.271351\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 5664.84 | 0.755769 | 0.377885 | − | 0.925853i | \(-0.376652\pi\) | ||||
0.377885 | + | 0.925853i | \(0.376652\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | −8918.17 | −1.16239 | −0.581195 | − | 0.813765i | \(-0.697414\pi\) | ||||
−0.581195 | + | 0.813765i | \(0.697414\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | −10619.4 | −1.37352 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | −12849.9 | −1.62448 | −0.812242 | − | 0.583321i | \(-0.801753\pi\) | ||||
−0.812242 | + | 0.583321i | \(0.801753\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −3563.08 | −0.443721 | −0.221860 | − | 0.975078i | \(-0.571213\pi\) | ||||
−0.221860 | + | 0.975078i | \(0.571213\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | −7469.74 | −0.923311 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 6845.06 | 0.833654 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −2026.69 | −0.245020 | −0.122510 | − | 0.992467i | \(-0.539094\pi\) | ||||
−0.122510 | + | 0.992467i | \(0.539094\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 7840.07 | 0.934104 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 1670.39 | 0.194759 | 0.0973793 | − | 0.995247i | \(-0.468954\pi\) | ||||
0.0973793 | + | 0.995247i | \(0.468954\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 6079.66 | 0.703812 | 0.351906 | − | 0.936035i | \(-0.385534\pi\) | ||||
0.351906 | + | 0.936035i | \(0.385534\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 17026.4 | 1.92966 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −1719.37 | −0.192155 | −0.0960777 | − | 0.995374i | \(-0.530630\pi\) | ||||
−0.0960777 | + | 0.995374i | \(0.530630\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | −12024.9 | −1.33459 | −0.667296 | − | 0.744792i | \(-0.732549\pi\) | ||||
−0.667296 | + | 0.744792i | \(0.732549\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 5638.75 | 0.617249 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | −7542.97 | −0.820060 | −0.410030 | − | 0.912072i | \(-0.634482\pi\) | ||||
−0.410030 | + | 0.912072i | \(0.634482\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | −4578.13 | −0.491001 | −0.245501 | − | 0.969396i | \(-0.578952\pi\) | ||||
−0.245501 | + | 0.969396i | \(0.578952\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | −6875.21 | −0.722630 | −0.361315 | − | 0.932444i | \(-0.617672\pi\) | ||||
−0.361315 | + | 0.932444i | \(0.617672\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 2663.02 | 0.278042 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 7351.97 | 0.752540 | 0.376270 | − | 0.926510i | \(-0.377207\pi\) | ||||
0.376270 | + | 0.926510i | \(0.377207\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 15614.5 | 1.57752 | 0.788762 | − | 0.614698i | \(-0.210722\pi\) | ||||
0.788762 | + | 0.614698i | \(0.210722\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 1684.73 | 0.169106 | 0.0845530 | − | 0.996419i | \(-0.473054\pi\) | ||||
0.0845530 | + | 0.996419i | \(0.473054\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 10235.2 | 1.01420 | 0.507099 | − | 0.861888i | \(-0.330718\pi\) | ||||
0.507099 | + | 0.861888i | \(0.330718\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 30730.2 | 3.02556 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 2769.36 | 0.269207 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | −12247.2 | −1.16825 | −0.584123 | − | 0.811665i | \(-0.698561\pi\) | ||||
−0.584123 | + | 0.811665i | \(0.698561\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 10048.4 | 0.952532 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 7895.91 | 0.734698 | 0.367349 | − | 0.930083i | \(-0.380265\pi\) | ||||
0.367349 | + | 0.930083i | \(0.380265\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 7625.48 | 0.700882 | 0.350441 | − | 0.936585i | \(-0.386032\pi\) | ||||
0.350441 | + | 0.936585i | \(0.386032\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | −5220.96 | −0.476958 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | −20538.9 | −1.85371 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −8655.23 | −0.776476 | −0.388238 | − | 0.921559i | \(-0.626916\pi\) | ||||
−0.388238 | + | 0.921559i | \(0.626916\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 118.441 | 0.0104990 | 0.00524951 | − | 0.999986i | \(-0.498329\pi\) | ||||
0.00524951 | + | 0.999986i | \(0.498329\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | −5359.43 | −0.466704 | −0.233352 | − | 0.972392i | \(-0.574970\pi\) | ||||
