Properties

Label 1800.4.a.bh.1.1
Level $1800$
Weight $4$
Character 1800.1
Self dual yes
Analytic conductor $106.203$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1800,4,Mod(1,1800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1800.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1800.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(106.203438010\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 200)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1800.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+26.0000 q^{7} +O(q^{10})\) \(q+26.0000 q^{7} +59.0000 q^{11} +28.0000 q^{13} -5.00000 q^{17} +109.000 q^{19} +194.000 q^{23} +32.0000 q^{29} +10.0000 q^{31} -198.000 q^{37} -117.000 q^{41} +388.000 q^{43} +68.0000 q^{47} +333.000 q^{49} +18.0000 q^{53} -392.000 q^{59} -710.000 q^{61} -253.000 q^{67} +612.000 q^{71} -549.000 q^{73} +1534.00 q^{77} +414.000 q^{79} +121.000 q^{83} +81.0000 q^{89} +728.000 q^{91} -1502.00 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 26.0000 1.40387 0.701934 0.712242i \(-0.252320\pi\)
0.701934 + 0.712242i \(0.252320\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 59.0000 1.61720 0.808599 0.588361i \(-0.200226\pi\)
0.808599 + 0.588361i \(0.200226\pi\)
\(12\) 0 0
\(13\) 28.0000 0.597369 0.298685 0.954352i \(-0.403452\pi\)
0.298685 + 0.954352i \(0.403452\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −5.00000 −0.0713340 −0.0356670 0.999364i \(-0.511356\pi\)
−0.0356670 + 0.999364i \(0.511356\pi\)
\(18\) 0 0
\(19\) 109.000 1.31612 0.658061 0.752965i \(-0.271377\pi\)
0.658061 + 0.752965i \(0.271377\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 194.000 1.75877 0.879387 0.476108i \(-0.157953\pi\)
0.879387 + 0.476108i \(0.157953\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 32.0000 0.204905 0.102453 0.994738i \(-0.467331\pi\)
0.102453 + 0.994738i \(0.467331\pi\)
\(30\) 0 0
\(31\) 10.0000 0.0579372 0.0289686 0.999580i \(-0.490778\pi\)
0.0289686 + 0.999580i \(0.490778\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −198.000 −0.879757 −0.439878 0.898057i \(-0.644978\pi\)
−0.439878 + 0.898057i \(0.644978\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −117.000 −0.445667 −0.222833 0.974857i \(-0.571531\pi\)
−0.222833 + 0.974857i \(0.571531\pi\)
\(42\) 0 0
\(43\) 388.000 1.37603 0.688017 0.725695i \(-0.258482\pi\)
0.688017 + 0.725695i \(0.258482\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 68.0000 0.211039 0.105519 0.994417i \(-0.466350\pi\)
0.105519 + 0.994417i \(0.466350\pi\)
\(48\) 0 0
\(49\) 333.000 0.970845
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 18.0000 0.0466508 0.0233254 0.999728i \(-0.492575\pi\)
0.0233254 + 0.999728i \(0.492575\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −392.000 −0.864984 −0.432492 0.901638i \(-0.642366\pi\)
−0.432492 + 0.901638i \(0.642366\pi\)
\(60\) 0 0
\(61\) −710.000 −1.49027 −0.745133 0.666916i \(-0.767614\pi\)
−0.745133 + 0.666916i \(0.767614\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −253.000 −0.461326 −0.230663 0.973034i \(-0.574090\pi\)
−0.230663 + 0.973034i \(0.574090\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 612.000 1.02297 0.511486 0.859292i \(-0.329095\pi\)
0.511486 + 0.859292i \(0.329095\pi\)
\(72\) 0 0
\(73\) −549.000 −0.880214 −0.440107 0.897945i \(-0.645059\pi\)
−0.440107 + 0.897945i \(0.645059\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1534.00 2.27033
\(78\) 0 0
\(79\) 414.000 0.589603 0.294802 0.955559i \(-0.404746\pi\)
0.294802 + 0.955559i \(0.404746\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 121.000 0.160018 0.0800089 0.996794i \(-0.474505\pi\)
