Properties

Label 1800.2.k.o.901.4
Level $1800$
Weight $2$
Character 1800.901
Analytic conductor $14.373$
Analytic rank $0$
Dimension $4$
CM discriminant -120
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1800,2,Mod(901,1800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1800.901");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1800.k (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.3730723638\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 4x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 360)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 901.4
Root \(-0.707107 - 1.58114i\) of defining polynomial
Character \(\chi\) \(=\) 1800.901
Dual form 1800.2.k.o.901.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421 q^{2} +2.00000 q^{4} +2.82843 q^{8} +O(q^{10})\) \(q+1.41421 q^{2} +2.00000 q^{4} +2.82843 q^{8} +4.47214i q^{11} -6.32456i q^{13} +4.00000 q^{16} +2.82843 q^{17} +6.32456i q^{22} +5.65685 q^{23} -8.94427i q^{26} -4.47214i q^{29} +2.00000 q^{31} +5.65685 q^{32} +4.00000 q^{34} +6.32456i q^{37} +12.6491i q^{43} +8.94427i q^{44} +8.00000 q^{46} +11.3137 q^{47} -7.00000 q^{49} -12.6491i q^{52} -6.32456i q^{58} -4.47214i q^{59} +2.82843 q^{62} +8.00000 q^{64} -12.6491i q^{67} +5.65685 q^{68} +8.94427i q^{74} -14.0000 q^{79} +17.8885i q^{86} +12.6491i q^{88} +11.3137 q^{92} +16.0000 q^{94} -9.89949 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 8 q^{4} + 16 q^{16} + 8 q^{31} + 16 q^{34} + 32 q^{46} - 28 q^{49} + 32 q^{64} - 56 q^{79} + 64 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1800\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1001\) \(1351\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421 1.00000
\(3\) 0 0
\(4\) 2.00000 1.00000
\(5\) 0 0
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 2.82843 1.00000
\(9\) 0 0
\(10\) 0 0
\(11\) 4.47214i 1.34840i 0.738549 + 0.674200i \(0.235511\pi\)
−0.738549 + 0.674200i \(0.764489\pi\)
\(12\) 0 0
\(13\) − 6.32456i − 1.75412i −0.480384 0.877058i \(-0.659503\pi\)
0.480384 0.877058i \(-0.340497\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 4.00000 1.00000
\(17\) 2.82843 0.685994 0.342997 0.939336i \(-0.388558\pi\)
0.342997 + 0.939336i \(0.388558\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 6.32456i 1.34840i
\(23\) 5.65685 1.17954 0.589768 0.807573i \(-0.299219\pi\)
0.589768 + 0.807573i \(0.299219\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) − 8.94427i − 1.75412i
\(27\) 0 0
\(28\) 0 0
\(29\) − 4.47214i − 0.830455i −0.909718 0.415227i \(-0.863702\pi\)
0.909718 0.415227i \(-0.136298\pi\)
\(30\) 0 0
\(31\) 2.00000 0.359211 0.179605 0.983739i \(-0.442518\pi\)
0.179605 + 0.983739i \(0.442518\pi\)
\(32\) 5.65685 1.00000
\(33\) 0 0
\(34\) 4.00000 0.685994
\(35\) 0 0
\(36\) 0 0
\(37\) 6.32456i 1.03975i 0.854242 + 0.519875i \(0.174022\pi\)
−0.854242 + 0.519875i \(0.825978\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 12.6491i 1.92897i 0.264135 + 0.964486i \(0.414913\pi\)
−0.264135 + 0.964486i \(0.585087\pi\)
\(44\) 8.94427i 1.34840i
\(45\) 0 0
\(46\) 8.00000 1.17954
\(47\) 11.3137 1.65027 0.825137 0.564933i \(-0.191098\pi\)
0.825137 + 0.564933i \(0.191098\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) − 12.6491i − 1.75412i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) − 6.32456i − 0.830455i
\(59\) − 4.47214i − 0.582223i −0.956689 0.291111i \(-0.905975\pi\)
