Properties

Label 1800.4.a.bn.1.2
Level $1800$
Weight $4$
Character 1800.1
Self dual yes
Analytic conductor $106.203$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1800,4,Mod(1,1800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1800.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1800.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(106.203438010\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{129}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 32 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 120)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(6.17891\) of defining polynomial
Character \(\chi\) \(=\) 1800.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+35.0735 q^{7} +O(q^{10})\) \(q+35.0735 q^{7} -25.6422 q^{11} -37.6422 q^{13} -95.7891 q^{17} +50.8625 q^{19} +110.863 q^{23} +54.5047 q^{29} +198.441 q^{31} -266.945 q^{37} -103.853 q^{41} -108.000 q^{43} +597.009 q^{47} +887.147 q^{49} -305.642 q^{53} +223.533 q^{59} +485.450 q^{61} +876.166 q^{67} -585.597 q^{71} +1137.60 q^{73} -899.360 q^{77} +685.009 q^{79} +305.725 q^{83} -887.175 q^{89} -1320.24 q^{91} +556.550 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{7} - 74 q^{11} - 98 q^{13} - 78 q^{17} - 80 q^{19} + 40 q^{23} - 50 q^{29} - 12 q^{31} + 34 q^{37} - 344 q^{41} - 216 q^{43} + 876 q^{47} + 1638 q^{49} - 634 q^{53} - 666 q^{59} + 244 q^{61} + 980 q^{67} - 308 q^{71} + 1412 q^{73} + 700 q^{77} + 1052 q^{79} + 248 q^{83} - 684 q^{89} + 676 q^{91} + 1840 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 35.0735 1.89379 0.946894 0.321545i \(-0.104202\pi\)
0.946894 + 0.321545i \(0.104202\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −25.6422 −0.702855 −0.351428 0.936215i \(-0.614304\pi\)
−0.351428 + 0.936215i \(0.614304\pi\)
\(12\) 0 0
\(13\) −37.6422 −0.803082 −0.401541 0.915841i \(-0.631525\pi\)
−0.401541 + 0.915841i \(0.631525\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −95.7891 −1.36660 −0.683302 0.730136i \(-0.739457\pi\)
−0.683302 + 0.730136i \(0.739457\pi\)
\(18\) 0 0
\(19\) 50.8625 0.614140 0.307070 0.951687i \(-0.400651\pi\)
0.307070 + 0.951687i \(0.400651\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 110.863 1.00506 0.502531 0.864559i \(-0.332402\pi\)
0.502531 + 0.864559i \(0.332402\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 54.5047 0.349009 0.174505 0.984656i \(-0.444168\pi\)
0.174505 + 0.984656i \(0.444168\pi\)
\(30\) 0 0
\(31\) 198.441 1.14971 0.574855 0.818255i \(-0.305059\pi\)
0.574855 + 0.818255i \(0.305059\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −266.945 −1.18610 −0.593048 0.805167i \(-0.702076\pi\)
−0.593048 + 0.805167i \(0.702076\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −103.853 −0.395589 −0.197794 0.980244i \(-0.563378\pi\)
−0.197794 + 0.980244i \(0.563378\pi\)
\(42\) 0 0
\(43\) −108.000 −0.383020 −0.191510 0.981491i \(-0.561338\pi\)
−0.191510 + 0.981491i \(0.561338\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 597.009 1.85283 0.926413 0.376510i \(-0.122876\pi\)
0.926413 + 0.376510i \(0.122876\pi\)
\(48\) 0 0
\(49\) 887.147 2.58643
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −305.642 −0.792136 −0.396068 0.918221i \(-0.629625\pi\)
−0.396068 + 0.918221i \(0.629625\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 223.533 0.493246 0.246623 0.969111i \(-0.420679\pi\)
0.246623 + 0.969111i \(0.420679\pi\)
\(60\) 0 0
\(61\) 485.450 1.01894 0.509471 0.860488i \(-0.329841\pi\)
0.509471 + 0.860488i \(0.329841\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 876.166 1.59762 0.798811 0.601582i \(-0.205463\pi\)
0.798811 + 0.601582i \(0.205463\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −585.597 −0.978839 −0.489420 0.872048i \(-0.662791\pi\)