0.0800089 + 0.996794i \(0.474505\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 81.0000 0.0964717 0.0482359 0.998836i \(-0.484640\pi\)
0.0482359 + 0.998836i \(0.484640\pi\)
\(90\) 0 0
\(91\) 728.000 0.838628
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −1502.00 −1.57222 −0.786108 0.618089i \(-0.787907\pi\)
−0.786108 + 0.618089i \(0.787907\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 234.000 0.230533 0.115267 0.993335i \(-0.463228\pi\)
0.115267 + 0.993335i \(0.463228\pi\)
\(102\) 0 0
\(103\) −1172.00 −1.12117 −0.560585 0.828097i \(-0.689424\pi\)
−0.560585 + 0.828097i \(0.689424\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1125.00 −1.01643 −0.508214 0.861231i \(-0.669694\pi\)
−0.508214 + 0.861231i \(0.669694\pi\)
\(108\) 0 0
\(109\) −1234.00 −1.08436 −0.542182 0.840261i \(-0.682402\pi\)
−0.542182 + 0.840261i \(0.682402\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −567.000 −0.472025 −0.236013 0.971750i \(-0.575841\pi\)
−0.236013 + 0.971750i \(0.575841\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −130.000 −0.100144
\(120\) 0 0
\(121\) 2150.00 1.61533
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −2358.00 −1.64755 −0.823774 0.566918i \(-0.808136\pi\)
−0.823774 + 0.566918i \(0.808136\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1692.00 1.12848 0.564239 0.825611i \(-0.309169\pi\)
0.564239 + 0.825611i \(0.309169\pi\)
\(132\) 0 0
\(133\) 2834.00 1.84766
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −229.000 −0.142809 −0.0714043 0.997447i \(-0.522748\pi\)
−0.0714043 + 0.997447i \(0.522748\pi\)
\(138\) 0 0
\(139\) 2781.00 1.69699 0.848494 0.529205i \(-0.177510\pi\)
0.848494 + 0.529205i \(0.177510\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1652.00 0.966064
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1472.00 −0.809335 −0.404668 0.914464i \(-0.632613\pi\)
−0.404668 + 0.914464i \(0.632613\pi\)
\(150\) 0 0
\(151\) 1322.00 0.712469 0.356235 0.934397i \(-0.384060\pi\)
0.356235 + 0.934397i \(0.384060\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 298.000 0.151484 0.0757420 0.997127i \(-0.475867\pi\)
0.0757420 + 0.997127i \(0.475867\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 5044.00 2.46909
\(162\) 0 0
\(163\) −341.000 −0.163860 −0.0819300 0.996638i \(-0.526108\pi\)
−0.0819300 + 0.996638i \(0.526108\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −684.000 −0.316943 −0.158472 0.987364i \(-0.550657\pi\)
−0.158472 + 0.987364i \(0.550657\pi\)
\(168\) 0 0
\(169\) −1413.00 −0.643150
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2344.00 1.03012 0.515061 0.857154i \(-0.327769\pi\)
0.515061 + 0.857154i \(0.327769\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1111.00 0.463911 0.231955 0.972726i \(-0.425488\pi\)
0.231955 + 0.972726i \(0.425488\pi\)
\(180\) 0 0
\(181\) 2042.00 0.838567 0.419284 0.907855i \(-0.362281\pi\)
0.419284 + 0.907855i \(0.362281\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −295.000 −0.115361
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −5270.00 −1.99646 −0.998230 0.0594735i \(-0.981058\pi\)
−0.998230 + 0.0594735i \(0.981058\pi\)
\(192\) 0 0
\(193\) 613.000 0.228625 0.114313 0.993445i \(-0.463533\pi\)
0.114313 + 0.993445i \(0.463533\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1174.00 −0.424589 −0.212295 0.977206i \(-0.568094\pi\)
−0.212295 + 0.977206i \(0.568094\pi\)
\(198\) 0 0
\(199\) 3428.00 1.22113 0.610564 0.791967i \(-0.290943\pi\)
0.610564 + 0.791967i \(0.290943\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 832.000 0.287660
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 6431.00 2.12843
\(210\) 0 0
\(211\) 2339.00 0.763144 0.381572 0.924339i \(-0.375383\pi\)
