Properties

Label 1800.2.b.g.251.9
Level $1800$
Weight $2$
Character 1800.251
Analytic conductor $14.373$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1800,2,Mod(251,1800)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1800.251"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1800, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1800.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,-12,0,0,0,0,0,0,0,0,0,0,0,-12,0,0,-16,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(22)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.3730723638\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6x^{14} + 28x^{12} + 16x^{10} - 40x^{8} + 610x^{6} + 1625x^{4} - 524x^{2} + 1444 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{29}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 360)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 251.9
Root \(-0.328458 - 1.49331i\) of defining polynomial
Character \(\chi\) \(=\) 1800.251
Dual form 1800.2.b.g.251.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.331077 - 1.37491i) q^{2} +(-1.78078 - 0.910404i) q^{4} -0.936426i q^{7} +(-1.84130 + 2.14700i) q^{8} +2.20837i q^{11} +3.33513i q^{13} +(-1.28751 - 0.310029i) q^{14} +(2.34233 + 3.24245i) q^{16} -1.54417i q^{17} +3.12311 q^{19} +(3.03632 + 0.731140i) q^{22} +3.39228 q^{23} +(4.58552 + 1.10418i) q^{26} +(-0.852526 + 1.66757i) q^{28} +8.44804 q^{29} -8.30571i q^{31} +(5.23358 - 2.14700i) q^{32} +(-2.12311 - 0.511240i) q^{34} -7.60669i q^{37} +(1.03399 - 4.29400i) q^{38} +5.83095i q^{41} +7.77769 q^{43} +(2.01051 - 3.93261i) q^{44} +(1.12311 - 4.66410i) q^{46} -10.7575 q^{47} +6.12311 q^{49} +(3.03632 - 5.93912i) q^{52} -5.08842 q^{53} +(2.01051 + 1.72424i) q^{56} +(2.79695 - 11.6153i) q^{58} +10.6937i q^{59} +(-11.4196 - 2.74983i) q^{62} +(-1.21922 - 7.90655i) q^{64} +12.1453 q^{67} +(-1.40582 + 2.74983i) q^{68} +11.7460 q^{71} -5.59390 q^{73} +(-10.4585 - 2.51840i) q^{74} +(-5.56155 - 2.84329i) q^{76} +2.06798 q^{77} +1.02248i q^{79} +(8.01706 + 1.93049i) q^{82} -14.0877i q^{83} +(2.57501 - 10.6937i) q^{86} +(-4.74137 - 4.06627i) q^{88} +13.0761i q^{89} +3.12311 q^{91} +(-6.04090 - 3.08835i) q^{92} +(-3.56155 + 14.7906i) q^{94} +2.18379 q^{97} +(2.02722 - 8.41874i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 12 q^{4} - 12 q^{16} - 16 q^{19} + 32 q^{34} - 48 q^{46} + 32 q^{49} - 36 q^{64} - 56 q^{76} - 16 q^{91} - 24 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1800\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1001\) \(1351\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.331077 1.37491i 0.234107 0.972211i
\(3\) 0 0
\(4\) −1.78078 0.910404i −0.890388 0.455202i
\(5\) 0 0
\(6\) 0 0
\(7\) 0.936426i 0.353936i −0.984217 0.176968i \(-0.943371\pi\)
0.984217 0.176968i \(-0.0566289\pi\)
\(8\) −1.84130 + 2.14700i −0.650998 + 0.759079i
\(9\) 0 0
\(10\) 0 0
\(11\) 2.20837i 0.665848i 0.942954 + 0.332924i \(0.108035\pi\)
−0.942954 + 0.332924i \(0.891965\pi\)