−0.489420 + 0.872048i \(0.662791\pi\)
\(72\) 0 0
\(73\) 1137.60 1.82391 0.911957 0.410287i \(-0.134571\pi\)
0.911957 + 0.410287i \(0.134571\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −899.360 −1.33106
\(78\) 0 0
\(79\) 685.009 0.975564 0.487782 0.872965i \(-0.337806\pi\)
0.487782 + 0.872965i \(0.337806\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 305.725 0.404309 0.202155 0.979354i \(-0.435206\pi\)
0.202155 + 0.979354i \(0.435206\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −887.175 −1.05663 −0.528317 0.849047i \(-0.677177\pi\)
−0.528317 + 0.849047i \(0.677177\pi\)
\(90\) 0 0
\(91\) −1320.24 −1.52087
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 556.550 0.582568 0.291284 0.956637i \(-0.405918\pi\)
0.291284 + 0.956637i \(0.405918\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1591.09 −1.56752 −0.783760 0.621063i \(-0.786701\pi\)
−0.783760 + 0.621063i \(0.786701\pi\)
\(102\) 0 0
\(103\) −1350.95 −1.29236 −0.646178 0.763187i \(-0.723634\pi\)
−0.646178 + 0.763187i \(0.723634\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1333.51 1.20481 0.602406 0.798190i \(-0.294209\pi\)
0.602406 + 0.798190i \(0.294209\pi\)
\(108\) 0 0
\(109\) −609.910 −0.535952 −0.267976 0.963426i \(-0.586355\pi\)
−0.267976 + 0.963426i \(0.586355\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 241.808 0.201304 0.100652 0.994922i \(-0.467907\pi\)
0.100652 + 0.994922i \(0.467907\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3359.65 −2.58806
\(120\) 0 0
\(121\) −673.478 −0.505994
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 1045.94 0.730802 0.365401 0.930850i \(-0.380932\pi\)
0.365401 + 0.930850i \(0.380932\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 886.524 0.591267 0.295633 0.955301i \(-0.404469\pi\)
0.295633 + 0.955301i \(0.404469\pi\)
\(132\) 0 0
\(133\) 1783.92 1.16305
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −160.723 −0.100230 −0.0501150 0.998743i \(-0.515959\pi\)
−0.0501150 + 0.998743i \(0.515959\pi\)
\(138\) 0 0
\(139\) −57.2655 −0.0349439 −0.0174719 0.999847i \(-0.505562\pi\)
−0.0174719 + 0.999847i \(0.505562\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 965.228 0.564450
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1105.15 0.607633 0.303817 0.952731i \(-0.401739\pi\)
0.303817 + 0.952731i \(0.401739\pi\)
\(150\) 0 0
\(151\) 2289.63 1.23396 0.616980 0.786979i \(-0.288356\pi\)
0.616980 + 0.786979i \(0.288356\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 161.514 0.0821034 0.0410517 0.999157i \(-0.486929\pi\)
0.0410517 + 0.999157i \(0.486929\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3888.33 1.90338
\(162\) 0 0
\(163\) −1594.15 −0.766032 −0.383016 0.923742i \(-0.625115\pi\)
−0.383016 + 0.923742i \(0.625115\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1017.39 0.471427 0.235713 0.971823i \(-0.424257\pi\)
0.235713 + 0.971823i \(0.424257\pi\)
\(168\) 0 0
\(169\) −780.066 −0.355060
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2444.49 −1.07428 −0.537142 0.843492i \(-0.680496\pi\)
−0.537142 + 0.843492i \(0.680496\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −222.780 −0.0930242 −0.0465121 0.998918i \(-0.514811\pi\)
−0.0465121 + 0.998918i \(0.514811\pi\)
\(180\) 0 0
\(181\) −100.034 −0.0410798 −0.0205399 0.999789i \(-0.506539\pi\)
−0.0205399 + 0.999789i \(0.506539\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 2456.24 0.960525
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −702.403 −0.266095 −0.133047 0.991110i \(-0.542476\pi\)
−0.133047 + 0.991110i \(0.542476\pi\)
\(192\) 0 0
\(193\) 4126.63 1.53907 0.769537 0.638602i \(-0.220487\pi\)
0.769537 + 0.638602i \(0.220487\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3104.45 1.12276 0.561378 0.827559i \(-0.310271\pi\)