−0.233352 | + | 0.972392i | \(0.574970\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 39899.5 | 3.45411 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | −15308.6 | −1.30227 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 10862.4 | 0.913414 | 0.456707 | − | 0.889617i | \(-0.349029\pi\) | ||||
0.456707 | + | 0.889617i | \(0.349029\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 9553.39 | 0.798740 | 0.399370 | − | 0.916790i | \(-0.369229\pi\) | ||||
0.399370 | + | 0.916790i | \(0.369229\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | −19008.5 | −1.57120 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 123.501 | 0.0101505 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 3909.26 | 0.317690 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | −22748.4 | −1.81789 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −6132.47 | −0.487348 | −0.243674 | − | 0.969857i | \(-0.578353\pi\) | ||||
−0.243674 | + | 0.969857i | \(0.578353\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 2853.85 | 0.223075 | 0.111537 | − | 0.993760i | \(-0.464422\pi\) | ||||
0.111537 | + | 0.993760i | \(0.464422\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 2772.25 | 0.214341 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 24025.6 | 1.84751 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 5192.60 | 0.395005 | 0.197502 | − | 0.980302i | \(-0.436717\pi\) | ||||
0.197502 | + | 0.980302i | \(0.436717\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 4065.36 | 0.307596 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | −10907.2 | −0.816492 | −0.408246 | − | 0.912872i | \(-0.633859\pi\) | ||||
−0.408246 | + | 0.912872i | \(0.633859\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 155.257 | 0.0114389 | 0.00571945 | − | 0.999984i | \(-0.498179\pi\) | ||||
0.00571945 | + | 0.999984i | \(0.498179\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −4925.15 | −0.360965 | −0.180483 | − | 0.983578i | \(-0.557766\pi\) | ||||
−0.180483 | + | 0.983578i | \(0.557766\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | −5292.05 | −0.381822 | −0.190911 | − | 0.981607i | \(-0.561144\pi\) | ||||
−0.190911 | + | 0.981607i | \(0.561144\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 10722.8 | 0.765677 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 7837.33 | 0.556757 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 19658.5 | 1.38227 | 0.691134 | − | 0.722727i | \(-0.257112\pi\) | ||||
0.691134 | + | 0.722727i | \(0.257112\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 10093.2 | 0.706083 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | −6578.08 | −0.455530 | −0.227765 | − | 0.973716i | \(-0.573142\pi\) | ||||
−0.227765 | + | 0.973716i | \(0.573142\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −16915.9 | −1.15386 | −0.576931 | − | 0.816793i | \(-0.695750\pi\) | ||||
−0.576931 | + | 0.816793i | \(0.695750\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 19801.4 | 1.34395 | 0.671977 | − | 0.740572i | \(-0.265445\pi\) | ||||
0.671977 | + | 0.740572i | \(0.265445\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | −22498.4 | −1.50442 | −0.752208 | − | 0.658926i | \(-0.771011\pi\) | ||||
−0.752208 | + | 0.658926i | \(0.771011\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | −22472.7 | −1.48797 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | −23829.3 | −1.57008 | −0.785039 | − | 0.619446i | \(-0.787357\pi\) | ||||
−0.785039 | + | 0.619446i | \(0.787357\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 4277.52 | 0.279103 | 0.139551 | − | 0.990215i | \(-0.455434\pi\) | ||||
0.139551 | + | 0.990215i | \(0.455434\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 4995.99 | 0.324404 | 0.162202 | − | 0.986758i | \(-0.448140\pi\) | ||||
0.162202 | + | 0.986758i | \(0.448140\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | −31116.3 | −2.00104 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 25570.5 | 1.62092 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −11328.0 | −0.714675 | −0.357337 | − | 0.933975i | \(-0.616315\pi\) | ||||
−0.357337 | + | 0.933975i | \(0.616315\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | −33394.1 | −2.07712 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −5955.35 | −0.366961 | −0.183481 | − | 0.983023i | \(-0.558736\pi\) | ||||
−0.183481 | + | 0.983023i | \(0.558736\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | −15727.7 | −0.964605 | −0.482302 | − | 0.876005i | \(-0.660199\pi\) | ||||