\(12\) 0 0
\(13\) 3.33513i 0.924999i 0.886619 + 0.462500i \(0.153047\pi\)
−0.886619 + 0.462500i \(0.846953\pi\)
\(14\) −1.28751 0.310029i −0.344100 0.0828587i
\(15\) 0 0
\(16\) 2.34233 + 3.24245i 0.585582 + 0.810613i
\(17\) 1.54417i 0.374517i −0.982311 0.187259i \(-0.940040\pi\)
0.982311 0.187259i \(-0.0599602\pi\)
\(18\) 0 0
\(19\) 3.12311 0.716490 0.358245 0.933628i \(-0.383375\pi\)
0.358245 + 0.933628i \(0.383375\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 3.03632 + 0.731140i 0.647345 + 0.155879i
\(23\) 3.39228 0.707340 0.353670 0.935370i \(-0.384934\pi\)
0.353670 + 0.935370i \(0.384934\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 4.58552 + 1.10418i 0.899294 + 0.216548i
\(27\) 0 0
\(28\) −0.852526 + 1.66757i −0.161112 + 0.315140i
\(29\) 8.44804 1.56876 0.784380 0.620280i \(-0.212981\pi\)
0.784380 + 0.620280i \(0.212981\pi\)
\(30\) 0 0
\(31\) 8.30571i 1.49175i −0.666086 0.745875i \(-0.732032\pi\)
0.666086 0.745875i \(-0.267968\pi\)
\(32\) 5.23358 2.14700i 0.925175 0.379540i
\(33\) 0 0
\(34\) −2.12311 0.511240i −0.364110 0.0876769i
\(35\) 0 0
\(36\) 0 0
\(37\) 7.60669i 1.25053i −0.780412 0.625266i \(-0.784990\pi\)
0.780412 0.625266i \(-0.215010\pi\)
\(38\) 1.03399 4.29400i 0.167735 0.696579i
\(39\) 0 0
\(40\) 0 0
\(41\) 5.83095i 0.910642i 0.890327 + 0.455321i \(0.150475\pi\)
−0.890327 + 0.455321i \(0.849525\pi\)
\(42\) 0 0
\(43\) 7.77769 1.18609 0.593043 0.805171i \(-0.297926\pi\)
0.593043 + 0.805171i \(0.297926\pi\)
\(44\) 2.01051 3.93261i 0.303095 0.592864i
\(45\) 0 0
\(46\) 1.12311 4.66410i 0.165593 0.687683i
\(47\) −10.7575 −1.56914 −0.784570 0.620040i \(-0.787116\pi\)
−0.784570 + 0.620040i \(0.787116\pi\)
\(48\) 0 0
\(49\) 6.12311 0.874729
\(50\) 0 0
\(51\) 0 0
\(52\) 3.03632 5.93912i 0.421061 0.823608i
\(53\) −5.08842 −0.698949 −0.349474 0.936946i \(-0.613640\pi\)
−0.349474 + 0.936946i \(0.613640\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 2.01051 + 1.72424i 0.268665 + 0.230412i
\(57\) 0 0
\(58\) 2.79695 11.6153i 0.367257 1.52517i
\(59\) 10.6937i 1.39219i 0.717947 + 0.696097i \(0.245082\pi\)
−0.717947 + 0.696097i \(0.754918\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) −11.4196 2.74983i −1.45030 0.349228i
\(63\) 0 0
\(64\) −1.21922 7.90655i −0.152403 0.988318i
\(65\) 0 0
\(66\) 0 0
\(67\) 12.1453 1.48378 0.741890 0.670521i \(-0.233929\pi\)
0.741890 + 0.670521i \(0.233929\pi\)
\(68\) −1.40582 + 2.74983i −0.170481 + 0.333466i
\(69\) 0 0
\(70\) 0 0
\(71\) 11.7460 1.39400 0.697000 0.717071i \(-0.254518\pi\)
0.697000 + 0.717071i \(0.254518\pi\)
\(72\) 0 0
\(73\) −5.59390 −0.654716 −0.327358 0.944900i \(-0.606158\pi\)
−0.327358 + 0.944900i \(0.606158\pi\)
\(74\) −10.4585 2.51840i −1.21578 0.292758i
\(75\) 0 0
\(76\) −5.56155 2.84329i −0.637954 0.326147i
\(77\) 2.06798 0.235668
\(78\) 0 0
\(79\) 1.02248i 0.115038i 0.998344 + 0.0575190i \(0.0183190\pi\)
−0.998344 + 0.0575190i \(0.981681\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 8.01706 + 1.93049i 0.885336 + 0.213187i