0.561378 + 0.827559i \(0.310271\pi\)
\(198\) 0 0
\(199\) −367.616 −0.130953 −0.0654764 0.997854i \(-0.520857\pi\)
−0.0654764 + 0.997854i \(0.520857\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1911.67 0.660950
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1304.23 −0.431652
\(210\) 0 0
\(211\) 2594.85 0.846619 0.423310 0.905985i \(-0.360868\pi\)
0.423310 + 0.905985i \(0.360868\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 6960.00 2.17731
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3605.71 1.09749
\(222\) 0 0
\(223\) 1834.41 0.550857 0.275429 0.961321i \(-0.411180\pi\)
0.275429 + 0.961321i \(0.411180\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 175.811 0.0514053 0.0257027 0.999670i \(-0.491818\pi\)
0.0257027 + 0.999670i \(0.491818\pi\)
\(228\) 0 0
\(229\) 1622.35 0.468158 0.234079 0.972218i \(-0.424793\pi\)
0.234079 + 0.972218i \(0.424793\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3965.65 1.11501 0.557507 0.830172i \(-0.311758\pi\)
0.557507 + 0.830172i \(0.311758\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 6323.25 1.71137 0.855685 0.517497i \(-0.173136\pi\)
0.855685 + 0.517497i \(0.173136\pi\)
\(240\) 0 0
\(241\) 3407.51 0.910775 0.455388 0.890293i \(-0.349501\pi\)
0.455388 + 0.890293i \(0.349501\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1914.58 −0.493205
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1345.81 −0.338433 −0.169216 0.985579i \(-0.554124\pi\)
−0.169216 + 0.985579i \(0.554124\pi\)
\(252\) 0 0
\(253\) −2842.76 −0.706414
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4697.19 1.14009 0.570044 0.821614i \(-0.306926\pi\)
0.570044 + 0.821614i \(0.306926\pi\)
\(258\) 0 0
\(259\) −9362.70 −2.24621
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4700.66 1.10211 0.551056 0.834468i \(-0.314225\pi\)
0.551056 + 0.834468i \(0.314225\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 7962.67 1.80481 0.902403 0.430894i \(-0.141802\pi\)
0.902403 + 0.430894i \(0.141802\pi\)
\(270\) 0 0
\(271\) −6122.73 −1.37243 −0.686217 0.727397i \(-0.740730\pi\)
−0.686217 + 0.727397i \(0.740730\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 8417.57 1.82586 0.912930 0.408117i \(-0.133814\pi\)
0.912930 + 0.408117i \(0.133814\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −3030.99 −0.643466 −0.321733 0.946830i \(-0.604265\pi\)
−0.321733 + 0.946830i \(0.604265\pi\)
\(282\) 0 0
\(283\) −2890.81 −0.607211 −0.303606 0.952798i \(-0.598191\pi\)
−0.303606 + 0.952798i \(0.598191\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −3642.49 −0.749161
\(288\) 0 0
\(289\) 4262.55 0.867606
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −8966.75 −1.78786 −0.893930 0.448206i \(-0.852063\pi\)
−0.893930 + 0.448206i \(0.852063\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −4173.11 −0.807147
\(300\) 0 0
\(301\) −3787.93 −0.725358
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 3298.42 0.613194 0.306597 0.951839i \(-0.400810\pi\)
0.306597 + 0.951839i \(0.400810\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 3394.92 0.618998 0.309499 0.950900i \(-0.399839\pi\)
0.309499 + 0.950900i \(0.399839\pi\)
\(312\) 0 0
\(313\) 5946.95 1.07393 0.536967 0.843603i \(-0.319570\pi\)
0.536967 + 0.843603i \(0.319570\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2520.83 0.446637 0.223318 0.974746i \(-0.428311\pi\)
0.223318 + 0.974746i \(0.428311\pi\)
\(318\) 0 0
\(319\) −1397.62 −0.245303
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −4872.08 −0.839286
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 20939.2 3.50886
\(330\) 0 0
\(331\) −4586.86 −0.761682 −0.380841 0.924641i \(-0.624365\pi\)
−0.380841 + 0.924641i \(0.624365\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 8582.12 1.38723 0.693617 0.720344i \(-0.256016\pi\)