−0.482302 | + | 0.876005i | \(0.660199\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | −9582.24 | −0.582252 | −0.291126 | − | 0.956685i | \(-0.594030\pi\) | ||||
−0.291126 | + | 0.956685i | \(0.594030\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −5731.87 | −0.346681 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 8313.70 | 0.498224 | 0.249112 | − | 0.968475i | \(-0.419861\pi\) | ||||
0.249112 | + | 0.968475i | \(0.419861\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −15095.5 | −0.892317 | −0.446158 | − | 0.894954i | \(-0.647208\pi\) | ||||
−0.446158 | + | 0.894954i | \(0.647208\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 8266.98 | 0.486457 | 0.243229 | − | 0.969969i | \(-0.421793\pi\) | ||||
0.243229 | + | 0.969969i | \(0.421793\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 6042.53 | 0.350776 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | −12448.0 | −0.716170 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | −11186.7 | −0.640735 | −0.320367 | − | 0.947293i | \(-0.603806\pi\) | ||||
−0.320367 | + | 0.947293i | \(0.603806\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 7675.84 | 0.435756 | 0.217878 | − | 0.975976i | \(-0.430087\pi\) | ||||
0.217878 | + | 0.975976i | \(0.430087\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 19520.1 | 1.10326 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 10550.9 | 0.591099 | 0.295549 | − | 0.955327i | \(-0.404497\pi\) | ||||
0.295549 | + | 0.955327i | \(0.404497\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 11505.0 | 0.636150 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −26950.9 | −1.48373 | −0.741867 | − | 0.670547i | \(-0.766060\pi\) | ||||
−0.741867 | + | 0.670547i | \(0.766060\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 9947.99 | 0.540613 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | −12791.6 | −0.689204 | −0.344602 | − | 0.938749i | \(-0.611986\pi\) | ||||
−0.344602 | + | 0.938749i | \(0.611986\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | −13577.5 | −0.728429 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | −55805.1 | −2.96855 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −16238.3 | −0.860142 | −0.430071 | − | 0.902795i | \(-0.641511\pi\) | ||||
−0.430071 | + | 0.902795i | \(0.641511\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 21999.6 | 1.15553 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 24285.8 | 1.25968 | 0.629839 | − | 0.776726i | \(-0.283121\pi\) | ||||
0.629839 | + | 0.776726i | \(0.283121\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −47382.3 | −2.44745 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | −4466.82 | −0.227875 | −0.113937 | − | 0.993488i | \(-0.536346\pi\) | ||||
−0.113937 | + | 0.993488i | \(0.536346\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 10345.2 | 0.523436 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 30802.1 | 1.55212 | 0.776059 | − | 0.630661i | \(-0.217216\pi\) | ||||
0.776059 | + | 0.630661i | \(0.217216\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | −22466.8 | −1.12290 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −12920.5 | −0.643151 | −0.321576 | − | 0.946884i | \(-0.604212\pi\) | ||||
−0.321576 | + | 0.946884i | \(0.604212\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 2571.29 | 0.126960 | 0.0634802 | − | 0.997983i | \(-0.479780\pi\) | ||||
0.0634802 | + | 0.997983i | \(0.479780\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 46770.7 | 2.28166 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | −13427.4 | −0.652426 | −0.326213 | − | 0.945296i | \(-0.605773\pi\) | ||||
−0.326213 | + | 0.945296i | \(0.605773\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | −7103.66 | −0.341066 | −0.170533 | − | 0.985352i | \(-0.554549\pi\) | ||||
−0.170533 | + | 0.985352i | \(0.554549\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −19205.2 | −0.914831 | −0.457416 | − | 0.889253i | \(-0.651225\pi\) | ||||
−0.457416 | + | 0.889253i | \(0.651225\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | −21391.6 | −1.01498 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | −8414.27 | −0.396117 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 19508.1 | 0.914799 | 0.457399 | − | 0.889261i | \(-0.348781\pi\) | ||||
0.457399 | + | 0.889261i | \(0.348781\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 38852.5 | 1.80780 | 0.903899 | − | 0.427746i | \(-0.140692\pi\) | ||||