\(83\) 14.0877i 1.54632i −0.634210 0.773161i \(-0.718675\pi\)
0.634210 0.773161i \(-0.281325\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 2.57501 10.6937i 0.277671 1.15313i
\(87\) 0 0
\(88\) −4.74137 4.06627i −0.505432 0.433466i
\(89\) 13.0761i 1.38607i 0.720906 + 0.693033i \(0.243726\pi\)
−0.720906 + 0.693033i \(0.756274\pi\)
\(90\) 0 0
\(91\) 3.12311 0.327390
\(92\) −6.04090 3.08835i −0.629807 0.321982i
\(93\) 0 0
\(94\) −3.56155 + 14.7906i −0.367346 + 1.52554i
\(95\) 0 0
\(96\) 0 0
\(97\) 2.18379 0.221730 0.110865 0.993835i \(-0.464638\pi\)
0.110865 + 0.993835i \(0.464638\pi\)
\(98\) 2.02722 8.41874i 0.204780 0.850421i
\(99\) 0 0
\(100\) 0 0
\(101\) −3.29801 −0.328165 −0.164082 0.986447i \(-0.552466\pi\)
−0.164082 + 0.986447i \(0.552466\pi\)
\(102\) 0 0
\(103\) 18.0227i 1.77583i −0.460012 0.887913i \(-0.652155\pi\)
0.460012 0.887913i \(-0.347845\pi\)
\(104\) −7.16053 6.14098i −0.702148 0.602173i
\(105\) 0 0
\(106\) −1.68466 + 6.99614i −0.163628 + 0.679526i
\(107\) 10.9993i 1.06334i −0.846950 0.531672i \(-0.821564\pi\)
0.846950 0.531672i \(-0.178436\pi\)
\(108\) 0 0
\(109\) 11.9473i 1.14435i −0.820133 0.572173i \(-0.806100\pi\)
0.820133 0.572173i \(-0.193900\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 3.03632 2.19342i 0.286905 0.207259i
\(113\) 12.5435i 1.17999i 0.807406 + 0.589996i \(0.200871\pi\)
−0.807406 + 0.589996i \(0.799129\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −15.0441 7.69113i −1.39681 0.714103i
\(117\) 0 0
\(118\) 14.7028 + 3.54042i 1.35351 + 0.325922i
\(119\) −1.44600 −0.132555
\(120\) 0 0
\(121\) 6.12311 0.556646
\(122\) 0 0
\(123\) 0 0
\(124\) −7.56155 + 14.7906i −0.679047 + 1.32824i
\(125\) 0 0
\(126\) 0 0
\(127\) 4.68213i 0.415472i −0.978185 0.207736i \(-0.933391\pi\)
0.978185 0.207736i \(-0.0666095\pi\)
\(128\) −11.2745 0.941346i −0.996533 0.0832041i
\(129\) 0 0
\(130\) 0 0
\(131\) 0.620058i 0.0541747i 0.999633 + 0.0270874i \(0.00862323\pi\)
−0.999633 + 0.0270874i \(0.991377\pi\)
\(132\) 0 0
\(133\) 2.92456i 0.253591i
\(134\) 4.02102 16.6987i 0.347363 1.44255i
\(135\) 0 0
\(136\) 3.31534 + 2.84329i 0.284288 + 0.243810i
\(137\) 1.54417i 0.131928i −0.997822 0.0659638i \(-0.978988\pi\)
0.997822 0.0659638i \(-0.0210122\pi\)
\(138\) 0 0
\(139\) 12.0000 1.01783 0.508913 0.860818i \(-0.330047\pi\)
0.508913 + 0.860818i \(0.330047\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 3.88884 16.1498i 0.326345 1.35526i
\(143\) −7.36520 −0.615909
\(144\) 0 0
\(145\) 0 0
\(146\) −1.85201 + 7.69113i −0.153273 + 0.636522i
\(147\) 0 0
\(148\) −6.92516 + 13.5458i −0.569245 + 1.11346i
\(149\) 1.85201 0.151722 0.0758612 0.997118i \(-0.475829\pi\)
0.0758612 + 0.997118i \(0.475829\pi\)
\(150\) 0 0
\(151\) 17.6339i 1.43503i 0.696545 + 0.717513i \(0.254720\pi\)
−0.696545 + 0.717513i \(0.745280\pi\)
\(152\) −5.75058 + 6.70531i −0.466433 + 0.543872i
\(153\) 0 0
\(154\) 0.684658 2.84329i 0.0551713 0.229119i
\(155\) 0 0