0.381572 + 0.924339i \(0.375383\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 260.000 0.0813362
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −140.000 −0.0426128
\(222\) 0 0
\(223\) 3932.00 1.18075 0.590373 0.807131i \(-0.298981\pi\)
0.590373 + 0.807131i \(0.298981\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −6084.00 −1.77890 −0.889448 0.457037i \(-0.848911\pi\)
−0.889448 + 0.457037i \(0.848911\pi\)
\(228\) 0 0
\(229\) 4996.00 1.44168 0.720841 0.693101i \(-0.243756\pi\)
0.720841 + 0.693101i \(0.243756\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3222.00 −0.905924 −0.452962 0.891530i \(-0.649633\pi\)
−0.452962 + 0.891530i \(0.649633\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −2736.00 −0.740490 −0.370245 0.928934i \(-0.620726\pi\)
−0.370245 + 0.928934i \(0.620726\pi\)
\(240\) 0 0
\(241\) 1673.00 0.447168 0.223584 0.974685i \(-0.428224\pi\)
0.223584 + 0.974685i \(0.428224\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 3052.00 0.786211
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −5355.00 −1.34663 −0.673316 0.739355i \(-0.735131\pi\)
−0.673316 + 0.739355i \(0.735131\pi\)
\(252\) 0 0
\(253\) 11446.0 2.84428
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 5490.00 1.33252 0.666258 0.745721i \(-0.267895\pi\)
0.666258 + 0.745721i \(0.267895\pi\)
\(258\) 0 0
\(259\) −5148.00 −1.23506
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −3150.00 −0.738545 −0.369272 0.929321i \(-0.620393\pi\)
−0.369272 + 0.929321i \(0.620393\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −176.000 −0.0398919 −0.0199459 0.999801i \(-0.506349\pi\)
−0.0199459 + 0.999801i \(0.506349\pi\)
\(270\) 0 0
\(271\) 2394.00 0.536624 0.268312 0.963332i \(-0.413534\pi\)
0.268312 + 0.963332i \(0.413534\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −6256.00 −1.35699 −0.678496 0.734604i \(-0.737368\pi\)
−0.678496 + 0.734604i \(0.737368\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 4802.00 1.01944 0.509721 0.860340i \(-0.329749\pi\)
0.509721 + 0.860340i \(0.329749\pi\)
\(282\) 0 0
\(283\) 2123.00 0.445934 0.222967 0.974826i \(-0.428426\pi\)
0.222967 + 0.974826i \(0.428426\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −3042.00 −0.625657
\(288\) 0 0
\(289\) −4888.00 −0.994911
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 8834.00 1.76139 0.880696 0.473682i \(-0.157075\pi\)
0.880696 + 0.473682i \(0.157075\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 5432.00 1.05064
\(300\) 0 0
\(301\) 10088.0 1.93177
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 1369.00 0.254505 0.127252 0.991870i \(-0.459384\pi\)
0.127252 + 0.991870i \(0.459384\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 10426.0 1.90098 0.950489 0.310758i \(-0.100583\pi\)
0.950489 + 0.310758i \(0.100583\pi\)
\(312\) 0 0
\(313\) −3574.00 −0.645413 −0.322707 0.946499i \(-0.604593\pi\)
−0.322707 + 0.946499i \(0.604593\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −9036.00 −1.60099 −0.800493 0.599343i \(-0.795429\pi\)
−0.800493 + 0.599343i \(0.795429\pi\)
\(318\) 0 0
\(319\) 1888.00 0.331372
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −545.000 −0.0938842
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1768.00 0.296271
\(330\) 0 0
\(331\) 10233.0 1.69926 0.849632 0.527376i \(-0.176824\pi\)
0.849632 + 0.527376i \(0.176824\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 4627.00 0.747919 0.373960 0.927445i \(-0.378000\pi\)
0.373960 + 0.927445i \(0.378000\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 590.000 0.0936959
\(342\) 0 0
\(343\) −260.000 −0.0409291
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −4901.00 −0.758212 −0.379106 0.925353i \(-0.623768\pi\)