0.956689 0.291111i \(-0.0940250\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 2.82843 0.359211
\(63\) 0 0
\(64\) 8.00000 1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) − 12.6491i − 1.54533i −0.634811 0.772667i \(-0.718922\pi\)
0.634811 0.772667i \(-0.281078\pi\)
\(68\) 5.65685 0.685994
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 8.94427i 1.03975i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −14.0000 −1.57512 −0.787562 0.616236i \(-0.788657\pi\)
−0.787562 + 0.616236i \(0.788657\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 17.8885i 1.92897i
\(87\) 0 0
\(88\) 12.6491i 1.34840i
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 11.3137 1.17954
\(93\) 0 0
\(94\) 16.0000 1.65027
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) −9.89949 −1.00000
\(99\) 0 0
\(100\) 0 0
\(101\) 4.47214i 0.444994i 0.974933 + 0.222497i \(0.0714208\pi\)
−0.974933 + 0.222497i \(0.928579\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) − 17.8885i − 1.75412i
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −19.7990 −1.86253 −0.931266 0.364340i \(-0.881295\pi\)
−0.931266 + 0.364340i \(0.881295\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) − 8.94427i − 0.830455i
\(117\) 0 0
\(118\) − 6.32456i − 0.582223i
\(119\) 0 0
\(120\) 0 0
\(121\) −9.00000 −0.818182
\(122\) 0 0
\(123\) 0 0
\(124\) 4.00000 0.359211
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 11.3137 1.00000
\(129\) 0 0
\(130\) 0 0
\(131\) − 22.3607i − 1.95366i −0.214013 0.976831i \(-0.568653\pi\)
0.214013 0.976831i \(-0.431347\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) − 17.8885i − 1.54533i
\(135\) 0 0
\(136\) 8.00000 0.685994
\(137\) 2.82843 0.241649 0.120824 0.992674i \(-0.461446\pi\)
0.120824 + 0.992674i \(0.461446\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 28.2843 2.36525
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 12.6491i 1.03975i
\(149\) 22.3607i 1.83186i 0.401340 + 0.915929i \(0.368545\pi\)
−0.401340 + 0.915929i \(0.631455\pi\)
\(150\) 0 0
\(151\) −22.0000 −1.79033 −0.895167 0.445730i \(-0.852944\pi\)
−0.895167 + 0.445730i \(0.852944\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 6.32456i 0.504754i 0.967629 + 0.252377i \(0.0812124\pi\)
−0.967629 + 0.252377i \(0.918788\pi\)
\(158\) −19.7990 −1.57512
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) − 25.2982i − 1.98151i −0.135665 0.990755i \(-0.543317\pi\)
0.135665 0.990755i \(-0.456683\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 11.3137 0.875481 0.437741 0.899101i \(-0.355779\pi\)
0.437741 + 0.899101i \(0.355779\pi\)
\(168\) 0 0
\(169\) −27.0000 −2.07692
\(170\) 0 0
\(171\) 0 0
\(172\) 25.2982i 1.92897i
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 17.8885i 1.34840i
\(177\) 0 0
\(178\) 0 0
\(179\) 22.3607i 1.67132i 0.549250 + 0.835658i \(0.314913\pi\)
−0.549250 + 0.835658i \(0.685087\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 16.0000 1.17954
\(185\) 0 0
\(186\) 0 0
\(187\) 12.6491i 0.924995i
\(188\) 22.6274 1.65027
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −14.0000 −1.00000
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) −26.0000 −1.84309 −0.921546 0.388270i \(-0.873073\pi\)
−0.921546 + 0.388270i \(0.873073\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 6.32456i 0.444994i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) − 25.2982i − 1.75412i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 17.8885i − 1.20331i
