Properties

Label 1800.2.k.u
Level $1800$
Weight $2$
Character orbit 1800.k
Analytic conductor $14.373$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1800.k (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(14.3730723638\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.180227832610816.1
Defining polynomial: \(x^{12} + x^{10} - 8 x^{6} + 16 x^{2} + 64\)
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{1} q^{2} + \beta_{4} q^{4} + ( -\beta_{1} - \beta_{8} ) q^{7} + ( -\beta_{3} + \beta_{8} ) q^{8} +O(q^{10})\) \( q + \beta_{1} q^{2} + \beta_{4} q^{4} + ( -\beta_{1} - \beta_{8} ) q^{7} + ( -\beta_{3} + \beta_{8} ) q^{8} + ( -\beta_{4} + \beta_{6} ) q^{11} + ( -\beta_{1} - \beta_{2} + \beta_{7} - \beta_{9} ) q^{13} + ( -2 - \beta_{4} + \beta_{5} - \beta_{6} + \beta_{10} - \beta_{11} ) q^{14} + ( -\beta_{5} + \beta_{6} - \beta_{10} ) q^{16} + ( -\beta_{1} - \beta_{2} - \beta_{7} ) q^{17} + ( -2 \beta_{5} + \beta_{6} - \beta_{10} + \beta_{11} ) q^{19} + ( -\beta_{2} + 2 \beta_{3} + \beta_{7} - \beta_{8} - \beta_{9} ) q^{22} + ( -2 \beta_{2} + \beta_{3} - \beta_{7} ) q^{23} + ( 2 - \beta_{4} - \beta_{5} + \beta_{6} + \beta_{10} - \beta_{11} ) q^{26} + ( -2 \beta_{1} - 2 \beta_{7} ) q^{28} + ( -2 \beta_{4} + \beta_{5} - \beta_{10} + \beta_{11} ) q^{29} + ( -2 + \beta_{6} + \beta_{10} + \beta_{11} ) q^{31} + ( \beta_{3} + 2 \beta_{7} - \beta_{8} - 2 \beta_{9} ) q^{32} + ( -2 - \beta_{4} - \beta_{5} + \beta_{11} ) q^{34} + ( -\beta_{1} - \beta_{2} + \beta_{7} + \beta_{9} ) q^{37} + ( 2 \beta_{7} - 2 \beta_{8} ) q^{38} + ( 2 + 2 \beta_{6} + 2 \beta_{10} + 2 \beta_{11} ) q^{41} + ( 2 \beta_{1} - 2 \beta_{2} - 2 \beta_{3} ) q^{43} + ( 4 + 2 \beta_{10} ) q^{44} + ( -2 \beta_{5} + 2 \beta_{11} ) q^{46} + ( \beta_{3} + \beta_{7} - 2 \beta_{8} ) q^{47} + ( 1 + 2 \beta_{4} - 2 \beta_{10} ) q^{49} + ( 2 \beta_{1} - 2 \beta_{2} - 2 \beta_{8} - 2 \beta_{9} ) q^{52} + ( -\beta_{1} + \beta_{2} + \beta_{3} - 2 \beta_{9} ) q^{53} + ( -4 - 2 \beta_{4} + 2 \beta_{11} ) q^{56} + ( \beta_{2} + 4 \beta_{3} + \beta_{7} - \beta_{8} + \beta_{9} ) q^{58} + ( -\beta_{4} - 2 \beta_{5} + 3 \beta_{6} ) q^{59} + ( 2 \beta_{6} + 2 \beta_{10} - 2 \beta_{11} ) q^{61} + ( -2 \beta_{1} - 2 \beta_{2} + 2 \beta_{9} ) q^{62} + ( 4 + \beta_{5} + \beta_{6} + 3 \beta_{10} - 2 \beta_{11} ) q^{64} + ( 2 \beta_{1} - 2 \beta_{2} - 2 \beta_{3} ) q^{67} + ( -2 \beta_{1} - 2 \beta_{8} + 2 \beta_{9} ) q^{68} + ( -4 - 2 \beta_{6} - 2 \beta_{10} - 2 \beta_{11} ) q^{71} + ( 4 \beta_{1} + 2 \beta_{2} + 2 \beta_{3} + 4 \beta_{7} - 2 \beta_{8} ) q^{73} + ( 2 - \beta_{4} - \beta_{5} - \beta_{6} - \beta_{10} - \beta_{11} ) q^{74} + ( 2 \beta_{5} - 2 \beta_{6} + 2 \beta_{10} - 4 \beta_{11} ) q^{76} + 2 \beta_{9} q^{77} + ( -2 + \beta_{6} + \beta_{10} + \beta_{11} ) q^{79} + ( 2 \beta_{1} - 4 \beta_{2} + 4 \beta_{9} ) q^{82} + ( 2 \beta_{1} + 2 \beta_{2} - 2 \beta_{7} + 2 \beta_{9} ) q^{83} + ( -4 + 2 \beta_{4} - 2 \beta_{5} - 2 \beta_{11} ) q^{86} + ( 4 \beta_{1} - 2 \beta_{2} - 2 \beta_{3} - 2 \beta_{7} + 2 \beta_{9} ) q^{88} + ( -2 + 4 \beta_{4} + 2 \beta_{6} - 2 \beta_{10} + 2 \beta_{11} ) q^{89} + ( -2 \beta_{4} - 2 \beta_{6} - 4 \beta_{10} + 4 \beta_{11} ) q^{91} + ( -2 \beta_{3} - 2 \beta_{8} + 4 \beta_{9} ) q^{92} + ( 2 \beta_{5} - 2 \beta_{6} + 2 \beta_{10} - 2 \beta_{11} ) q^{94} + ( 2 \beta_{1} - 2 \beta_{2} + 4 \beta_{3} + 2 \beta_{7} - 4 \beta_{8} ) q^{97} + ( \beta_{1} + 2 \beta_{2} + 2 \beta_{7} + 2 \beta_{8} - 2 \beta_{9} ) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{4} + O(q^{10}) \) \( 12 q - 2 q^{4} - 20 q^{14} + 2 q^{16} + 28 q^{26} - 32 q^{31} - 24 q^{34} + 8 q^{41} + 44 q^{44} - 4 q^{46} + 12 q^{49} - 52 q^{56} + 46 q^{64} - 32 q^{71} + 36 q^{74} + 12 q^{76} - 32 q^{79} - 40 q^{86} - 40 q^{89} + 4 q^{94} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{12} + x^{10} - 8 x^{6} + 16 x^{2} + 64\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( -\nu^{11} - \nu^{9} + 8 \nu^{5} - 16 \nu \)\()/32\)
\(\beta_{2}\)\(=\)\((\)\( \nu^{9} - \nu^{7} + 2 \nu^{5} + 4 \nu^{3} + 8 \nu \)\()/16\)
\(\beta_{3}\)\(=\)\((\)\( -\nu^{11} + \nu^{9} + 6 \nu^{7} + 4 \nu^{5} - 8 \nu^{3} \)\()/32\)
\(\beta_{4}\)\(=\)\((\)\( -\nu^{10} - \nu^{8} + 8 \nu^{4} - 16 \)\()/16\)
\(\beta_{5}\)\(=\)\((\)\( \nu^{8} - \nu^{6} + 2 \nu^{4} + 4 \nu^{2} + 8 \)\()/8\)
\(\beta_{6}\)\(=\)\((\)\( -\nu^{6} - \nu^{4} + 4 \nu^{2} + 4 \)\()/4\)
\(\beta_{7}\)\(=\)\((\)\( \nu^{11} - \nu^{9} - 6 \nu^{7} - 4 \nu^{5} + 8 \nu^{3} + 64 \nu \)\()/32\)