−0.379106 + 0.925353i \(0.623768\pi\)
\(348\) 0 0
\(349\) −4482.00 −0.687438 −0.343719 0.939072i \(-0.611687\pi\)
−0.343719 + 0.939072i \(0.611687\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1210.00 0.182441 0.0912207 0.995831i \(-0.470923\pi\)
0.0912207 + 0.995831i \(0.470923\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 9882.00 1.45279 0.726396 0.687277i \(-0.241194\pi\)
0.726396 + 0.687277i \(0.241194\pi\)
\(360\) 0 0
\(361\) 5022.00 0.732177
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −11260.0 −1.60155 −0.800773 0.598968i \(-0.795578\pi\)
−0.800773 + 0.598968i \(0.795578\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 468.000 0.0654915
\(372\) 0 0
\(373\) −3230.00 −0.448373 −0.224186 0.974546i \(-0.571972\pi\)
−0.224186 + 0.974546i \(0.571972\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 896.000 0.122404
\(378\) 0 0
\(379\) 11575.0 1.56878 0.784390 0.620268i \(-0.212976\pi\)
0.784390 + 0.620268i \(0.212976\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 18.0000 0.00240145 0.00120073 0.999999i \(-0.499618\pi\)
0.00120073 + 0.999999i \(0.499618\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −10710.0 −1.39593 −0.697967 0.716130i \(-0.745912\pi\)
−0.697967 + 0.716130i \(0.745912\pi\)
\(390\) 0 0
\(391\) −970.000 −0.125460
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −3788.00 −0.478877 −0.239439 0.970912i \(-0.576963\pi\)
−0.239439 + 0.970912i \(0.576963\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 10539.0 1.31245 0.656225 0.754565i \(-0.272152\pi\)
0.656225 + 0.754565i \(0.272152\pi\)
\(402\) 0 0
\(403\) 280.000 0.0346099
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −11682.0 −1.42274
\(408\) 0 0
\(409\) 5581.00 0.674725 0.337363 0.941375i \(-0.390465\pi\)
0.337363 + 0.941375i \(0.390465\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −10192.0 −1.21432
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −5193.00 −0.605476 −0.302738 0.953074i \(-0.597901\pi\)
−0.302738 + 0.953074i \(0.597901\pi\)
\(420\) 0 0
\(421\) 4788.00 0.554282 0.277141 0.960829i \(-0.410613\pi\)
0.277141 + 0.960829i \(0.410613\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −18460.0 −2.09214
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −8006.00 −0.894746 −0.447373 0.894348i \(-0.647640\pi\)
−0.447373 + 0.894348i \(0.647640\pi\)
\(432\) 0 0
\(433\) −2395.00 −0.265811 −0.132906 0.991129i \(-0.542431\pi\)
−0.132906 + 0.991129i \(0.542431\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 21146.0 2.31476
\(438\) 0 0
\(439\) 1864.00 0.202651 0.101326 0.994853i \(-0.467692\pi\)
0.101326 + 0.994853i \(0.467692\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5463.00 −0.585903 −0.292951 0.956127i \(-0.594637\pi\)
−0.292951 + 0.956127i \(0.594637\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −12969.0 −1.36313 −0.681565 0.731758i \(-0.738700\pi\)
−0.681565 + 0.731758i \(0.738700\pi\)
\(450\) 0 0
\(451\) −6903.00 −0.720731
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 18313.0 1.87450 0.937249 0.348659i \(-0.113363\pi\)
0.937249 + 0.348659i \(0.113363\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −12492.0 −1.26206 −0.631031 0.775758i \(-0.717368\pi\)
−0.631031 + 0.775758i \(0.717368\pi\)
\(462\) 0 0
\(463\) 4428.00 0.444464 0.222232 0.974994i \(-0.428666\pi\)
0.222232 + 0.974994i \(0.428666\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1084.00 0.107412 0.0537061 0.998557i \(-0.482897\pi\)
0.0537061 + 0.998557i \(0.482897\pi\)
\(468\) 0 0
\(469\) −6578.00 −0.647641
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 22892.0 2.22532