\(156\) 0 0
\(157\) 2.80928i 0.224205i 0.993697 + 0.112102i \(0.0357585\pi\)
−0.993697 + 0.112102i \(0.964242\pi\)
\(158\) 1.40582 + 0.338519i 0.111841 + 0.0269311i
\(159\) 0 0
\(160\) 0 0
\(161\) 3.17662i 0.250353i
\(162\) 0 0
\(163\) 15.5554 1.21839 0.609195 0.793020i \(-0.291492\pi\)
0.609195 + 0.793020i \(0.291492\pi\)
\(164\) 5.30852 10.3836i 0.414526 0.810825i
\(165\) 0 0
\(166\) −19.3693 4.66410i −1.50335 0.362004i
\(167\) 9.43318 0.729961 0.364981 0.931015i \(-0.381076\pi\)
0.364981 + 0.931015i \(0.381076\pi\)
\(168\) 0 0
\(169\) 1.87689 0.144376
\(170\) 0 0
\(171\) 0 0
\(172\) −13.8503 7.08084i −1.05608 0.539909i
\(173\) 1.69614 0.128955 0.0644776 0.997919i \(-0.479462\pi\)
0.0644776 + 0.997919i \(0.479462\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −7.16053 + 5.17273i −0.539745 + 0.389909i
\(177\) 0 0
\(178\) 17.9785 + 4.32920i 1.34755 + 0.324487i
\(179\) 8.21342i 0.613900i 0.951726 + 0.306950i \(0.0993084\pi\)
−0.951726 + 0.306950i \(0.900692\pi\)
\(180\) 0 0
\(181\) 4.66410i 0.346680i 0.984862 + 0.173340i \(0.0554559\pi\)
−0.984862 + 0.173340i \(0.944544\pi\)
\(182\) 1.03399 4.29400i 0.0766443 0.318293i
\(183\) 0 0
\(184\) −6.24621 + 7.28323i −0.460477 + 0.536927i
\(185\) 0 0
\(186\) 0 0
\(187\) 3.41011 0.249372
\(188\) 19.1567 + 9.79366i 1.39714 + 0.714276i
\(189\) 0 0
\(190\) 0 0
\(191\) −13.1921 −0.954544 −0.477272 0.878756i \(-0.658374\pi\)
−0.477272 + 0.878756i \(0.658374\pi\)
\(192\) 0 0
\(193\) −23.3331 −1.67955 −0.839775 0.542934i \(-0.817313\pi\)
−0.839775 + 0.542934i \(0.817313\pi\)
\(194\) 0.723002 3.00252i 0.0519085 0.215569i
\(195\) 0 0
\(196\) −10.9039 5.57450i −0.778849 0.398179i
\(197\) 4.92539 0.350920 0.175460 0.984487i \(-0.443859\pi\)
0.175460 + 0.984487i \(0.443859\pi\)
\(198\) 0 0
\(199\) 17.6339i 1.25003i −0.780611 0.625017i \(-0.785092\pi\)
0.780611 0.625017i \(-0.214908\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −1.09190 + 4.53448i −0.0768255 + 0.319045i
\(203\) 7.91096i 0.555241i
\(204\) 0 0
\(205\) 0 0
\(206\) −24.7796 5.96688i −1.72648 0.415732i
\(207\) 0 0
\(208\) −10.8140 + 7.81198i −0.749816 + 0.541663i
\(209\) 6.89697i 0.477073i
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 9.06134 + 4.63252i 0.622336 + 0.318163i
\(213\) 0 0
\(214\) −15.1231 3.64162i −1.03379 0.248936i
\(215\) 0 0
\(216\) 0 0
\(217\) −7.77769 −0.527984
\(218\) −16.4265 3.95548i −1.11255 0.267899i
\(219\) 0 0
\(220\) 0 0
\(221\) 5.15002 0.346428
\(222\) 0 0
\(223\) 21.9989i 1.47316i 0.676352 + 0.736578i \(0.263560\pi\)
−0.676352 + 0.736578i \(0.736440\pi\)
\(224\) −2.01051 4.90086i −0.134333 0.327453i
\(225\) 0 0
\(226\) 17.2462 + 4.15286i 1.14720 + 0.276244i
\(227\) 3.08835i 0.204981i −0.994734 0.102490i \(-0.967319\pi\)
0.994734 0.102490i \(-0.0326811\pi\)
\(228\) 0 0
\(229\) 2.61914i 0.173077i −0.996248 0.0865387i \(-0.972419\pi\)
0.996248 0.0865387i \(-0.0275806\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −15.5554 + 18.1379i −1.02126 + 1.19081i
