# Properties

 Label 1800.2.f.d Level $1800$ Weight $2$ Character orbit 1800.f Analytic conductor $14.373$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1800 = 2^{3} \cdot 3^{2} \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1800.f (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$14.3730723638$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ Defining polynomial: $$x^{2} + 1$$ x^2 + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$2$$ Twist minimal: no (minimal twist has level 360) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta q^{7}+O(q^{10})$$ q + b * q^7 $$q + \beta q^{7} - 2 q^{11} - 2 \beta q^{13} + \beta q^{17} - 4 q^{19} + 4 \beta q^{23} - 10 q^{29} + 4 q^{31} + 4 \beta q^{43} - 4 \beta q^{47} + 3 q^{49} + 3 \beta q^{53} - 14 q^{59} - 14 q^{61} - 2 \beta q^{67} - 12 q^{71} - 3 \beta q^{73} - 2 \beta q^{77} + 12 q^{79} + 2 \beta q^{83} - 12 q^{89} + 8 q^{91} - 7 \beta q^{97} +O(q^{100})$$ q + b * q^7 - 2 * q^11 - 2*b * q^13 + b * q^17 - 4 * q^19 + 4*b * q^23 - 10 * q^29 + 4 * q^31 + 4*b * q^43 - 4*b * q^47 + 3 * q^49 + 3*b * q^53 - 14 * q^59 - 14 * q^61 - 2*b * q^67 - 12 * q^71 - 3*b * q^73 - 2*b * q^77 + 12 * q^79 + 2*b * q^83 - 12 * q^89 + 8 * q^91 - 7*b * q^97 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q+O(q^{10})$$ 2 * q $$2 q - 4 q^{11} - 8 q^{19} - 20 q^{29} + 8 q^{31} + 6 q^{49} - 28 q^{59} - 28 q^{61} - 24 q^{71} + 24 q^{79} - 24 q^{89} + 16 q^{91}+O(q^{100})$$ 2 * q - 4 * q^11 - 8 * q^19 - 20 * q^29 + 8 * q^31 + 6 * q^49 - 28 * q^59 - 28 * q^61 - 24 * q^71 + 24 * q^79 - 24 * q^89 + 16 * q^91

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1800\mathbb{Z}\right)^\times$$.

 $$n$$ $$577$$ $$901$$ $$1001$$ $$1351$$ $$\chi(n)$$ $$-1$$ $$1$$ $$1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
649.1
 − 1.00000i 1.00000i
0 0 0 0 0 2.00000i 0 0 0
649.2 0 0 0 0 0 2.00000i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1800.2.f.d 2
3.b odd 2 1 1800.2.f.h 2
4.b odd 2 1 3600.2.f.q 2
5.b even 2 1 inner 1800.2.f.d 2
5.c odd 4 1 360.2.a.d yes 1
5.c odd 4 1 1800.2.a.f 1
12.b even 2 1 3600.2.f.g 2
15.d odd 2 1 1800.2.f.h 2
15.e even 4 1 360.2.a.c 1
15.e even 4 1 1800.2.a.i 1
20.d odd 2 1 3600.2.f.q 2
20.e even 4 1 720.2.a.i 1
20.e even 4 1 3600.2.a.bh 1
40.i odd 4 1 2880.2.a.n 1
40.k even 4 1 2880.2.a.e 1
45.k odd 12 2 3240.2.q.d 2
45.l even 12 2 3240.2.q.n 2
60.h even 2 1 3600.2.f.g 2
60.l odd 4 1 720.2.a.a 1
60.l odd 4 1 3600.2.a.bd 1
120.q odd 4 1 2880.2.a.w 1
120.w even 4 1 2880.2.a.bd 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
360.2.a.c 1 15.e even 4 1
360.2.a.d yes 1 5.c odd 4 1
720.2.a.a 1 60.l odd 4 1
720.2.a.i 1 20.e even 4 1
1800.2.a.f 1 5.c odd 4 1
1800.2.a.i 1 15.e even 4 1
1800.2.f.d 2 1.a even 1 1 trivial
1800.2.f.d 2 5.b even 2 1 inner
1800.2.f.h 2 3.b odd 2 1
1800.2.f.h 2 15.d odd 2 1
2880.2.a.e 1 40.k even 4 1
2880.2.a.n 1 40.i odd 4 1
2880.2.a.w 1 120.q odd 4 1
2880.2.a.bd 1 120.w even 4 1
3240.2.q.d 2 45.k odd 12 2
3240.2.q.n 2 45.l even 12 2
3600.2.a.bd 1 60.l odd 4 1
3600.2.a.bh 1 20.e even 4 1
3600.2.f.g 2 12.b even 2 1
3600.2.f.g 2 60.h even 2 1
3600.2.f.q 2 4.b odd 2 1
3600.2.f.q 2 20.d odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1800, [\chi])$$:

 $$T_{7}^{2} + 4$$ T7^2 + 4 $$T_{11} + 2$$ T11 + 2

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2}$$
$5$ $$T^{2}$$
$7$ $$T^{2} + 4$$
$11$ $$(T + 2)^{2}$$
$13$ $$T^{2} + 16$$
$17$ $$T^{2} + 4$$
$19$ $$(T + 4)^{2}$$
$23$ $$T^{2} + 64$$
$29$ $$(T + 10)^{2}$$
$31$ $$(T - 4)^{2}$$
$37$ $$T^{2}$$
$41$ $$T^{2}$$
$43$ $$T^{2} + 64$$
$47$ $$T^{2} + 64$$
$53$ $$T^{2} + 36$$
$59$ $$(T + 14)^{2}$$
$61$ $$(T + 14)^{2}$$
$67$ $$T^{2} + 16$$
$71$ $$(T + 12)^{2}$$
$73$ $$T^{2} + 36$$
$79$ $$(T - 12)^{2}$$
$83$ $$T^{2} + 16$$
$89$ $$(T + 12)^{2}$$
$97$ $$T^{2} + 196$$