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 13082.0 1.24787 0.623937 0.781474i \(-0.285532\pi\)
0.623937 + 0.781474i \(0.285532\pi\)
\(480\) 0 0
\(481\) −5544.00 −0.525540
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −3014.00 −0.280446 −0.140223 0.990120i \(-0.544782\pi\)
−0.140223 + 0.990120i \(0.544782\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 3564.00 0.327579 0.163789 0.986495i \(-0.447628\pi\)
0.163789 + 0.986495i \(0.447628\pi\)
\(492\) 0 0
\(493\) −160.000 −0.0146167
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 15912.0 1.43612
\(498\) 0 0
\(499\) −15796.0 −1.41709 −0.708543 0.705667i \(-0.750647\pi\)
−0.708543 + 0.705667i \(0.750647\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 10908.0 0.966926 0.483463 0.875365i \(-0.339379\pi\)
0.483463 + 0.875365i \(0.339379\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −21946.0 −1.91108 −0.955540 0.294863i \(-0.904726\pi\)
−0.955540 + 0.294863i \(0.904726\pi\)
\(510\) 0 0
\(511\) −14274.0 −1.23570
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 4012.00 0.341291
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 6395.00 0.537754 0.268877 0.963174i \(-0.413347\pi\)
0.268877 + 0.963174i \(0.413347\pi\)
\(522\) 0 0
\(523\) −5615.00 −0.469459 −0.234729 0.972061i \(-0.575420\pi\)
−0.234729 + 0.972061i \(0.575420\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −50.0000 −0.00413289
\(528\) 0 0
\(529\) 25469.0 2.09329
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −3276.00 −0.266228
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 19647.0 1.57005
\(540\) 0 0
\(541\) −4112.00 −0.326781 −0.163391 0.986561i \(-0.552243\pi\)
−0.163391 + 0.986561i \(0.552243\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −2167.00 −0.169386 −0.0846931 0.996407i \(-0.526991\pi\)
−0.0846931 + 0.996407i \(0.526991\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 3488.00 0.269680
\(552\) 0 0
\(553\) 10764.0 0.827725
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 19444.0 1.47912 0.739559 0.673092i \(-0.235034\pi\)
0.739559 + 0.673092i \(0.235034\pi\)
\(558\) 0 0
\(559\) 10864.0 0.822000
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −20416.0 −1.52830 −0.764149 0.645040i \(-0.776841\pi\)
−0.764149 + 0.645040i \(0.776841\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 3127.00 0.230388 0.115194 0.993343i \(-0.463251\pi\)
0.115194 + 0.993343i \(0.463251\pi\)
\(570\) 0 0
\(571\) −22580.0 −1.65489 −0.827446 0.561545i \(-0.810207\pi\)
−0.827446 + 0.561545i \(0.810207\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −829.000 −0.0598123 −0.0299062 0.999553i \(-0.509521\pi\)
−0.0299062 + 0.999553i \(0.509521\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 3146.00 0.224644
\(582\) 0 0
\(583\) 1062.00 0.0754435
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −7119.00 −0.500567 −0.250283 0.968173i \(-0.580524\pi\)
−0.250283 + 0.968173i \(0.580524\pi\)
\(588\) 0 0
\(589\) 1090.00 0.0762524
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 8217.00 0.569025 0.284512 0.958672i \(-0.408168\pi\)
0.284512 + 0.958672i \(0.408168\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 90.0000 0.00613907 0.00306953 0.999995i \(-0.499023\pi\)
0.00306953 + 0.999995i \(0.499023\pi\)
\(600\) 0 0
\(601\) −17117.0 −1.16176 −0.580879 0.813990i \(-0.697291\pi\)
−0.580879 + 0.813990i \(0.697291\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −15120.0 −1.01104 −0.505520 0.862815i \(-0.668699\pi\)
−0.505520 + 0.862815i \(0.668699\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1904.00 0.126068
\(612\) 0 0
\(613\) −6570.00 −0.432887 −0.216444 0.976295i \(-0.569446\pi\)
