Properties

Label 1800.2.d.q
Level 1800
Weight 2
Character orbit 1800.d
Analytic conductor 14.373
Analytic rank 0
Dimension 6
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1800.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(14.3730723638\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.399424.1
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta_{2} q^{2} -\beta_{1} q^{4} + ( -\beta_{1} - \beta_{2} + \beta_{4} ) q^{7} + ( -1 - \beta_{2} + \beta_{3} - \beta_{5} ) q^{8} +O(q^{10})\) \( q -\beta_{2} q^{2} -\beta_{1} q^{4} + ( -\beta_{1} - \beta_{2} + \beta_{4} ) q^{7} + ( -1 - \beta_{2} + \beta_{3} - \beta_{5} ) q^{8} + ( -\beta_{3} + 2 \beta_{5} ) q^{11} + ( -\beta_{1} + 3 \beta_{2} - \beta_{3} + \beta_{4} ) q^{13} + ( -3 - 2 \beta_{1} + \beta_{4} - \beta_{5} ) q^{14} + ( 2 + \beta_{2} + \beta_{3} + \beta_{4} ) q^{16} + ( -\beta_{1} - \beta_{2} - \beta_{3} + \beta_{4} - 2 \beta_{5} ) q^{17} + ( \beta_{1} + \beta_{2} + \beta_{3} - \beta_{4} ) q^{19} + ( -3 - 2 \beta_{1} - 2 \beta_{3} - \beta_{4} - \beta_{5} ) q^{22} + ( -\beta_{1} - \beta_{2} - \beta_{3} + \beta_{4} ) q^{23} + ( -4 + 2 \beta_{1} ) q^{26} + ( -3 + 2 \beta_{2} + 2 \beta_{3} + \beta_{4} - \beta_{5} ) q^{28} + \beta_{3} q^{29} + ( -2 - \beta_{1} + 3 \beta_{2} - \beta_{3} + \beta_{4} ) q^{31} + ( -1 - \beta_{2} - \beta_{3} + 2 \beta_{4} - \beta_{5} ) q^{32} + ( -2 + 2 \beta_{3} + 2 \beta_{5} ) q^{34} + ( 3 \beta_{1} - \beta_{2} + \beta_{3} + \beta_{4} ) q^{37} + ( 4 + 2 \beta_{1} ) q^{38} + ( 2 - 2 \beta_{1} - 2 \beta_{2} - 2 \beta_{4} ) q^{41} + ( -2 \beta_{1} - 2 \beta_{2} - 2 \beta_{4} ) q^{43} + ( -1 + 2 \beta_{1} + 4 \beta_{3} - 3 \beta_{4} + \beta_{5} ) q^{44} + ( -4 - 2 \beta_{1} ) q^{46} + ( \beta_{1} + \beta_{2} - \beta_{3} - \beta_{4} + 4 \beta_{5} ) q^{47} + ( -5 - 2 \beta_{1} + 6 \beta_{2} - 2 \beta_{3} + 2 \beta_{4} ) q^{49} + ( 2 + 6 \beta_{2} - 2 \beta_{3} + 2 \beta_{5} ) q^{52} + 2 q^{53} + ( 1 + 2 \beta_{1} + 4 \beta_{2} + 3 \beta_{4} - \beta_{5} ) q^{56} + ( 1 + \beta_{4} - \beta_{5} ) q^{58} + ( \beta_{3} + 2 \beta_{5} ) q^{59} + ( 2 \beta_{3} - 4 \beta_{5} ) q^{61} + ( -4 + 2 \beta_{1} + 2 \beta_{2} ) q^{62} + ( -4 - 2 \beta_{1} + 3 \beta_{2} - \beta_{3} + \beta_{4} + 2 \beta_{5} ) q^{64} -4 q^{67} + ( -2 \beta_{1} + 2 \beta_{2} - 2 \beta_{3} + 2 \beta_{4} - 4 \beta_{5} ) q^{68} + ( -4 \beta_{1} + 4 \beta_{2} - 2 \beta_{3} ) q^{71} + 3 \beta_{3} q^{73} + ( 2 - 2 \beta_{1} + 4 \beta_{2} - 4 \beta_{3} + 2 \beta_{4} + 2 \beta_{5} ) q^{74} + ( 2 - 2 \beta_{2} - 2 \beta_{3} + 2 \beta_{5} ) q^{76} + ( -8 - 4 \beta_{1} - 4 \beta_{2} - 4 \beta_{4} ) q^{77} + ( -6 + \beta_{1} - 3 \beta_{2} + \beta_{3} - \beta_{4} ) q^{79} + ( 2 - 6 \beta_{2} + 4 \beta_{3} - 2 \beta_{4} - 2 \beta_{5} ) q^{82} + ( 4 - 2 \beta_{1} - 2 \beta_{2} - 2 \beta_{4} ) q^{83} + ( 2 - 4 \beta_{2} + 4 \beta_{3} - 2 \beta_{4} - 2 \beta_{5} ) q^{86} + ( 11 + 2 \beta_{1} + \beta_{4} - 3 \beta_{5} ) q^{88} + ( -6 - 2 \beta_{1} - 2 \beta_{2} - 2 \beta_{4} ) q^{89} + ( 4 \beta_{1} + 4 \beta_{2} - 2 \beta_{3} - 4 \beta_{4} + 4 \beta_{5} ) q^{91} + ( -2 + 2 \beta_{2} + 2 \beta_{3} - 2 \beta_{5} ) q^{92} + ( -2 - 2 \beta_{1} - 4 \beta_{3} - 2 \beta_{4} - 2 \beta_{5} ) q^{94} + ( 2 \beta_{1} + 2 \beta_{2} + 3 \beta_{3} - 2 \beta_{4} + 4 \beta_{5} ) q^{97} + ( -8 + 4 \beta_{1} + 5 \beta_{2} ) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6q + 2q^{4} - 6q^{8} + O(q^{10}) \) \( 6q + 2q^{4} - 6q^{8} - 16q^{14} + 10q^{16} - 12q^{22} - 28q^{26} - 20q^{28} - 12q^{31} - 10q^{32} - 12q^{34} - 8q^{37} + 20q^{38} + 20q^{41} + 8q^{43} - 4q^{44} - 20q^{46} - 30q^{49} + 12q^{52} + 12q^{53} - 4q^{56} + 4q^{58} - 28q^{62} - 22q^{64} - 24q^{67} + 8q^{71} + 12q^{74} + 12q^{76} - 32q^{77} - 36q^{79} + 16q^{82} + 32q^{83} + 16q^{86} + 60q^{88} - 28q^{89} - 12q^{92} - 4q^{94} - 56q^{98} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{6} - 2 x^{5} + 3 x^{4} - 6 x^{3} + 6 x^{2} - 8 x + 8\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu^{2} \)
\(\beta_{2}\)\(=\)\((\)\( \nu^{5} + \nu^{3} - 2 \nu^{2} - 4 \)\()/2\)
\(\beta_{3}\)\(=\)\((\)\( \nu^{5} + 3 \nu^{3} - 4 \nu^{2} + 2 \nu - 8 \)\()/2\)
\(\beta_{4}\)\(=\)\( -\nu^{5} + \nu^{4} - 2 \nu^{3} + 3 \nu^{2} - \nu + 4 \)
\(\beta_{5}\)\(=\)\( -\nu^{5} + \nu^{4} - 2 \nu^{3} + 3 \nu^{2} - 3 \nu + 5 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(-\beta_{5} + \beta_{4} + 1\)\()/2\)
\(\nu^{2}\)\(=\)\(\beta_{1}\)
\(\nu^{3}\)\(=\)\((\)\(\beta_{5} - \beta_{4} + 2 \beta_{3} - 2 \beta_{2} + 2 \beta_{1} + 3\)\()/2\)
\(\nu^{4}\)\(=\)\(\beta_{4} + \beta_{3} + \beta_{2} + 2\)
\(\nu^{5}\)\(=\)\((\)\(-\beta_{5} + \beta_{4} - 2 \beta_{3} + 6 \beta_{2} + 2 \beta_{1} + 5\)\()/2\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1800\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1001\) \(1351\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1549.1
0.264658 1.38923i
0.264658 + 1.38923i
1.40680 + 0.144584i
1.40680 0.144584i
−0.671462 1.24464i
−0.671462 + 1.24464i