0.903899 | + | 0.427746i | \(0.140692\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | −5282.23 | −0.242947 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 15016.0 | 0.687982 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | −24851.1 | −1.12560 | −0.562799 | − | 0.826594i | \(-0.690275\pi\) | ||||
−0.562799 | + | 0.826594i | \(0.690275\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 8481.04 | 0.381228 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | −18273.4 | −0.818295 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 33040.1 | 1.46843 | 0.734216 | − | 0.678916i | \(-0.237550\pi\) | ||||
0.734216 | + | 0.678916i | \(0.237550\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | −57187.0 | −2.53208 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | −29170.5 | −1.28195 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −10756.6 | −0.467467 | −0.233734 | − | 0.972301i | \(-0.575094\pi\) | ||||
−0.233734 | + | 0.972301i | \(0.575094\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | −5985.48 | −0.259160 | −0.129580 | − | 0.991569i | \(-0.541363\pi\) | ||||
−0.129580 | + | 0.991569i | \(0.541363\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | −5493.15 | −0.235228 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | −16426.4 | −0.698276 | −0.349138 | − | 0.937071i | \(-0.613526\pi\) | ||||
−0.349138 | + | 0.937071i | \(0.613526\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | −27124.3 | −1.14884 | −0.574419 | − | 0.818561i | \(-0.694772\pi\) | ||||
−0.574419 | + | 0.818561i | \(0.694772\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 32759.9 | 1.37748 | 0.688738 | − | 0.725011i | \(-0.258165\pi\) | ||||
0.688738 | + | 0.725011i | \(0.258165\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −18211.8 | −0.762995 | −0.381498 | − | 0.924370i | \(-0.624592\pi\) | ||||
−0.381498 | + | 0.924370i | \(0.624592\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | −84979.0 | −3.53463 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 37500.6 | 1.54310 | 0.771552 | − | 0.636166i | \(-0.219481\pi\) | ||||
0.771552 | + | 0.636166i | \(0.219481\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −21418.2 | −0.878192 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | −23621.2 | −0.958246 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | −29594.2 | −1.19210 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 2421.81 | 0.0972112 | 0.0486056 | − | 0.998818i | \(-0.484522\pi\) | ||||
0.0486056 | + | 0.998818i | \(0.484522\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | −37700.0 | −1.50269 | −0.751346 | − | 0.659908i | \(-0.770595\pi\) | ||||
−0.751346 | + | 0.659908i | \(0.770595\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −14709.0 | −0.584242 | −0.292121 | − | 0.956381i | \(-0.594361\pi\) | ||||
−0.292121 | + | 0.956381i | \(0.594361\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 28950.4 | 1.14193 | 0.570963 | − | 0.820975i | \(-0.306570\pi\) | ||||
0.570963 | + | 0.820975i | \(0.306570\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | −17565.1 | −0.685681 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | −32980.8 | −1.28302 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | −17501.3 | −0.673860 | −0.336930 | − | 0.941530i | \(-0.609389\pi\) | ||||
−0.336930 | + | 0.941530i | \(0.609389\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 45136.0 | 1.72607 | 0.863037 | − | 0.505140i | \(-0.168559\pi\) | ||||
0.863037 | + | 0.505140i | \(0.168559\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 51564.8 | 1.96522 | 0.982612 | − | 0.185673i | \(-0.0594464\pi\) | ||||
0.982612 | + | 0.185673i | \(0.0594464\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 19226.4 | 0.727800 | 0.363900 | − | 0.931438i | \(-0.381445\pi\) | ||||
0.363900 | + | 0.931438i | \(0.381445\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 36684.6 | 1.38398 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 30365.4 | 1.13789 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 10816.0 | 0.401259 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 29277.2 | 1.08254 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | −32050.1 | −1.17333 | −0.586663 | − | 0.809831i | \(-0.699559\pi\) | ||||
−0.586663 | + | 0.809831i | \(0.699559\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 29674.6 | 1.07921 | 0.539606 | − | 0.841918i | \(-0.318573\pi\) | ||||