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −28.0000 −1.86253
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) − 12.6491i − 0.830455i
\(233\) −19.7990 −1.29707 −0.648537 0.761183i \(-0.724619\pi\)
−0.648537 + 0.761183i \(0.724619\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) − 8.94427i − 0.582223i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −22.0000 −1.41714 −0.708572 0.705638i \(-0.750660\pi\)
−0.708572 + 0.705638i \(0.750660\pi\)
\(242\) −12.7279 −0.818182
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 5.65685 0.359211
\(249\) 0 0
\(250\) 0 0
\(251\) 31.3050i 1.97595i 0.154610 + 0.987976i \(0.450588\pi\)
−0.154610 + 0.987976i \(0.549412\pi\)
\(252\) 0 0
\(253\) 25.2982i 1.59049i
\(254\) 0 0
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) −31.1127 −1.94076 −0.970378 0.241590i \(-0.922331\pi\)
−0.970378 + 0.241590i \(0.922331\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) − 31.6228i − 1.95366i
\(263\) 22.6274 1.39527 0.697633 0.716455i \(-0.254237\pi\)
0.697633 + 0.716455i \(0.254237\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) − 25.2982i − 1.54533i
\(269\) − 31.3050i − 1.90870i −0.298696 0.954348i \(-0.596552\pi\)
0.298696 0.954348i \(-0.403448\pi\)
\(270\) 0 0
\(271\) 2.00000 0.121491 0.0607457 0.998153i \(-0.480652\pi\)
0.0607457 + 0.998153i \(0.480652\pi\)
\(272\) 11.3137 0.685994
\(273\) 0 0
\(274\) 4.00000 0.241649
\(275\) 0 0
\(276\) 0 0
\(277\) − 31.6228i − 1.90003i −0.312207 0.950014i \(-0.601068\pi\)
0.312207 0.950014i \(-0.398932\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) 12.6491i 0.751912i 0.926638 + 0.375956i \(0.122686\pi\)
−0.926638 + 0.375956i \(0.877314\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 40.0000 2.36525
\(287\) 0 0
\(288\) 0 0
\(289\) −9.00000 −0.529412
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 17.8885i 1.03975i
\(297\) 0 0
\(298\) 31.6228i 1.83186i
\(299\) − 35.7771i − 2.06904i
\(300\) 0 0
\(301\) 0 0
\(302\) −31.1127 −1.79033
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 25.2982i 1.44385i 0.691974 + 0.721923i \(0.256741\pi\)
−0.691974 + 0.721923i \(0.743259\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 8.94427i 0.504754i
\(315\) 0 0
\(316\) −28.0000 −1.57512
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 20.0000 1.11979
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) − 35.7771i − 1.98151i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 16.0000 0.875481
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(338\) −38.1838 −2.07692
\(339\) 0 0
\(340\) 0 0
\(341\) 8.94427i 0.484359i
\(342\) 0 0
\(343\) 0 0
\(344\) 35.7771i 1.92897i
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 25.2982i 1.34840i
\(353\) −36.7696 −1.95705 −0.978523 0.206138i \(-0.933910\pi\)
−0.978523 + 0.206138i \(0.933910\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 31.6228i 1.67132i
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 22.6274 1.17954
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) − 6.32456i − 0.327473i −0.986504 0.163737i \(-0.947645\pi\)
0.986504 0.163737i \(-0.0523547\pi\)
\(374\) 17.8885i 0.924995i
\(375\) 0 0
\(376\) 32.0000 1.65027
\(377\) −28.2843 −1.45671
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 5.65685 0.289052 0.144526 0.989501i \(-0.453834\pi\)