−0.216444 + 0.976295i \(0.569446\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −18846.0 −1.22968 −0.614839 0.788653i \(-0.710779\pi\)
−0.614839 + 0.788653i \(0.710779\pi\)
\(618\) 0 0
\(619\) 16316.0 1.05944 0.529722 0.848172i \(-0.322296\pi\)
0.529722 + 0.848172i \(0.322296\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 2106.00 0.135434
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 990.000 0.0627566
\(630\) 0 0
\(631\) 20170.0 1.27251 0.636256 0.771478i \(-0.280482\pi\)
0.636256 + 0.771478i \(0.280482\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 9324.00 0.579953
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 12726.0 0.784160 0.392080 0.919931i \(-0.371756\pi\)
0.392080 + 0.919931i \(0.371756\pi\)
\(642\) 0 0
\(643\) 2196.00 0.134684 0.0673420 0.997730i \(-0.478548\pi\)
0.0673420 + 0.997730i \(0.478548\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 16884.0 1.02593 0.512966 0.858409i \(-0.328547\pi\)
0.512966 + 0.858409i \(0.328547\pi\)
\(648\) 0 0
\(649\) −23128.0 −1.39885
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 4018.00 0.240791 0.120395 0.992726i \(-0.461584\pi\)
0.120395 + 0.992726i \(0.461584\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −19071.0 −1.12732 −0.563658 0.826009i \(-0.690606\pi\)
−0.563658 + 0.826009i \(0.690606\pi\)
\(660\) 0 0
\(661\) 17424.0 1.02529 0.512644 0.858601i \(-0.328666\pi\)
0.512644 + 0.858601i \(0.328666\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 6208.00 0.360382
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −41890.0 −2.41005
\(672\) 0 0
\(673\) −5382.00 −0.308263 −0.154131 0.988050i \(-0.549258\pi\)
−0.154131 + 0.988050i \(0.549258\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 4496.00 0.255237 0.127618 0.991823i \(-0.459267\pi\)
0.127618 + 0.991823i \(0.459267\pi\)
\(678\) 0 0
\(679\) −39052.0 −2.20718
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −3249.00 −0.182020 −0.0910099 0.995850i \(-0.529009\pi\)
−0.0910099 + 0.995850i \(0.529009\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 504.000 0.0278677
\(690\) 0 0
\(691\) −13399.0 −0.737658 −0.368829 0.929497i \(-0.620241\pi\)
−0.368829 + 0.929497i \(0.620241\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 585.000 0.0317912
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 18148.0 0.977804 0.488902 0.872339i \(-0.337398\pi\)
0.488902 + 0.872339i \(0.337398\pi\)
\(702\) 0 0
\(703\) −21582.0 −1.15787
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 6084.00 0.323638
\(708\) 0 0
\(709\) 4868.00 0.257858 0.128929 0.991654i \(-0.458846\pi\)
0.128929 + 0.991654i \(0.458846\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1940.00 0.101898
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 17366.0 0.900755 0.450377 0.892838i \(-0.351289\pi\)
0.450377 + 0.892838i \(0.351289\pi\)
\(720\) 0 0
\(721\) −30472.0 −1.57398
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 21824.0 1.11335 0.556676 0.830729i \(-0.312076\pi\)
0.556676 + 0.830729i \(0.312076\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −1940.00 −0.0981580
\(732\) 0 0
\(733\) −31428.0 −1.58366 −0.791828 0.610744i \(-0.790870\pi\)
−0.791828 + 0.610744i \(0.790870\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −14927.0 −0.746056
\(738\) 0 0
\(739\) −14292.0 −0.711420 −0.355710 0.934596i \(-0.615761\pi\)
−0.355710 + 0.934596i \(0.615761\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −13950.0 −0.688797 −0.344398 0.938824i \(-0.611917\pi\)
−0.344398 + 0.938824i \(0.611917\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −29250.0 −1.42693
\(750\) 0 0
\(751\) −38736.0 −1.88215 −0.941076 0.338194i \(-0.890184\pi\)
−0.941076 + 0.338194i \(0.890184\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −3664.00 −0.175919 −0.0879593 0.996124i \(-0.528035\pi\)
