Properties

Label 1800.2.k
Level $1800$
Weight $2$
Character orbit 1800.k
Rep. character $\chi_{1800}(901,\cdot)$
Character field $\Q$
Dimension $92$
Newform subspaces $21$
Sturm bound $720$
Trace bound $17$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1800.k (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 21 \)
Sturm bound: \(720\)
Trace bound: \(17\)
Distinguishing \(T_p\): \(7\), \(11\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1800, [\chi])\).

Total New Old
Modular forms 384 98 286
Cusp forms 336 92 244
Eisenstein series 48 6 42

Trace form

\( 92q + 2q^{4} + 4q^{7} + O(q^{10}) \) \( 92q + 2q^{4} + 4q^{7} - 6q^{16} - 4q^{17} - 4q^{22} - 12q^{23} + 12q^{28} + 8q^{31} + 20q^{32} - 34q^{34} - 12q^{38} + 4q^{41} + 50q^{44} + 32q^{46} - 4q^{47} + 68q^{49} + 40q^{52} - 8q^{56} - 28q^{58} + 36q^{62} - 22q^{64} + 8q^{68} + 40q^{71} + 20q^{74} + 38q^{76} + 8q^{79} + 4q^{82} + 40q^{86} + 16q^{88} - 20q^{89} - 60q^{92} + 80q^{94} - 16q^{97} + 12q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(1800, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
1800.2.k.a \(2\) \(14.373\) \(\Q(\sqrt{-1}) \) None \(-2\) \(0\) \(0\) \(4\) \(q+(-1-i)q^{2}+2iq^{4}+2q^{7}+(2-2i)q^{8}+\cdots\)
1800.2.k.b \(2\) \(14.373\) \(\Q(\sqrt{-1}) \) None \(-2\) \(0\) \(0\) \(4\) \(q+(-1-i)q^{2}+2iq^{4}+2q^{7}+(2-2i)q^{8}+\cdots\)
1800.2.k.c \(2\) \(14.373\) \(\Q(\sqrt{-1}) \) None \(-2\) \(0\) \(0\) \(8\) \(q+(-1-i)q^{2}+2iq^{4}+4q^{7}+(2-2i)q^{8}+\cdots\)
1800.2.k.d \(2\) \(14.373\) \(\Q(\sqrt{-7}) \) None \(-1\) \(0\) \(0\) \(8\) \(q+(-1+\beta )q^{2}+(-1-\beta )q^{4}+4q^{7}+\cdots\)
1800.2.k.e \(2\) \(14.373\) \(\Q(\sqrt{-2}) \) \(\Q(\sqrt{-6}) \) \(0\) \(0\) \(0\) \(-4\) \(q-\beta q^{2}-2q^{4}-2q^{7}+2\beta q^{8}-4\beta q^{11}+\cdots\)
1800.2.k.f \(2\) \(14.373\) \(\Q(\sqrt{-7}) \) None \(1\) \(0\) \(0\) \(-8\) \(q+\beta q^{2}+(-2+\beta )q^{4}-4q^{7}+(-2+\cdots)q^{8}+\cdots\)
1800.2.k.g \(2\) \(14.373\) \(\Q(\sqrt{-1}) \) None \(2\) \(0\) \(0\) \(-4\) \(q+(1-i)q^{2}-2iq^{4}-2q^{7}+(-2-2i)q^{8}+\cdots\)
1800.2.k.h \(2\) \(14.373\) \(\Q(\sqrt{-1}) \) None \(2\) \(0\) \(0\) \(-4\) \(q+(1+i)q^{2}+2iq^{4}-2q^{7}+(-2+2i)q^{8}+\cdots\)
1800.2.k.i \(2\) \(14.373\) \(\Q(\sqrt{-1}) \) None \(2\) \(0\) \(0\) \(8\) \(q+(1-i)q^{2}-2iq^{4}+4q^{7}+(-2-2i)q^{8}+\cdots\)