0.144526 + 0.989501i \(0.453834\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 4.47214i − 0.226746i −0.993552 0.113373i \(-0.963834\pi\)
0.993552 0.113373i \(-0.0361656\pi\)
\(390\) 0 0
\(391\) 16.0000 0.809155
\(392\) −19.7990 −1.00000
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 31.6228i − 1.58710i −0.608504 0.793551i \(-0.708230\pi\)
0.608504 0.793551i \(-0.291770\pi\)
\(398\) −36.7696 −1.84309
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) − 12.6491i − 0.630097i
\(404\) 8.94427i 0.444994i
\(405\) 0 0
\(406\) 0 0
\(407\) −28.2843 −1.40200
\(408\) 0 0
\(409\) 34.0000 1.68119 0.840596 0.541663i \(-0.182205\pi\)
0.840596 + 0.541663i \(0.182205\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) − 35.7771i − 1.75412i
\(417\) 0 0
\(418\) 0 0
\(419\) 22.3607i 1.09239i 0.837658 + 0.546195i \(0.183924\pi\)
−0.837658 + 0.546195i \(0.816076\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −26.0000 −1.24091 −0.620456 0.784241i \(-0.713053\pi\)
−0.620456 + 0.784241i \(0.713053\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) − 25.2982i − 1.20331i
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −39.5980 −1.86253
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 31.3050i 1.45802i 0.684505 + 0.729008i \(0.260019\pi\)
−0.684505 + 0.729008i \(0.739981\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) − 17.8885i − 0.830455i
\(465\) 0 0
\(466\) −28.0000 −1.29707
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) − 12.6491i − 0.582223i
\(473\) −56.5685 −2.60102
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 40.0000 1.82384
\(482\) −31.1127 −1.41714
\(483\) 0 0
\(484\) −18.0000 −0.818182
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 4.47214i 0.201825i 0.994895 + 0.100912i \(0.0321762\pi\)
−0.994895 + 0.100912i \(0.967824\pi\)
\(492\) 0 0
\(493\) − 12.6491i − 0.569687i
\(494\) 0 0
\(495\) 0 0
\(496\) 8.00000 0.359211
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 44.2719i 1.97595i
\(503\) 22.6274 1.00891 0.504453 0.863439i \(-0.331694\pi\)
0.504453 + 0.863439i \(0.331694\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 35.7771i 1.59049i
\(507\) 0 0
\(508\) 0 0
\(509\) 22.3607i 0.991120i 0.868574 + 0.495560i \(0.165037\pi\)
−0.868574 + 0.495560i \(0.834963\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 22.6274 1.00000
\(513\) 0 0
\(514\) −44.0000 −1.94076
\(515\) 0 0
\(516\) 0 0
\(517\) 50.5964i 2.22523i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) − 25.2982i − 1.10621i −0.833110 0.553107i \(-0.813442\pi\)
0.833110 0.553107i \(-0.186558\pi\)
\(524\) − 44.7214i − 1.95366i
\(525\) 0 0
\(526\) 32.0000 1.39527
\(527\) 5.65685 0.246416
\(528\) 0 0
\(529\) 9.00000 0.391304
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) − 35.7771i − 1.54533i
\(537\) 0 0
\(538\) − 44.2719i − 1.90870i
\(539\) − 31.3050i − 1.34840i
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 2.82843 0.121491
\(543\) 0 0
\(544\) 16.0000 0.685994
\(545\) 0 0
\(546\) 0 0
\(547\) − 12.6491i − 0.540837i −0.962743 0.270418i \(-0.912838\pi\)
0.962743 0.270418i \(-0.0871621\pi\)
\(548\) 5.65685 0.241649
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) − 44.7214i − 1.90003i
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 80.0000 3.38364
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 17.8885i 0.751912i