\(\beta_{8}\)\(=\)\((\)\( -\nu^{9} + \nu^{7} - 2 \nu^{5} + 12 \nu^{3} + 8 \nu \)\()/16\)
\(\beta_{9}\)\(=\)\((\)\( \nu^{11} - \nu^{9} + 2 \nu^{7} + 4 \nu^{5} + 8 \nu^{3} \)\()/32\)
\(\beta_{10}\)\(=\)\((\)\( -\nu^{10} + \nu^{8} + 2 \nu^{6} - 24 \nu^{2} - 16 \)\()/16\)
\(\beta_{11}\)\(=\)\((\)\( -\nu^{10} + \nu^{8} + 6 \nu^{6} + 4 \nu^{4} - 8 \nu^{2} - 32 \)\()/16\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{7} + \beta_{3}\)\()/2\)
\(\nu^{2}\)\(=\)\((\)\(\beta_{11} - \beta_{10} + \beta_{6}\)\()/2\)
\(\nu^{3}\)\(=\)\((\)\(2 \beta_{8} - \beta_{7} - \beta_{3} + 2 \beta_{2}\)\()/2\)
\(\nu^{4}\)\(=\)\((\)\(-\beta_{11} - \beta_{10} - 3 \beta_{6} + 2 \beta_{5} + 2 \beta_{4}\)\()/2\)
\(\nu^{5}\)\(=\)\((\)\(4 \beta_{9} - 2 \beta_{8} + \beta_{7} + \beta_{3} + 2 \beta_{2} + 4 \beta_{1}\)\()/2\)
\(\nu^{6}\)\(=\)\((\)\(5 \beta_{11} - 3 \beta_{10} - \beta_{6} - 2 \beta_{5} - 2 \beta_{4} + 8\)\()/2\)
\(\nu^{7}\)\(=\)\((\)\(4 \beta_{9} + 2 \beta_{8} - \beta_{7} + 7 \beta_{3} - 2 \beta_{2} - 4 \beta_{1}\)\()/2\)
\(\nu^{8}\)\(=\)\((\)\(3 \beta_{11} + 3 \beta_{10} + \beta_{6} + 10 \beta_{5} - 6 \beta_{4} - 8\)\()/2\)
\(\nu^{9}\)\(=\)\((\)\(-4 \beta_{9} - 2 \beta_{8} - 7 \beta_{7} + \beta_{3} + 18 \beta_{2} - 12 \beta_{1}\)\()/2\)
\(\nu^{10}\)\(=\)\((\)\(-11 \beta_{11} - 11 \beta_{10} - 25 \beta_{6} + 6 \beta_{5} - 10 \beta_{4} - 24\)\()/2\)
\(\nu^{11}\)\(=\)\((\)\(36 \beta_{9} - 14 \beta_{8} - \beta_{7} - 9 \beta_{3} - 2 \beta_{2} - 20 \beta_{1}\)\()/2\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1800\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1001\) \(1351\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
901.1
−1.37729 + 0.321037i
−1.37729 0.321037i
−0.806504 + 1.16170i
−0.806504 1.16170i
−0.450129 + 1.34067i
−0.450129 1.34067i
0.450129 + 1.34067i
0.450129 1.34067i
0.806504 + 1.16170i
0.806504 1.16170i
1.37729 + 0.321037i
1.37729 0.321037i
−1.37729 0.321037i 0 1.79387 + 0.884323i 0 0 4.05705 −2.18678 1.79387i 0 0
901.2 −1.37729 + 0.321037i 0 1.79387 0.884323i 0 0 4.05705 −2.18678 + 1.79387i 0 0
901.3 −0.806504 1.16170i 0 −0.699104 + 1.87383i 0 0 0.746175 2.74067 0.699104i 0 0
901.4 −0.806504 + 1.16170i 0 −0.699104 1.87383i 0 0 0.746175 2.74067 + 0.699104i 0 0