1800.2.k.j \(4\) \(14.373\) \(\Q(\zeta_{12})\) None \(-2\) \(0\) \(0\) \(4\) \(q+(-\zeta_{12}+\zeta_{12}^{2})q^{2}+(\zeta_{12}+\zeta_{12}^{3})q^{4}+\cdots\)
1800.2.k.k \(4\) \(14.373\) \(\Q(\sqrt{-2}, \sqrt{-3})\) \(\Q(\sqrt{-6}) \) \(0\) \(0\) \(0\) \(0\) \(q-\beta _{1}q^{2}-2q^{4}-\beta _{3}q^{7}+2\beta _{1}q^{8}+\cdots\)
1800.2.k.l \(4\) \(14.373\) \(\Q(\sqrt{3}, \sqrt{-5})\) \(\Q(\sqrt{-15}) \) \(0\) \(0\) \(0\) \(0\) \(q-\beta q^{2}+\beta ^{2}q^{4}-\beta ^{3}q^{8}+(-4-\beta ^{2}+\cdots)q^{16}+\cdots\)
1800.2.k.m \(4\) \(14.373\) \(\Q(\sqrt{-2}, \sqrt{-3})\) None \(0\) \(0\) \(0\) \(0\) \(q-\beta _{1}q^{2}+(1+\beta _{3})q^{4}+(-2\beta _{1}+\beta _{2}+\cdots)q^{7}+\cdots\)
1800.2.k.n \(4\) \(14.373\) \(\Q(i, \sqrt{7})\) None \(0\) \(0\) \(0\) \(-8\) \(q+\beta _{1}q^{2}+(1+\beta _{2})q^{4}-2q^{7}+(\beta _{1}+\beta _{3})q^{8}+\cdots\)
1800.2.k.o \(4\) \(14.373\) \(\Q(\sqrt{2}, \sqrt{-5})\) \(\Q(\sqrt{-30}) \) \(0\) \(0\) \(0\) \(0\) \(q+\beta _{1}q^{2}+2q^{4}+2\beta _{1}q^{8}+\beta _{3}q^{11}+\cdots\)
1800.2.k.p \(6\) \(14.373\) 6.0.399424.1 None \(2\) \(0\) \(0\) \(-4\) \(q-\beta _{1}q^{2}+\beta _{2}q^{4}+(-1-\beta _{1}+\beta _{2}+\cdots)q^{7}+\cdots\)
1800.2.k.q \(8\) \(14.373\) 8.0.214798336.3 None \(-2\) \(0\) \(0\) \(-8\) \(q+\beta _{3}q^{2}+(-\beta _{4}-\beta _{5}+\beta _{6})q^{4}+(-1+\cdots)q^{7}+\cdots\)
1800.2.k.r \(8\) \(14.373\) 8.0.\(\cdots\).29 None \(0\) \(0\) \(0\) \(-8\) \(q+\beta _{1}q^{2}+\beta _{2}q^{4}+(-1-\beta _{2}+\beta _{5}+\cdots)q^{7}+\cdots\)
1800.2.k.s \(8\) \(14.373\) 8.0.\(\cdots\).29 None \(0\) \(0\) \(0\) \(8\) \(q+\beta _{6}q^{2}-\beta _{5}q^{4}+(1+\beta _{2}-\beta _{5})q^{7}+\cdots\)
1800.2.k.t \(8\) \(14.373\) 8.0.214798336.3 None \(2\) \(0\) \(0\) \(8\) \(q+\beta _{2}q^{2}+(1+\beta _{1}-\beta _{3}-\beta _{6})q^{4}+(1+\cdots)q^{7}+\cdots\)
1800.2.k.u \(12\) \(14.373\) 12.0.\(\cdots\).1 None \(0\) \(0\) \(0\) \(0\) \(q+\beta _{1}q^{2}+\beta _{4}q^{4}+(-\beta _{1}-\beta _{8})q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1800, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1800, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(200, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(360, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(600, [\chi])\)\(^{\oplus 2}\)