−0.0879593 + 0.996124i \(0.528035\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −19557.0 −0.931591 −0.465795 0.884892i \(-0.654232\pi\)
−0.465795 + 0.884892i \(0.654232\pi\)
\(762\) 0 0
\(763\) −32084.0 −1.52231
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −10976.0 −0.516715
\(768\) 0 0
\(769\) −13283.0 −0.622883 −0.311442 0.950265i \(-0.600812\pi\)
−0.311442 + 0.950265i \(0.600812\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −24840.0 −1.15580 −0.577900 0.816108i \(-0.696127\pi\)
−0.577900 + 0.816108i \(0.696127\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −12753.0 −0.586552
\(780\) 0 0
\(781\) 36108.0 1.65435
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 18044.0 0.817280 0.408640 0.912696i \(-0.366003\pi\)
0.408640 + 0.912696i \(0.366003\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −14742.0 −0.662661
\(792\) 0 0
\(793\) −19880.0 −0.890239
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 6174.00 0.274397 0.137198 0.990544i \(-0.456190\pi\)
0.137198 + 0.990544i \(0.456190\pi\)
\(798\) 0 0
\(799\) −340.000 −0.0150542
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −32391.0 −1.42348
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1998.00 0.0868306 0.0434153 0.999057i \(-0.486176\pi\)
0.0434153 + 0.999057i \(0.486176\pi\)
\(810\) 0 0
\(811\) −7156.00 −0.309841 −0.154921 0.987927i \(-0.549512\pi\)
−0.154921 + 0.987927i \(0.549512\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 42292.0 1.81103
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −27922.0 −1.18695 −0.593474 0.804853i \(-0.702244\pi\)
−0.593474 + 0.804853i \(0.702244\pi\)
\(822\) 0 0
\(823\) 22636.0 0.958738 0.479369 0.877613i \(-0.340866\pi\)
0.479369 + 0.877613i \(0.340866\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −26559.0 −1.11674 −0.558372 0.829591i \(-0.688574\pi\)
−0.558372 + 0.829591i \(0.688574\pi\)
\(828\) 0 0
\(829\) 12580.0 0.527046 0.263523 0.964653i \(-0.415115\pi\)
0.263523 + 0.964653i \(0.415115\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1665.00 −0.0692543
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 11344.0 0.466792 0.233396 0.972382i \(-0.425016\pi\)
0.233396 + 0.972382i \(0.425016\pi\)
\(840\) 0 0
\(841\) −23365.0 −0.958014
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 55900.0 2.26771
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −38412.0 −1.54729
\(852\) 0 0
\(853\) 14786.0 0.593509 0.296754 0.954954i \(-0.404096\pi\)
0.296754 + 0.954954i \(0.404096\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 29259.0 1.16624 0.583120 0.812386i \(-0.301832\pi\)
0.583120 + 0.812386i \(0.301832\pi\)
\(858\) 0 0
\(859\) −13651.0 −0.542219 −0.271109 0.962549i \(-0.587391\pi\)
−0.271109 + 0.962549i \(0.587391\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −29016.0 −1.14451 −0.572257 0.820074i \(-0.693932\pi\)
−0.572257 + 0.820074i \(0.693932\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 24426.0 0.953504
\(870\) 0 0
\(871\) −7084.00 −0.275582
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 21412.0 0.824438 0.412219 0.911085i \(-0.364754\pi\)
0.412219 + 0.911085i \(0.364754\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1170.00 0.0447427 0.0223713 0.999750i \(-0.492878\pi\)
0.0223713 + 0.999750i \(0.492878\pi\)
\(882\) 0 0
\(883\) −12655.0 −0.482304 −0.241152 0.970487i \(-0.577525\pi\)
−0.241152 + 0.970487i \(0.577525\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −32764.0 −1.24026 −0.620128 0.784500i \(-0.712919\pi\)
−0.620128 + 0.784500i \(0.712919\pi\)
\(888\) 0 0
\(889\) −61308.0 −2.31294