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 56.5685 2.36525
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(578\) −12.7279 −0.529412
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 25.2982i 1.03975i
\(593\) 48.0833 1.97454 0.987271 0.159044i \(-0.0508413\pi\)
0.987271 + 0.159044i \(0.0508413\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 44.7214i 1.83186i
\(597\) 0 0
\(598\) − 50.5964i − 2.06904i
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −22.0000 −0.897399 −0.448699 0.893683i \(-0.648113\pi\)
−0.448699 + 0.893683i \(0.648113\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −44.0000 −1.79033
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 71.5542i − 2.89477i
\(612\) 0 0
\(613\) 31.6228i 1.27723i 0.769526 + 0.638616i \(0.220493\pi\)
−0.769526 + 0.638616i \(0.779507\pi\)
\(614\) 35.7771i 1.44385i
\(615\) 0 0
\(616\) 0 0
\(617\) −31.1127 −1.25255 −0.626275 0.779602i \(-0.715421\pi\)
−0.626275 + 0.779602i \(0.715421\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 12.6491i 0.504754i
\(629\) 17.8885i 0.713263i
\(630\) 0 0
\(631\) 38.0000 1.51276 0.756378 0.654135i \(-0.226967\pi\)
0.756378 + 0.654135i \(0.226967\pi\)
\(632\) −39.5980 −1.57512
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 44.2719i 1.75412i
\(638\) 28.2843 1.11979
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) 50.5964i 1.99533i 0.0683054 + 0.997664i \(0.478241\pi\)
−0.0683054 + 0.997664i \(0.521759\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 45.2548 1.77915 0.889576 0.456788i \(-0.151000\pi\)
0.889576 + 0.456788i \(0.151000\pi\)
\(648\) 0 0
\(649\) 20.0000 0.785069
\(650\) 0 0
\(651\) 0 0
\(652\) − 50.5964i − 1.98151i
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 49.1935i 1.91631i 0.286256 + 0.958153i \(0.407589\pi\)
−0.286256 + 0.958153i \(0.592411\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 25.2982i − 0.979551i
\(668\) 22.6274 0.875481
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −54.0000 −2.07692
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 12.6491i 0.484359i
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 50.5964i 1.92897i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 49.1935i − 1.85801i −0.370064 0.929006i \(-0.620664\pi\)
0.370064 0.929006i \(-0.379336\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 35.7771i 1.34840i
\(705\) 0 0
\(706\) −52.0000 −1.95705
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 11.3137 0.423702
\(714\) 0 0
\(715\) 0 0
\(716\) 44.7214i 1.67132i
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 26.8701 1.00000
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 35.7771i 1.32326i
\(732\) 0 0
\(733\) − 44.2719i − 1.63522i −0.575773 0.817610i \(-0.695299\pi\)
0.575773 0.817610i \(-0.304701\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 32.0000 1.17954
\(737\) 56.5685 2.08373
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 5.65685 0.207530 0.103765 0.994602i \(-0.466911\pi\)
0.103765 + 0.994602i \(0.466911\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) − 8.94427i − 0.327473i
\(747\) 0 0
\(748\) 25.2982i 0.924995i
\(749\) 0 0
\(750\) 0 0
\(751\) 2.00000 0.0729810 0.0364905 0.999334i \(-0.488382\pi\)
0.0364905 + 0.999334i \(0.488382\pi\)
\(752\) 45.2548 1.65027
\(753\) 0 0
\(754\) −40.0000 −1.45671
\(755\) 0 0
\(756\) 0 0