901.5 −0.450129 1.34067i 0 −1.59477 + 1.20695i 0 0 −2.64265 2.33596 + 1.59477i 0 0
901.6 −0.450129 + 1.34067i 0 −1.59477 1.20695i 0 0 −2.64265 2.33596 1.59477i 0 0
901.7 0.450129 1.34067i 0 −1.59477 1.20695i 0 0 2.64265 −2.33596 + 1.59477i 0 0
901.8 0.450129 + 1.34067i 0 −1.59477 + 1.20695i 0 0 2.64265 −2.33596 1.59477i 0 0
901.9 0.806504 1.16170i 0 −0.699104 1.87383i 0 0 −0.746175 −2.74067 0.699104i 0 0
901.10 0.806504 + 1.16170i 0 −0.699104 + 1.87383i 0 0 −0.746175 −2.74067 + 0.699104i 0 0
901.11 1.37729 0.321037i 0 1.79387 0.884323i 0 0 −4.05705 2.18678 1.79387i 0 0
901.12 1.37729 + 0.321037i 0 1.79387 + 0.884323i 0 0 −4.05705 2.18678 + 1.79387i 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 901.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
8.b even 2 1 inner
40.f even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1800.2.k.u 12
3.b odd 2 1 600.2.k.f 12
4.b odd 2 1 7200.2.k.u 12
5.b even 2 1 inner 1800.2.k.u 12
5.c odd 4 1 360.2.d.e 6
5.c odd 4 1 360.2.d.f 6
8.b even 2 1 inner 1800.2.k.u 12
8.d odd 2 1 7200.2.k.u 12
12.b even 2 1 2400.2.k.f 12
15.d odd 2 1 600.2.k.f 12
15.e even 4 1 120.2.d.a 6
15.e even 4 1 120.2.d.b yes 6
20.d odd 2 1 7200.2.k.u 12
20.e even 4 1 1440.2.d.e 6
20.e even 4 1 1440.2.d.f 6
24.f even 2 1 2400.2.k.f 12
24.h odd 2 1 600.2.k.f 12
40.e odd 2 1 7200.2.k.u 12
40.f even 2 1 inner 1800.2.k.u 12
40.i odd 4 1 360.2.d.e 6
40.i odd 4 1 360.2.d.f 6
40.k even 4 1 1440.2.d.e 6
40.k even 4 1 1440.2.d.f 6
60.h even 2 1 2400.2.k.f 12
60.l odd 4 1 480.2.d.a 6
60.l odd 4 1 480.2.d.b 6
120.i odd 2 1 600.2.k.f 12
120.m even 2 1 2400.2.k.f 12
120.q odd 4 1 480.2.d.a 6
120.q odd 4 1 480.2.d.b 6
120.w even 4 1 120.2.d.a 6
120.w even 4 1 120.2.d.b yes 6
240.z odd 4 2 3840.2.f.m 12
240.bb even 4 2 3840.2.f.l 12
240.bd odd 4 2 3840.2.f.m 12
240.bf even 4 2 3840.2.f.l 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.2.d.a 6 15.e even 4 1
120.2.d.a 6 120.w even 4 1
120.2.d.b yes 6 15.e even 4 1
120.2.d.b yes 6 120.w even 4 1
360.2.d.e 6 5.c odd 4 1
360.2.d.e 6 40.i odd 4 1
360.2.d.f 6 5.c odd 4 1
360.2.d.f 6 40.i odd 4 1
480.2.d.a 6 60.l odd 4 1
480.2.d.a 6 120.q odd 4 1
480.2.d.b 6 60.l odd 4 1
480.2.d.b 6 120.q odd 4 1
600.2.k.f 12 3.b odd 2 1
600.2.k.f 12 15.d odd 2 1