0.693617 + 0.720344i \(0.256016\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −5088.45 −0.808080
\(342\) 0 0
\(343\) 19085.1 3.00437
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2539.38 0.392857 0.196428 0.980518i \(-0.437066\pi\)
0.196428 + 0.980518i \(0.437066\pi\)
\(348\) 0 0
\(349\) −9002.82 −1.38083 −0.690415 0.723413i \(-0.742572\pi\)
−0.690415 + 0.723413i \(0.742572\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 3928.08 0.592267 0.296134 0.955146i \(-0.404303\pi\)
0.296134 + 0.955146i \(0.404303\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −10001.7 −1.47039 −0.735197 0.677854i \(-0.762910\pi\)
−0.735197 + 0.677854i \(0.762910\pi\)
\(360\) 0 0
\(361\) −4272.00 −0.622832
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −5967.79 −0.848818 −0.424409 0.905471i \(-0.639518\pi\)
−0.424409 + 0.905471i \(0.639518\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −10719.9 −1.50014
\(372\) 0 0
\(373\) −6931.55 −0.962204 −0.481102 0.876665i \(-0.659763\pi\)
−0.481102 + 0.876665i \(0.659763\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2051.68 −0.280283
\(378\) 0 0
\(379\) 9711.70 1.31624 0.658122 0.752911i \(-0.271351\pi\)
0.658122 + 0.752911i \(0.271351\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 5664.84 0.755769 0.377885 0.925853i \(-0.376652\pi\)
0.377885 + 0.925853i \(0.376652\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −8918.17 −1.16239 −0.581195 0.813765i \(-0.697414\pi\)
−0.581195 + 0.813765i \(0.697414\pi\)
\(390\) 0 0
\(391\) −10619.4 −1.37352
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −12849.9 −1.62448 −0.812242 0.583321i \(-0.801753\pi\)
−0.812242 + 0.583321i \(0.801753\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3563.08 −0.443721 −0.221860 0.975078i \(-0.571213\pi\)
−0.221860 + 0.975078i \(0.571213\pi\)
\(402\) 0 0
\(403\) −7469.74 −0.923311
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 6845.06 0.833654
\(408\) 0 0
\(409\) −2026.69 −0.245020 −0.122510 0.992467i \(-0.539094\pi\)
−0.122510 + 0.992467i \(0.539094\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 7840.07 0.934104
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 1670.39 0.194759 0.0973793 0.995247i \(-0.468954\pi\)
0.0973793 + 0.995247i \(0.468954\pi\)
\(420\) 0 0
\(421\) 6079.66 0.703812 0.351906 0.936035i \(-0.385534\pi\)
0.351906 + 0.936035i \(0.385534\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 17026.4 1.92966
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −1719.37 −0.192155 −0.0960777 0.995374i \(-0.530630\pi\)
−0.0960777 + 0.995374i \(0.530630\pi\)
\(432\) 0 0
\(433\) −12024.9 −1.33459 −0.667296 0.744792i \(-0.732549\pi\)
−0.667296 + 0.744792i \(0.732549\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5638.75 0.617249
\(438\) 0 0
\(439\) −7542.97 −0.820060 −0.410030 0.912072i \(-0.634482\pi\)
−0.410030 + 0.912072i \(0.634482\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −4578.13 −0.491001 −0.245501 0.969396i \(-0.578952\pi\)
−0.245501 + 0.969396i \(0.578952\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −6875.21 −0.722630 −0.361315 0.932444i \(-0.617672\pi\)
−0.361315 + 0.932444i \(0.617672\pi\)
\(450\) 0 0
\(451\) 2663.02 0.278042
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 7351.97 0.752540 0.376270 0.926510i \(-0.377207\pi\)
0.376270 + 0.926510i \(0.377207\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 15614.5 1.57752 0.788762 0.614698i \(-0.210722\pi\)
0.788762 + 0.614698i \(0.210722\pi\)
\(462\) 0 0
\(463\) 1684.73 0.169106 0.0845530 0.996419i \(-0.473054\pi\)
0.0845530 + 0.996419i \(0.473054\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 10235.2 1.01420 0.507099 0.861888i \(-0.330718\pi\)