\(757\) − 31.6228i − 1.14935i −0.818382 0.574675i \(-0.805129\pi\)
0.818382 0.574675i \(-0.194871\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 8.00000 0.289052
\(767\) −28.2843 −1.02129
\(768\) 0 0
\(769\) 34.0000 1.22607 0.613036 0.790055i \(-0.289948\pi\)
0.613036 + 0.790055i \(0.289948\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) − 6.32456i − 0.226746i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 22.6274 0.809155
\(783\) 0 0
\(784\) −28.0000 −1.00000
\(785\) 0 0
\(786\) 0 0
\(787\) − 50.5964i − 1.80357i −0.432187 0.901784i \(-0.642258\pi\)
0.432187 0.901784i \(-0.357742\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) − 44.7214i − 1.58710i
\(795\) 0 0
\(796\) −52.0000 −1.84309
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 32.0000 1.13208
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) − 17.8885i − 0.630097i
\(807\) 0 0
\(808\) 12.6491i 0.444994i
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −40.0000 −1.40200
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 48.0833 1.68119
\(819\) 0 0
\(820\) 0 0
\(821\) − 49.1935i − 1.71686i −0.512927 0.858432i \(-0.671439\pi\)
0.512927 0.858432i \(-0.328561\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) − 50.5964i − 1.75412i
\(833\) −19.7990 −0.685994
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 31.6228i 1.09239i
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 9.00000 0.310345
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 35.7771i 1.22642i
\(852\) 0 0
\(853\) − 44.2719i − 1.51584i −0.652347 0.757920i \(-0.726216\pi\)
0.652347 0.757920i \(-0.273784\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 53.7401 1.83573 0.917864 0.396896i \(-0.129913\pi\)
0.917864 + 0.396896i \(0.129913\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 22.6274 0.770246 0.385123 0.922865i \(-0.374159\pi\)
0.385123 + 0.922865i \(0.374159\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 62.6099i − 2.12390i
\(870\) 0 0
\(871\) −80.0000 −2.71070
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 6.32456i 0.213565i 0.994282 + 0.106783i \(0.0340549\pi\)
−0.994282 + 0.106783i \(0.965945\pi\)
\(878\) −36.7696 −1.24091
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 50.5964i 1.70271i 0.524593 + 0.851353i \(0.324217\pi\)
−0.524593 + 0.851353i \(0.675783\pi\)
\(884\) − 35.7771i − 1.20331i
\(885\) 0 0
\(886\) 0 0
\(887\) 45.2548 1.51951 0.759754 0.650210i \(-0.225319\pi\)
0.759754 + 0.650210i \(0.225319\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 8.94427i − 0.298308i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) −56.0000 −1.86253
\(905\) 0 0
\(906\) 0 0
\(907\) − 12.6491i − 0.420007i −0.977701 0.210003i \(-0.932652\pi\)
0.977701 0.210003i \(-0.0673475\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −26.0000 −0.857661 −0.428830 0.903385i \(-0.641074\pi\)
−0.428830 + 0.903385i \(0.641074\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 44.2719i 1.45802i
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) − 25.2982i − 0.830455i
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −39.5980 −1.29707
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 58.1378i 1.89524i 0.319404 + 0.947619i \(0.396517\pi\)
−0.319404 + 0.947619i \(0.603483\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) − 17.8885i − 0.582223i
\(945\) 0 0
\(946\) −80.0000 −2.60102