600.2.k.f 12 24.h odd 2 1
600.2.k.f 12 120.i odd 2 1
1440.2.d.e 6 20.e even 4 1
1440.2.d.e 6 40.k even 4 1
1440.2.d.f 6 20.e even 4 1
1440.2.d.f 6 40.k even 4 1
1800.2.k.u 12 1.a even 1 1 trivial
1800.2.k.u 12 5.b even 2 1 inner
1800.2.k.u 12 8.b even 2 1 inner
1800.2.k.u 12 40.f even 2 1 inner
2400.2.k.f 12 12.b even 2 1
2400.2.k.f 12 24.f even 2 1
2400.2.k.f 12 60.h even 2 1
2400.2.k.f 12 120.m even 2 1
3840.2.f.l 12 240.bb even 4 2
3840.2.f.l 12 240.bf even 4 2
3840.2.f.m 12 240.z odd 4 2
3840.2.f.m 12 240.bd odd 4 2
7200.2.k.u 12 4.b odd 2 1
7200.2.k.u 12 8.d odd 2 1
7200.2.k.u 12 20.d odd 2 1
7200.2.k.u 12 40.e odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1800, [\chi])\):

\( T_{7}^{6} - 24 T_{7}^{4} + 128 T_{7}^{2} - 64 \)
\( T_{11}^{6} + 32 T_{11}^{4} + 96 T_{11}^{2} + 64 \)
\( T_{17}^{6} - 36 T_{17}^{4} + 368 T_{17}^{2} - 1024 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 64 + 16 T^{2} - 8 T^{6} + T^{10} + T^{12} \)
$3$ \( T^{12} \)
$5$ \( T^{12} \)
$7$ \( ( -64 + 128 T^{2} - 24 T^{4} + T^{6} )^{2} \)
$11$ \( ( 64 + 96 T^{2} + 32 T^{4} + T^{6} )^{2} \)
$13$ \( ( 3136 + 704 T^{2} + 48 T^{4} + T^{6} )^{2} \)
$17$ \( ( -1024 + 368 T^{2} - 36 T^{4} + T^{6} )^{2} \)
$19$ \( ( 1024 + 512 T^{2} + 60 T^{4} + T^{6} )^{2} \)
$23$ \( ( -16384 + 2304 T^{2} - 92 T^{4} + T^{6} )^{2} \)
$29$ \( ( 12544 + 3120 T^{2} + 108 T^{4} + T^{6} )^{2} \)
$31$ \( ( -64 - 4 T + 8 T^{2} + T^{3} )^{4} \)
$37$ \( ( 64 + 128 T^{2} + 64 T^{4} + T^{6} )^{2} \)
$41$ \( ( -56 - 100 T - 2 T^{2} + T^{3} )^{4} \)
$43$ \( ( 4096 + 4096 T^{2} + 128 T^{4} + T^{6} )^{2} \)
$47$ \( ( -1024 + 512 T^{2} - 60 T^{4} + T^{6} )^{2} \)
$53$ \( ( 64 + 1216 T^{2} + 80 T^{4} + T^{6} )^{2} \)
$59$ \( ( 179776 + 9888 T^{2} + 176 T^{4} + T^{6} )^{2} \)
$61$ \( ( 65536 + 7168 T^{2} + 176 T^{4} + T^{6} )^{2} \)
$67$ \( ( 4096 + 4096 T^{2} + 128 T^{4} + T^{6} )^{2} \)
$71$ \( ( -128 - 80 T + 8 T^{2} + T^{3} )^{4} \)
$73$ \( ( -16384 + 34560 T^{2} - 384 T^{4} + T^{6} )^{2} \)
$79$ \( ( -64 - 4 T + 8 T^{2} + T^{3} )^{4} \)
$83$ \( ( 200704 + 11264 T^{2} + 192 T^{4} + T^{6} )^{2} \)
$89$ \( ( -1384 - 164 T + 10 T^{2} + T^{3} )^{4} \)
$97$ \( ( -262144 + 28416 T^{2} - 336 T^{4} + T^{6} )^{2} \)
show more
show less