0.539606 | + | 0.841918i | \(0.318573\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | −7839.46 | −0.284171 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 31093.4 | 1.11973 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −6029.99 | −0.216443 | −0.108221 | − | 0.994127i | \(-0.534516\pi\) | ||||
−0.108221 | + | 0.994127i | \(0.534516\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 22043.2 | 0.786088 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 35365.2 | 1.24897 | 0.624485 | − | 0.781037i | \(-0.285309\pi\) | ||||
0.624485 | + | 0.781037i | \(0.285309\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 45122.5 | 1.58843 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | −35637.0 | −1.24249 | −0.621243 | − | 0.783618i | \(-0.713372\pi\) | ||||
−0.621243 | + | 0.783618i | \(0.713372\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 6609.70 | 0.228980 | 0.114490 | − | 0.993424i | \(-0.463477\pi\) | ||||
0.114490 | + | 0.993424i | \(0.463477\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | −11513.4 | −0.397591 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | −42650.9 | −1.46354 | −0.731768 | − | 0.681553i | \(-0.761305\pi\) | ||||
−0.731768 | + | 0.681553i | \(0.761305\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −42821.6 | −1.46475 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | −38382.4 | −1.30465 | −0.652323 | − | 0.757941i | \(-0.726205\pi\) | ||||
−0.652323 | + | 0.757941i | \(0.726205\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | −5637.11 | −0.189814 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | 9587.71 | 0.321832 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | −2611.76 | −0.0868549 | −0.0434275 | − | 0.999057i | \(-0.513828\pi\) | ||||
−0.0434275 | + | 0.999057i | \(0.513828\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −7846.09 | −0.259313 | −0.129657 | − | 0.991559i | \(-0.541387\pi\) | ||||
−0.129657 | + | 0.991559i | \(0.541387\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | −2008.50 | −0.0661763 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | −35667.2 | −1.16796 | −0.583979 | − | 0.811769i | \(-0.698505\pi\) | ||||
−0.583979 | + | 0.811769i | \(0.698505\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 22749.1 | 0.742661 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | −13421.6 | −0.435485 | −0.217742 | − | 0.976006i | \(-0.569869\pi\) | ||||
−0.217742 | + | 0.976006i | \(0.569869\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | −11973.2 | −0.384959 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 40673.7 | 1.30378 | 0.651888 | − | 0.758315i | \(-0.273977\pi\) | ||||
0.651888 | + | 0.758315i | \(0.273977\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 29558.8 | 0.938954 | 0.469477 | − | 0.882945i | \(-0.344442\pi\) | ||||
0.469477 | + | 0.882945i | \(0.344442\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 1800.4.a.bn.1.2 | 2 | ||
3.2 | odd | 2 | 600.4.a.t.1.2 | 2 | |||
5.2 | odd | 4 | 360.4.f.d.289.4 | 4 | |||
5.3 | odd | 4 | 360.4.f.d.289.3 | 4 | |||
5.4 | even | 2 | 1800.4.a.bl.1.1 | 2 | |||
12.11 | even | 2 | 1200.4.a.bq.1.1 | 2 | |||
15.2 | even | 4 | 120.4.f.d.49.3 | yes | 4 | ||
15.8 | even | 4 | 120.4.f.d.49.1 | ✓ | 4 | ||
15.14 | odd | 2 | 600.4.a.v.1.1 | 2 | |||
20.3 | even | 4 | 720.4.f.i.289.3 | 4 | |||
20.7 | even | 4 | 720.4.f.i.289.4 | 4 | |||
60.23 | odd | 4 | 240.4.f.g.49.3 | 4 | |||
60.47 | odd | 4 | 240.4.f.g.49.1 | 4 | |||
60.59 | even | 2 | 1200.4.a.bo.1.2 | 2 | |||
120.53 | even | 4 | 960.4.f.n.769.4 | 4 | |||
120.77 | even | 4 | 960.4.f.n.769.2 | 4 | |||
120.83 | odd | 4 | 960.4.f.o.769.2 | 4 | |||
120.107 | odd | 4 | 960.4.f.o.769.4 | 4 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
120.4.f.d.49.1 | ✓ | 4 | 15.8 | even | 4 | ||
120.4.f.d.49.3 | yes | 4 | 15.2 | even | 4 | ||
240.4.f.g.49.1 | 4 | 60.47 | odd | 4 | |||
240.4.f.g.49.3 | 4 | 60.23 | odd | 4 | |||
360.4.f.d.289.3 | 4 | 5.3 | odd | 4 | |||
360.4.f.d.289.4 | 4 | 5.2 | odd | 4 | |||
600.4.a.t.1.2 | 2 | 3.2 | odd | 2 | |||
600.4.a.v.1.1 | 2 | 15.14 | odd | 2 | |||
720.4.f.i.289.3 | 4 | 20.3 | even | 4 | |||
720.4.f.i.289.4 | 4 | 20.7 | even | 4 | |||
960.4.f.n.769.2 | 4 | 120.77 | even | 4 | |||
960.4.f.n.769.4 | 4 | 120.53 | even | 4 | |||
960.4.f.o.769.2 | 4 | 120.83 | odd | 4 | |||
960.4.f.o.769.4 | 4 | 120.107 | odd | 4 | |||
1200.4.a.bo.1.2 | 2 | 60.59 | even | 2 | |||
1200.4.a.bq.1.1 | 2 | 12.11 | even | 2 | |||
1800.4.a.bl.1.1 | 2 | 5.4 | even | 2 | |||
1800.4.a.bn.1.2 | 2 | 1.1 | even | 1 | trivial |