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 48.0833 1.55757 0.778785 0.627291i \(-0.215836\pi\)
0.778785 + 0.627291i \(0.215836\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 56.5685 1.82384
\(963\) 0 0
\(964\) −44.0000 −1.41714
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) −25.4558 −0.818182
\(969\) 0 0
\(970\) 0 0
\(971\) 31.3050i 1.00462i 0.864687 + 0.502312i \(0.167517\pi\)
−0.864687 + 0.502312i \(0.832483\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −31.1127 −0.995383 −0.497692 0.867354i \(-0.665819\pi\)
−0.497692 + 0.867354i \(0.665819\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 6.32456i 0.201825i
\(983\) −62.2254 −1.98468 −0.992341 0.123529i \(-0.960579\pi\)
−0.992341 + 0.123529i \(0.960579\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) − 17.8885i − 0.569687i
\(987\) 0 0
\(988\) 0 0
\(989\) 71.5542i 2.27529i
\(990\) 0 0
\(991\) 62.0000 1.96949 0.984747 0.173990i \(-0.0556660\pi\)
0.984747 + 0.173990i \(0.0556660\pi\)
\(992\) 11.3137 0.359211
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 44.2719i 1.40210i 0.713110 + 0.701052i \(0.247286\pi\)
−0.713110 + 0.701052i \(0.752714\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1800.2.k.o.901.4 4
3.2 odd 2 inner 1800.2.k.o.901.1 4
4.3 odd 2 7200.2.k.m.3601.1 4
5.2 odd 4 360.2.d.a.109.4 yes 4
5.3 odd 4 360.2.d.a.109.2 yes 4
5.4 even 2 inner 1800.2.k.o.901.2 4
8.3 odd 2 7200.2.k.m.3601.4 4
8.5 even 2 inner 1800.2.k.o.901.3 4
12.11 even 2 7200.2.k.m.3601.3 4
15.2 even 4 360.2.d.a.109.1 4
15.8 even 4 360.2.d.a.109.3 yes 4
15.14 odd 2 inner 1800.2.k.o.901.3 4
20.3 even 4 1440.2.d.a.1009.4 4
20.7 even 4 1440.2.d.a.1009.3 4
20.19 odd 2 7200.2.k.m.3601.2 4
24.5 odd 2 inner 1800.2.k.o.901.2 4
24.11 even 2 7200.2.k.m.3601.2 4
40.3 even 4 1440.2.d.a.1009.1 4
40.13 odd 4 360.2.d.a.109.1 4
40.19 odd 2 7200.2.k.m.3601.3 4
40.27 even 4 1440.2.d.a.1009.2 4
40.29 even 2 inner 1800.2.k.o.901.1 4
40.37 odd 4 360.2.d.a.109.3 yes 4
60.23 odd 4 1440.2.d.a.1009.2 4
60.47 odd 4 1440.2.d.a.1009.1 4
60.59 even 2 7200.2.k.m.3601.4 4
120.29 odd 2 CM 1800.2.k.o.901.4 4
120.53 even 4 360.2.d.a.109.4 yes 4
120.59 even 2 7200.2.k.m.3601.1 4
120.77 even 4 360.2.d.a.109.2 yes 4
120.83 odd 4 1440.2.d.a.1009.3 4
120.107 odd 4 1440.2.d.a.1009.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
360.2.d.a.109.1 4 15.2 even 4
360.2.d.a.109.1 4 40.13 odd 4
360.2.d.a.109.2 yes 4 5.3 odd 4
360.2.d.a.109.2 yes 4 120.77 even 4
360.2.d.a.109.3 yes 4 15.8 even 4
360.2.d.a.109.3 yes 4 40.37 odd 4
360.2.d.a.109.4 yes 4 5.2 odd 4
360.2.d.a.109.4 yes 4 120.53 even 4
1440.2.d.a.1009.1 4 40.3 even 4
1440.2.d.a.1009.1 4 60.47 odd 4
1440.2.d.a.1009.2 4 40.27 even 4
1440.2.d.a.1009.2 4 60.23 odd 4
1440.2.d.a.1009.3 4 20.7 even 4
1440.2.d.a.1009.3 4 120.83 odd 4
1440.2.d.a.1009.4 4 20.3 even 4
1440.2.d.a.1009.4 4 120.107 odd 4
1800.2.k.o.901.1 4 3.2 odd 2 inner
1800.2.k.o.901.1 4 40.29 even 2 inner
1800.2.k.o.901.2 4 5.4 even 2 inner
1800.2.k.o.901.2 4 24.5 odd 2 inner
1800.2.k.o.901.3 4 8.5 even 2 inner
1800.2.k.o.901.3 4 15.14 odd 2 inner
1800.2.k.o.901.4 4 1.1 even 1 trivial
1800.2.k.o.901.4 4 120.29 odd 2 CM
7200.2.k.m.3601.1 4 4.3 odd 2
7200.2.k.m.3601.1 4 120.59 even 2
7200.2.k.m.3601.2 4 20.19 odd 2
7200.2.k.m.3601.2 4 24.11 even 2
7200.2.k.m.3601.3 4 12.11 even 2
7200.2.k.m.3601.3 4 40.19 odd 2
7200.2.k.m.3601.4 4 8.3 odd 2
7200.2.k.m.3601.4 4 60.59 even 2