Properties

Label 1800.2.k
Level $1800$
Weight $2$
Character orbit 1800.k
Rep. character $\chi_{1800}(901,\cdot)$
Character field $\Q$
Dimension $92$
Newform subspaces $21$
Sturm bound $720$
Trace bound $17$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1800.k (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 21 \)
Sturm bound: \(720\)
Trace bound: \(17\)
Distinguishing \(T_p\): \(7\), \(11\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1800, [\chi])\).

Total New Old
Modular forms 384 98 286
Cusp forms 336 92 244
Eisenstein series 48 6 42

Trace form

\( 92 q + 2 q^{4} + 4 q^{7} - 6 q^{16} - 4 q^{17} - 4 q^{22} - 12 q^{23} + 12 q^{28} + 8 q^{31} + 20 q^{32} - 34 q^{34} - 12 q^{38} + 4 q^{41} + 50 q^{44} + 32 q^{46} - 4 q^{47} + 68 q^{49} + 40 q^{52} - 8 q^{56}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1800, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1800.2.k.a 1800.k 8.b $2$ $14.373$ \(\Q(\sqrt{-1}) \) None 24.2.d.a \(-2\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-i-1)q^{2}+2 i q^{4}+2 q^{7}+(-2 i+2)q^{8}+\cdots\)
1800.2.k.b 1800.k 8.b $2$ $14.373$ \(\Q(\sqrt{-1}) \) None 200.2.d.a \(-2\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-i-1)q^{2}+2 i q^{4}+2 q^{7}+(-2 i+2)q^{8}+\cdots\)
1800.2.k.c 1800.k 8.b $2$ $14.373$ \(\Q(\sqrt{-1}) \) None 360.2.k.a \(-2\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-i-1)q^{2}+2 i q^{4}+4 q^{7}+(-2 i+2)q^{8}+\cdots\)
1800.2.k.d 1800.k 8.b $2$ $14.373$ \(\Q(\sqrt{-7}) \) None 200.2.d.b \(-1\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-1+\beta )q^{2}+(-1-\beta )q^{4}+4q^{7}+\cdots\)
1800.2.k.e 1800.k 8.b $2$ $14.373$ \(\Q(\sqrt{-2}) \) \(\Q(\sqrt{-6}) \) 72.2.d.a \(0\) \(0\) \(0\) \(-4\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta q^{2}-2q^{4}-2q^{7}+2\beta q^{8}-4\beta q^{11}+\cdots\)
1800.2.k.f 1800.k 8.b $2$ $14.373$ \(\Q(\sqrt{-7}) \) None 200.2.d.b \(1\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{2}+(-2+\beta )q^{4}-4q^{7}+(-2+\cdots)q^{8}+\cdots\)
1800.2.k.g 1800.k 8.b $2$ $14.373$ \(\Q(\sqrt{-1}) \) None 120.2.k.a \(2\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-i+1)q^{2}-2 i q^{4}-2 q^{7}+(-2 i-2)q^{8}+\cdots\)
1800.2.k.h 1800.k 8.b $2$ $14.373$ \(\Q(\sqrt{-1}) \) None 200.2.d.a \(2\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q+(i+1)q^{2}+2 i q^{4}-2 q^{7}+(2 i-2)q^{8}+\cdots\)
1800.2.k.i 1800.k 8.b $2$ $14.373$ \(\Q(\sqrt{-1}) \) None 360.2.k.a \(2\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-i+1)q^{2}-2 i q^{4}+4 q^{7}+(-2 i-2)q^{8}+\cdots\)
1800.2.k.j 1800.k 8.b $4$ $14.373$ \(\Q(\zeta_{12})\) None 40.2.d.a \(-2\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta_{2}-\beta_1)q^{2}+(\beta_{3}+\beta_1)q^{4}+(-\beta_{3}+\beta_{2}-\beta_1+1)q^{7}+\cdots\)
1800.2.k.k 1800.k 8.b $4$ $14.373$ \(\Q(\sqrt{-2}, \sqrt{-3})\) \(\Q(\sqrt{-6}) \) 360.2.d.d \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta _{1}q^{2}-2q^{4}-\beta _{3}q^{7}+2\beta _{1}q^{8}+\cdots\)
1800.2.k.l 1800.k 8.b $4$ $14.373$ \(\Q(\sqrt{3}, \sqrt{-5})\) \(\Q(\sqrt{-15}) \) 360.2.d.c \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta q^{2}+\beta ^{2}q^{4}-\beta ^{3}q^{8}+(-4-\beta ^{2}+\cdots)q^{16}+\cdots\)
1800.2.k.m 1800.k 8.b $4$ $14.373$ \(\Q(\sqrt{-2}, \sqrt{-3})\) None 40.2.f.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{2}+(1+\beta _{3})q^{4}+(-2\beta _{1}+\beta _{2}+\cdots)q^{7}+\cdots\)
1800.2.k.n 1800.k 8.b $4$ $14.373$ \(\Q(i, \sqrt{7})\) None 360.2.k.d \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(1+\beta _{2})q^{4}-2q^{7}+(\beta _{1}+\beta _{3})q^{8}+\cdots\)
1800.2.k.o 1800.k 8.b $4$ $14.373$ \(\Q(\sqrt{2}, \sqrt{-5})\) \(\Q(\sqrt{-30}) \) 360.2.d.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+\beta _{1}q^{2}+2q^{4}+2\beta _{1}q^{8}+\beta _{3}q^{11}+\cdots\)
1800.2.k.p 1800.k 8.b $6$ $14.373$ 6.0.399424.1 None 120.2.k.b \(2\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{2}+\beta _{2}q^{4}+(-1-\beta _{1}+\beta _{2}+\cdots)q^{7}+\cdots\)
1800.2.k.q 1800.k 8.b $8$ $14.373$ 8.0.214798336.3 None 600.2.k.d \(-2\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{3}q^{2}+(-\beta _{4}-\beta _{5}+\beta _{6})q^{4}+(-1+\cdots)q^{7}+\cdots\)
1800.2.k.r 1800.k 8.b $8$ $14.373$ 8.0.\(\cdots\).29 None 1800.2.k.r \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+\beta _{2}q^{4}+(-1-\beta _{2}+\beta _{5}+\cdots)q^{7}+\cdots\)
1800.2.k.s 1800.k 8.b $8$ $14.373$ 8.0.\(\cdots\).29 None 1800.2.k.r \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{6}q^{2}-\beta _{5}q^{4}+(1+\beta _{2}-\beta _{5})q^{7}+\cdots\)
1800.2.k.t 1800.k 8.b $8$ $14.373$ 8.0.214798336.3 None 600.2.k.d \(2\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{2}+(1+\beta _{1}-\beta _{3}-\beta _{6})q^{4}+(1+\cdots)q^{7}+\cdots\)
1800.2.k.u 1800.k 8.b $12$ $14.373$ 12.0.\(\cdots\).1 None 120.2.d.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+\beta _{4}q^{4}+(-\beta _{1}-\beta _{8})q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1800, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1800, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(200, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(360, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(600, [\chi])\)\(^{\oplus 2}\)