−1.38923 0.264658i 0 1.85991 + 0.735342i 0 0 0.941367i −2.38923 1.51380i 0 0
1549.2 −1.38923 + 0.264658i 0 1.85991 0.735342i 0 0 0.941367i −2.38923 + 1.51380i 0 0
1549.3 0.144584 1.40680i 0 −1.95819 0.406803i 0 0 3.62721i −0.855416 + 2.69597i 0 0
1549.4 0.144584 + 1.40680i 0 −1.95819 + 0.406803i 0 0 3.62721i −0.855416 2.69597i 0 0
1549.5 1.24464 0.671462i 0 1.09828 1.67146i 0 0 4.68585i 0.244644 2.81783i 0 0
1549.6 1.24464 + 0.671462i 0 1.09828 + 1.67146i 0 0 4.68585i 0.244644 + 2.81783i 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1549.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
40.f even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1800.2.d.q 6
3.b odd 2 1 600.2.d.e 6
4.b odd 2 1 7200.2.d.q 6
5.b even 2 1 1800.2.d.r 6
5.c odd 4 1 360.2.k.f 6
5.c odd 4 1 1800.2.k.p 6
8.b even 2 1 1800.2.d.r 6
8.d odd 2 1 7200.2.d.r 6
12.b even 2 1 2400.2.d.f 6
15.d odd 2 1 600.2.d.f 6
15.e even 4 1 120.2.k.b 6
15.e even 4 1 600.2.k.c 6
20.d odd 2 1 7200.2.d.r 6
20.e even 4 1 1440.2.k.f 6
20.e even 4 1 7200.2.k.p 6
24.f even 2 1 2400.2.d.e 6
24.h odd 2 1 600.2.d.f 6
40.e odd 2 1 7200.2.d.q 6
40.f even 2 1 inner 1800.2.d.q 6
40.i odd 4 1 360.2.k.f 6
40.i odd 4 1 1800.2.k.p 6
40.k even 4 1 1440.2.k.f 6
40.k even 4 1 7200.2.k.p 6
60.h even 2 1 2400.2.d.e 6
60.l odd 4 1 480.2.k.b 6
60.l odd 4 1 2400.2.k.c 6
120.i odd 2 1 600.2.d.e 6
120.m even 2 1 2400.2.d.f 6
120.q odd 4 1 480.2.k.b 6
120.q odd 4 1 2400.2.k.c 6
120.w even 4 1 120.2.k.b 6
120.w even 4 1 600.2.k.c 6
240.z odd 4 1 3840.2.a.bo 3
240.bb even 4 1 3840.2.a.bq 3
240.bd odd 4 1 3840.2.a.br 3
240.bf even 4 1 3840.2.a.bp 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.2.k.b 6 15.e even 4 1
120.2.k.b 6 120.w even 4 1
360.2.k.f 6 5.c odd 4 1
360.2.k.f 6 40.i odd 4 1
480.2.k.b 6 60.l odd 4 1
480.2.k.b 6 120.q odd 4 1
600.2.d.e 6 3.b odd 2 1
600.2.d.e 6 120.i odd 2 1
600.2.d.f 6 15.d odd 2 1
600.2.d.f 6 24.h odd 2 1
600.2.k.c 6 15.e even 4 1
600.2.k.c 6 120.w even 4 1
1440.2.k.f 6 20.e even 4 1
1440.2.k.f 6 40.k even 4 1
1800.2.d.q 6 1.a even 1 1 trivial
1800.2.d.q 6 40.f even 2 1 inner
1800.2.d.r 6 5.b even 2 1
1800.2.d.r 6 8.b even 2 1
1800.2.k.p 6 5.c odd 4 1
1800.2.k.p 6 40.i odd 4 1
2400.2.d.e 6 24.f even 2 1
2400.2.d.e 6 60.h even 2 1
2400.2.d.f 6 12.b even 2 1
2400.2.d.f 6 120.m even 2 1
2400.2.k.c 6 60.l odd 4 1
2400.2.k.c 6 120.q odd 4 1
3840.2.a.bo 3 240.z odd 4 1
3840.2.a.bp 3 240.bf even 4 1
3840.2.a.bq 3 240.bb even 4 1
3840.2.a.br 3 240.bd odd 4 1
7200.2.d.q 6 4.b odd 2 1
7200.2.d.q 6 40.e odd 2 1