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 7412.00 0.277753
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 320.000 0.0118716
\(900\) 0 0
\(901\) −90.0000 −0.00332779
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −29844.0 −1.09256 −0.546281 0.837602i \(-0.683957\pi\)
−0.546281 + 0.837602i \(0.683957\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −15628.0 −0.568363 −0.284182 0.958770i \(-0.591722\pi\)
−0.284182 + 0.958770i \(0.591722\pi\)
\(912\) 0 0
\(913\) 7139.00 0.258780
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 43992.0 1.58424
\(918\) 0 0
\(919\) 42974.0 1.54253 0.771263 0.636517i \(-0.219625\pi\)
0.771263 + 0.636517i \(0.219625\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 17136.0 0.611092
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −13342.0 −0.471191 −0.235596 0.971851i \(-0.575704\pi\)
−0.235596 + 0.971851i \(0.575704\pi\)
\(930\) 0 0
\(931\) 36297.0 1.27775
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −3005.00 −0.104770 −0.0523848 0.998627i \(-0.516682\pi\)
−0.0523848 + 0.998627i \(0.516682\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −16204.0 −0.561355 −0.280678 0.959802i \(-0.590559\pi\)
−0.280678 + 0.959802i \(0.590559\pi\)
\(942\) 0 0
\(943\) −22698.0 −0.783827
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 30200.0 1.03629 0.518146 0.855292i \(-0.326622\pi\)
0.518146 + 0.855292i \(0.326622\pi\)
\(948\) 0 0
\(949\) −15372.0 −0.525813
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 29583.0 1.00555 0.502774 0.864418i \(-0.332313\pi\)
0.502774 + 0.864418i \(0.332313\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −5954.00 −0.200485
\(960\) 0 0
\(961\) −29691.0 −0.996643
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −6480.00 −0.215494 −0.107747 0.994178i \(-0.534364\pi\)
−0.107747 + 0.994178i \(0.534364\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 40171.0 1.32765 0.663825 0.747888i \(-0.268932\pi\)
0.663825 + 0.747888i \(0.268932\pi\)
\(972\) 0 0
\(973\) 72306.0 2.38235
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −50801.0 −1.66353 −0.831765 0.555129i \(-0.812669\pi\)
−0.831765 + 0.555129i \(0.812669\pi\)
\(978\) 0 0
\(979\) 4779.00 0.156014
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 58338.0 1.89287 0.946436 0.322891i \(-0.104655\pi\)
0.946436 + 0.322891i \(0.104655\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 75272.0 2.42013
\(990\) 0 0
\(991\) −51202.0 −1.64126 −0.820628 0.571462i \(-0.806376\pi\)
−0.820628 + 0.571462i \(0.806376\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1764.00 0.0560345 0.0280173 0.999607i \(-0.491081\pi\)
0.0280173 + 0.999607i \(0.491081\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1800.4.a.bh.1.1 1
3.2 odd 2 200.4.a.j.1.1 yes 1
5.2 odd 4 1800.4.f.w.649.2 2
5.3 odd 4 1800.4.f.w.649.1 2
5.4 even 2 1800.4.a.c.1.1 1
12.11 even 2 400.4.a.a.1.1 1
15.2 even 4 200.4.c.b.49.1 2
15.8 even 4 200.4.c.b.49.2 2
15.14 odd 2 200.4.a.b.1.1 1
24.5 odd 2 1600.4.a.c.1.1 1
24.11 even 2 1600.4.a.by.1.1 1
60.23 odd 4 400.4.c.b.49.1 2
60.47 odd 4 400.4.c.b.49.2 2
60.59 even 2 400.4.a.t.1.1 1
120.29 odd 2 1600.4.a.bz.1.1 1
120.59 even 2 1600.4.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.4.a.b.1.1 1 15.14 odd 2
200.4.a.j.1.1 yes 1 3.2 odd 2
200.4.c.b.49.1 2 15.2 even 4
200.4.c.b.49.2 2 15.8 even 4
400.4.a.a.1.1 1 12.11 even 2
400.4.a.t.1.1 1 60.59 even 2
400.4.c.b.49.1 2 60.23 odd 4
400.4.c.b.49.2 2 60.47 odd 4
1600.4.a.b.1.1 1 120.59 even 2
1600.4.a.c.1.1 1 24.5 odd 2
1600.4.a.by.1.1 1 24.11 even 2
1600.4.a.bz.1.1 1 120.29 odd 2
1800.4.a.c.1.1 1 5.4 even 2
1800.4.a.bh.1.1 1 1.1 even 1 trivial
1800.4.f.w.649.1 2 5.3 odd 4
1800.4.f.w.649.2 2 5.2 odd 4