0.507099 + 0.861888i \(0.330718\pi\)
\(468\) 0 0
\(469\) 30730.2 3.02556
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2769.36 0.269207
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −12247.2 −1.16825 −0.584123 0.811665i \(-0.698561\pi\)
−0.584123 + 0.811665i \(0.698561\pi\)
\(480\) 0 0
\(481\) 10048.4 0.952532
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 7895.91 0.734698 0.367349 0.930083i \(-0.380265\pi\)
0.367349 + 0.930083i \(0.380265\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 7625.48 0.700882 0.350441 0.936585i \(-0.386032\pi\)
0.350441 + 0.936585i \(0.386032\pi\)
\(492\) 0 0
\(493\) −5220.96 −0.476958
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −20538.9 −1.85371
\(498\) 0 0
\(499\) −8655.23 −0.776476 −0.388238 0.921559i \(-0.626916\pi\)
−0.388238 + 0.921559i \(0.626916\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 118.441 0.0104990 0.00524951 0.999986i \(-0.498329\pi\)
0.00524951 + 0.999986i \(0.498329\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −5359.43 −0.466704 −0.233352 0.972392i \(-0.574970\pi\)
−0.233352 + 0.972392i \(0.574970\pi\)
\(510\) 0 0
\(511\) 39899.5 3.45411
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −15308.6 −1.30227
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 10862.4 0.913414 0.456707 0.889617i \(-0.349029\pi\)
0.456707 + 0.889617i \(0.349029\pi\)
\(522\) 0 0
\(523\) 9553.39 0.798740 0.399370 0.916790i \(-0.369229\pi\)
0.399370 + 0.916790i \(0.369229\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −19008.5 −1.57120
\(528\) 0 0
\(529\) 123.501 0.0101505
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 3909.26 0.317690
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −22748.4 −1.81789
\(540\) 0 0
\(541\) −6132.47 −0.487348 −0.243674 0.969857i \(-0.578353\pi\)
−0.243674 + 0.969857i \(0.578353\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 2853.85 0.223075 0.111537 0.993760i \(-0.464422\pi\)
0.111537 + 0.993760i \(0.464422\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 2772.25 0.214341
\(552\) 0 0
\(553\) 24025.6 1.84751
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 5192.60 0.395005 0.197502 0.980302i \(-0.436717\pi\)
0.197502 + 0.980302i \(0.436717\pi\)
\(558\) 0 0
\(559\) 4065.36 0.307596
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −10907.2 −0.816492 −0.408246 0.912872i \(-0.633859\pi\)
−0.408246 + 0.912872i \(0.633859\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 155.257 0.0114389 0.00571945 0.999984i \(-0.498179\pi\)
0.00571945 + 0.999984i \(0.498179\pi\)
\(570\) 0 0
\(571\) −4925.15 −0.360965 −0.180483 0.983578i \(-0.557766\pi\)
−0.180483 + 0.983578i \(0.557766\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −5292.05 −0.381822 −0.190911 0.981607i \(-0.561144\pi\)
−0.190911 + 0.981607i \(0.561144\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 10722.8 0.765677
\(582\) 0 0
\(583\) 7837.33 0.556757
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 19658.5 1.38227 0.691134 0.722727i \(-0.257112\pi\)
0.691134 + 0.722727i \(0.257112\pi\)
\(588\) 0 0
\(589\) 10093.2 0.706083
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −6578.08 −0.455530 −0.227765 0.973716i \(-0.573142\pi\)
−0.227765 + 0.973716i \(0.573142\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −16915.9 −1.15386 −0.576931 0.816793i \(-0.695750\pi\)
−0.576931 + 0.816793i \(0.695750\pi\)
\(600\) 0 0
\(601\) 19801.4 1.34395 0.671977 0.740572i \(-0.265445\pi\)
0.671977 + 0.740572i \(0.265445\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −22498.4 −1.50442 −0.752208 0.658926i \(-0.771011\pi\)
−0.752208 + 0.658926i \(0.771011\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −22472.7 −1.48797
\(612\) 0 0
\(613\) −23829.3 −1.57008 −0.785039 0.619446i \(-0.787357\pi\)