7200.2.d.r 6 8.d odd 2 1
7200.2.d.r 6 20.d odd 2 1
7200.2.k.p 6 20.e even 4 1
7200.2.k.p 6 40.k even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1800, [\chi])\):

\( T_{7}^{6} + 36 T_{7}^{4} + 320 T_{7}^{2} + 256 \)
\( T_{11}^{6} + 64 T_{11}^{4} + 1088 T_{11}^{2} + 4096 \)
\( T_{13}^{3} - 28 T_{13} - 16 \)
\( T_{37}^{3} + 4 T_{37}^{2} - 60 T_{37} - 256 \)
\( T_{41}^{3} - 10 T_{41}^{2} - 36 T_{41} + 232 \)
\( T_{53} - 2 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - T^{2} + 2 T^{3} - 2 T^{4} + 8 T^{6} \)
$3$ 1
$5$ 1
$7$ \( 1 - 6 T^{2} + 47 T^{4} - 500 T^{6} + 2303 T^{8} - 14406 T^{10} + 117649 T^{12} \)
$11$ \( 1 - 2 T^{2} + 87 T^{4} + 4 T^{6} + 10527 T^{8} - 29282 T^{10} + 1771561 T^{12} \)
$13$ \( ( 1 + 11 T^{2} - 16 T^{3} + 143 T^{4} + 2197 T^{6} )^{2} \)
$17$ \( 1 - 34 T^{2} + 351 T^{4} - 1084 T^{6} + 101439 T^{8} - 2839714 T^{10} + 24137569 T^{12} \)
$19$ \( 1 - 74 T^{2} + 2647 T^{4} - 60620 T^{6} + 955567 T^{8} - 9643754 T^{10} + 47045881 T^{12} \)
$23$ \( 1 - 98 T^{2} + 4527 T^{4} - 128636 T^{6} + 2394783 T^{8} - 27424418 T^{10} + 148035889 T^{12} \)
$29$ \( ( 1 - 54 T^{2} + 841 T^{4} )^{3} \)
$31$ \( ( 1 + 6 T + 77 T^{2} + 308 T^{3} + 2387 T^{4} + 5766 T^{5} + 29791 T^{6} )^{2} \)
$37$ \( ( 1 + 4 T + 51 T^{2} + 40 T^{3} + 1887 T^{4} + 5476 T^{5} + 50653 T^{6} )^{2} \)
$41$ \( ( 1 - 10 T + 87 T^{2} - 588 T^{3} + 3567 T^{4} - 16810 T^{5} + 68921 T^{6} )^{2} \)
$43$ \( ( 1 - 4 T + 65 T^{2} - 216 T^{3} + 2795 T^{4} - 7396 T^{5} + 79507 T^{6} )^{2} \)
$47$ \( 1 - 82 T^{2} + 7967 T^{4} - 348252 T^{6} + 17599103 T^{8} - 400133842 T^{10} + 10779215329 T^{12} \)
$53$ \( ( 1 - 2 T + 53 T^{2} )^{6} \)
$59$ \( 1 - 274 T^{2} + 33911 T^{4} - 2503644 T^{6} + 118044191 T^{8} - 3320156914 T^{10} + 42180533641 T^{12} \)
$61$ \( 1 - 110 T^{2} + 10759 T^{4} - 685796 T^{6} + 40034239 T^{8} - 1523042510 T^{10} + 51520374361 T^{12} \)
$67$ \( ( 1 + 4 T + 67 T^{2} )^{6} \)
$71$ \( ( 1 - 4 T + 101 T^{2} - 632 T^{3} + 7171 T^{4} - 20164 T^{5} + 357911 T^{6} )^{2} \)
$73$ \( ( 1 - 16 T + 73 T^{2} )^{3}( 1 + 16 T + 73 T^{2} )^{3} \)
$79$ \( ( 1 + 18 T + 317 T^{2} + 2908 T^{3} + 25043 T^{4} + 112338 T^{5} + 493039 T^{6} )^{2} \)
$83$ \( ( 1 - 16 T + 265 T^{2} - 2400 T^{3} + 21995 T^{4} - 110224 T^{5} + 571787 T^{6} )^{2} \)
$89$ \( ( 1 + 14 T + 263 T^{2} + 2308 T^{3} + 23407 T^{4} + 110894 T^{5} + 704969 T^{6} )^{2} \)
$97$ \( 1 - 250 T^{2} + 24143 T^{4} - 1697004 T^{6} + 227161487 T^{8} - 22132320250 T^{10} + 832972004929 T^{12} \)
show more
show less