−0.785039 + 0.619446i \(0.787357\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 4277.52 0.279103 0.139551 0.990215i \(-0.455434\pi\)
0.139551 + 0.990215i \(0.455434\pi\)
\(618\) 0 0
\(619\) 4995.99 0.324404 0.162202 0.986758i \(-0.448140\pi\)
0.162202 + 0.986758i \(0.448140\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −31116.3 −2.00104
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 25570.5 1.62092
\(630\) 0 0
\(631\) −11328.0 −0.714675 −0.357337 0.933975i \(-0.616315\pi\)
−0.357337 + 0.933975i \(0.616315\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −33394.1 −2.07712
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −5955.35 −0.366961 −0.183481 0.983023i \(-0.558736\pi\)
−0.183481 + 0.983023i \(0.558736\pi\)
\(642\) 0 0
\(643\) −15727.7 −0.964605 −0.482302 0.876005i \(-0.660199\pi\)
−0.482302 + 0.876005i \(0.660199\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −9582.24 −0.582252 −0.291126 0.956685i \(-0.594030\pi\)
−0.291126 + 0.956685i \(0.594030\pi\)
\(648\) 0 0
\(649\) −5731.87 −0.346681
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 8313.70 0.498224 0.249112 0.968475i \(-0.419861\pi\)
0.249112 + 0.968475i \(0.419861\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −15095.5 −0.892317 −0.446158 0.894954i \(-0.647208\pi\)
−0.446158 + 0.894954i \(0.647208\pi\)
\(660\) 0 0
\(661\) 8266.98 0.486457 0.243229 0.969969i \(-0.421793\pi\)
0.243229 + 0.969969i \(0.421793\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 6042.53 0.350776
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −12448.0 −0.716170
\(672\) 0 0
\(673\) −11186.7 −0.640735 −0.320367 0.947293i \(-0.603806\pi\)
−0.320367 + 0.947293i \(0.603806\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7675.84 0.435756 0.217878 0.975976i \(-0.430087\pi\)
0.217878 + 0.975976i \(0.430087\pi\)
\(678\) 0 0
\(679\) 19520.1 1.10326
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 10550.9 0.591099 0.295549 0.955327i \(-0.404497\pi\)
0.295549 + 0.955327i \(0.404497\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 11505.0 0.636150
\(690\) 0 0
\(691\) −26950.9 −1.48373 −0.741867 0.670547i \(-0.766060\pi\)
−0.741867 + 0.670547i \(0.766060\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 9947.99 0.540613
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −12791.6 −0.689204 −0.344602 0.938749i \(-0.611986\pi\)
−0.344602 + 0.938749i \(0.611986\pi\)
\(702\) 0 0
\(703\) −13577.5 −0.728429
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −55805.1 −2.96855
\(708\) 0 0
\(709\) −16238.3 −0.860142 −0.430071 0.902795i \(-0.641511\pi\)
−0.430071 + 0.902795i \(0.641511\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 21999.6 1.15553
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 24285.8 1.25968 0.629839 0.776726i \(-0.283121\pi\)
0.629839 + 0.776726i \(0.283121\pi\)
\(720\) 0 0
\(721\) −47382.3 −2.44745
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −4466.82 −0.227875 −0.113937 0.993488i \(-0.536346\pi\)
−0.113937 + 0.993488i \(0.536346\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 10345.2 0.523436
\(732\) 0 0
\(733\) 30802.1 1.55212 0.776059 0.630661i \(-0.217216\pi\)
0.776059 + 0.630661i \(0.217216\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −22466.8 −1.12290
\(738\) 0 0
\(739\) −12920.5 −0.643151 −0.321576 0.946884i \(-0.604212\pi\)
−0.321576 + 0.946884i \(0.604212\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 2571.29 0.126960 0.0634802 0.997983i \(-0.479780\pi\)
0.0634802 + 0.997983i \(0.479780\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 46770.7 2.28166
\(750\) 0 0
\(751\) −13427.4 −0.652426 −0.326213 0.945296i \(-0.605773\pi\)
−0.326213 + 0.945296i \(0.605773\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −7103.66 −0.341066 −0.170533 0.985352i \(-0.554549\pi\)
−0.170533 + 0.985352i \(0.554549\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −19205.2 −0.914831 −0.457416 0.889253i \(-0.651225\pi\)
−0.457416 + 0.889253i \(0.651225\pi\)
\(762\) 0 0
\(763\) −21391.6 −1.01498
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −8414.27 −0.396117
\(768\) 0 0
\(769\) 19508.1 0.914799 0.457399 0.889261i \(-0.348781\pi\)
0.457399 + 0.889261i \(0.348781\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 38852.5 1.80780 0.903899 0.427746i \(-0.140692\pi\)
0.903899 + 0.427746i \(0.140692\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −5282.23 −0.242947
\(780\) 0 0
\(781\) 15016.0 0.687982
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −24851.1 −1.12560 −0.562799 0.826594i \(-0.690275\pi\)
−0.562799 + 0.826594i \(0.690275\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 8481.04 0.381228
\(792\) 0 0
\(793\) −18273.4 −0.818295
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 33040.1 1.46843 0.734216 0.678916i \(-0.237550\pi\)
0.734216 + 0.678916i \(0.237550\pi\)
\(798\) 0 0
\(799\) −57187.0 −2.53208
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −29170.5 −1.28195
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −10756.6 −0.467467 −0.233734 0.972301i \(-0.575094\pi\)
−0.233734 + 0.972301i \(0.575094\pi\)
\(810\) 0 0
\(811\) −5985.48 −0.259160 −0.129580 0.991569i \(-0.541363\pi\)
−0.129580 + 0.991569i \(0.541363\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −5493.15 −0.235228
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −16426.4 −0.698276 −0.349138 0.937071i \(-0.613526\pi\)
−0.349138 + 0.937071i \(0.613526\pi\)
\(822\) 0 0
\(823\) −27124.3 −1.14884 −0.574419 0.818561i \(-0.694772\pi\)
−0.574419 + 0.818561i \(0.694772\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 32759.9 1.37748 0.688738 0.725011i \(-0.258165\pi\)
0.688738 + 0.725011i \(0.258165\pi\)
\(828\) 0 0
\(829\) −18211.8 −0.762995 −0.381498 0.924370i \(-0.624592\pi\)
−0.381498 + 0.924370i \(0.624592\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −84979.0 −3.53463
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 37500.6 1.54310 0.771552 0.636166i \(-0.219481\pi\)
0.771552 + 0.636166i \(0.219481\pi\)
\(840\) 0 0
\(841\) −21418.2 −0.878192
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −23621.2 −0.958246
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −29594.2 −1.19210
\(852\) 0 0
\(853\) 2421.81 0.0972112 0.0486056 0.998818i \(-0.484522\pi\)
0.0486056 + 0.998818i \(0.484522\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −37700.0 −1.50269 −0.751346 0.659908i \(-0.770595\pi\)
−0.751346 + 0.659908i \(0.770595\pi\)
\(858\) 0 0
\(859\) −14709.0 −0.584242 −0.292121 0.956381i \(-0.594361\pi\)
−0.292121 + 0.956381i \(0.594361\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 28950.4 1.14193 0.570963 0.820975i \(-0.306570\pi\)
0.570963 + 0.820975i \(0.306570\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −17565.1 −0.685681
\(870\) 0 0
\(871\) −32980.8 −1.28302
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −17501.3 −0.673860 −0.336930 0.941530i \(-0.609389\pi\)
−0.336930 + 0.941530i \(0.609389\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 45136.0 1.72607 0.863037 0.505140i \(-0.168559\pi\)
0.863037 + 0.505140i \(0.168559\pi\)
\(882\) 0 0
\(883\) 51564.8 1.96522 0.982612 0.185673i \(-0.0594464\pi\)
0.982612 + 0.185673i \(0.0594464\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 19226.4 0.727800 0.363900 0.931438i \(-0.381445\pi\)
0.363900 + 0.931438i \(0.381445\pi\)
\(888\) 0 0
\(889\) 36684.6 1.38398
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 30365.4 1.13789
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 10816.0 0.401259
\(900\) 0 0
\(901\) 29277.2 1.08254
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −32050.1 −1.17333 −0.586663 0.809831i \(-0.699559\pi\)
−0.586663 + 0.809831i \(0.699559\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 29674.6 1.07921 0.539606 0.841918i \(-0.318573\pi\)
0.539606 + 0.841918i \(0.318573\pi\)
\(912\) 0 0
\(913\) −7839.46 −0.284171
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 31093.4 1.11973
\(918\) 0 0
\(919\) −6029.99 −0.216443 −0.108221 0.994127i \(-0.534516\pi\)
−0.108221 + 0.994127i \(0.534516\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 22043.2 0.786088
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 35365.2 1.24897 0.624485 0.781037i \(-0.285309\pi\)
0.624485 + 0.781037i \(0.285309\pi\)
\(930\) 0 0
\(931\) 45122.5 1.58843
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −35637.0 −1.24249 −0.621243 0.783618i \(-0.713372\pi\)
−0.621243 + 0.783618i \(0.713372\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 6609.70 0.228980 0.114490 0.993424i \(-0.463477\pi\)
0.114490 + 0.993424i \(0.463477\pi\)
\(942\) 0 0
\(943\) −11513.4 −0.397591
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −42650.9 −1.46354 −0.731768 0.681553i \(-0.761305\pi\)
−0.731768 + 0.681553i \(0.761305\pi\)
\(948\) 0 0
\(949\) −42821.6 −1.46475
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −38382.4 −1.30465 −0.652323 0.757941i \(-0.726205\pi\)
−0.652323 + 0.757941i \(0.726205\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −5637.11 −0.189814
\(960\) 0 0
\(961\) 9587.71 0.321832
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −2611.76 −0.0868549 −0.0434275 0.999057i \(-0.513828\pi\)
−0.0434275 + 0.999057i \(0.513828\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −7846.09 −0.259313 −0.129657 0.991559i \(-0.541387\pi\)
−0.129657 + 0.991559i \(0.541387\pi\)
\(972\) 0 0
\(973\) −2008.50 −0.0661763
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −35667.2 −1.16796 −0.583979 0.811769i \(-0.698505\pi\)
−0.583979 + 0.811769i \(0.698505\pi\)
\(978\) 0 0
\(979\) 22749.1 0.742661
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −13421.6 −0.435485 −0.217742 0.976006i \(-0.569869\pi\)
−0.217742 + 0.976006i \(0.569869\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −11973.2 −0.384959
\(990\) 0 0
\(991\) 40673.7 1.30378 0.651888 0.758315i \(-0.273977\pi\)
0.651888 + 0.758315i \(0.273977\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 29558.8 0.938954 0.469477 0.882945i \(-0.344442\pi\)
0.469477 + 0.882945i \(0.344442\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1800.4.a.bn.1.2 2
3.2 odd 2 600.4.a.t.1.2 2
5.2 odd 4 360.4.f.d.289.4 4
5.3 odd 4 360.4.f.d.289.3 4
5.4 even 2 1800.4.a.bl.1.1 2
12.11 even 2 1200.4.a.bq.1.1 2
15.2 even 4 120.4.f.d.49.3 yes 4
15.8 even 4 120.4.f.d.49.1 4
15.14 odd 2 600.4.a.v.1.1 2
20.3 even 4 720.4.f.i.289.3 4
20.7 even 4 720.4.f.i.289.4 4
60.23 odd 4 240.4.f.g.49.3 4
60.47 odd 4 240.4.f.g.49.1 4
60.59 even 2 1200.4.a.bo.1.2 2
120.53 even 4 960.4.f.n.769.4 4
120.77 even 4 960.4.f.n.769.2 4
120.83 odd 4 960.4.f.o.769.2 4
120.107 odd 4 960.4.f.o.769.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.4.f.d.49.1 4 15.8 even 4
120.4.f.d.49.3 yes 4 15.2 even 4
240.4.f.g.49.1 4 60.47 odd 4
240.4.f.g.49.3 4 60.23 odd 4
360.4.f.d.289.3 4 5.3 odd 4
360.4.f.d.289.4 4 5.2 odd 4
600.4.a.t.1.2 2 3.2 odd 2
600.4.a.v.1.1 2 15.14 odd 2
720.4.f.i.289.3 4 20.3 even 4
720.4.f.i.289.4 4 20.7 even 4
960.4.f.n.769.2 4 120.77 even 4
960.4.f.n.769.4 4 120.53 even 4
960.4.f.o.769.2 4 120.83 odd 4
960.4.f.o.769.4 4 120.107 odd 4
1200.4.a.bo.1.2 2 60.59 even 2
1200.4.a.bq.1.1 2 12.11 even 2
1800.4.a.bl.1.1 2 5.4 even 2
1800.4.a.bn.1.2 2 1.1 even 1 trivial