\(233\) 20.4544i 1.34002i 0.742354 + 0.670008i \(0.233709\pi\)
−0.742354 + 0.670008i \(0.766291\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 9.73554 19.0430i 0.633730 1.23959i
\(237\) 0 0
\(238\) −0.478739 + 1.98813i −0.0310320 + 0.128871i
\(239\) 23.4921 1.51958 0.759789 0.650170i \(-0.225302\pi\)
0.759789 + 0.650170i \(0.225302\pi\)
\(240\) 0 0
\(241\) −4.00000 −0.257663 −0.128831 0.991667i \(-0.541123\pi\)
−0.128831 + 0.991667i \(0.541123\pi\)
\(242\) 2.02722 8.41874i 0.130314 0.541177i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 10.4160i 0.662752i
\(248\) 17.8324 + 15.2933i 1.13236 + 0.971126i
\(249\) 0 0
\(250\) 0 0
\(251\) 3.44849i 0.217666i 0.994060 + 0.108833i \(0.0347114\pi\)
−0.994060 + 0.108833i \(0.965289\pi\)
\(252\) 0 0
\(253\) 7.49141i 0.470981i
\(254\) −6.43753 1.55014i −0.403926 0.0972647i
\(255\) 0 0
\(256\) −5.02699 + 15.1898i −0.314187 + 0.949361i
\(257\) 15.6318i 0.975087i 0.873099 + 0.487543i \(0.162107\pi\)
−0.873099 + 0.487543i \(0.837893\pi\)
\(258\) 0 0
\(259\) −7.12311 −0.442608
\(260\) 0 0
\(261\) 0 0
\(262\) 0.852526 + 0.205287i 0.0526693 + 0.0126827i
\(263\) −14.7304 −0.908316 −0.454158 0.890921i \(-0.650060\pi\)
−0.454158 + 0.890921i \(0.650060\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −4.02102 0.968253i −0.246544 0.0593674i
\(267\) 0 0
\(268\) −21.6280 11.0571i −1.32114 0.675420i
\(269\) −15.0441 −0.917253 −0.458626 0.888629i \(-0.651658\pi\)
−0.458626 + 0.888629i \(0.651658\pi\)
\(270\) 0 0
\(271\) 10.3507i 0.628758i −0.949297 0.314379i \(-0.898204\pi\)
0.949297 0.314379i \(-0.101796\pi\)
\(272\) 5.00691 3.61696i 0.303588 0.219311i
\(273\) 0 0
\(274\) −2.12311 0.511240i −0.128262 0.0308851i
\(275\) 0 0
\(276\) 0 0
\(277\) 23.3459i 1.40272i 0.712807 + 0.701360i \(0.247424\pi\)
−0.712807 + 0.701360i \(0.752576\pi\)
\(278\) 3.97292 16.4990i 0.238280 0.989542i
\(279\) 0 0
\(280\) 0 0
\(281\) 3.00252i 0.179116i 0.995982 + 0.0895578i \(0.0285454\pi\)
−0.995982 + 0.0895578i \(0.971455\pi\)
\(282\) 0 0
\(283\) 23.3331 1.38701 0.693503 0.720453i \(-0.256066\pi\)
0.693503 + 0.720453i \(0.256066\pi\)
\(284\) −20.9171 10.6937i −1.24120 0.634551i
\(285\) 0 0
\(286\) −2.43845 + 10.1265i −0.144188 + 0.598794i
\(287\) 5.46026 0.322309
\(288\) 0 0
\(289\) 14.6155 0.859737
\(290\) 0 0
\(291\) 0 0
\(292\) 9.96148 + 5.09271i 0.582951 + 0.298028i
\(293\) 29.8326 1.74284 0.871421 0.490536i \(-0.163199\pi\)
0.871421 + 0.490536i \(0.163199\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 16.3316 + 14.0062i 0.949253 + 0.814094i
\(297\) 0 0
\(298\) 0.613157 2.54635i 0.0355192 0.147506i
\(299\) 11.3137i 0.654289i
\(300\) 0 0
\(301\) 7.28323i 0.419799i
\(302\) 24.2451 + 5.83817i 1.39515 + 0.335949i
\(303\) 0 0
\(304\) 7.31534 + 10.1265i 0.419564 + 0.580796i
\(305\) 0 0
\(306\) 0 0
\(307\) −4.36758 −0.249271 −0.124636 0.992203i \(-0.539776\pi\)
−0.124636 + 0.992203i \(0.539776\pi\)
\(308\) −3.68260 1.88269i −0.209836 0.107276i
\(309\) 0 0
\(310\) 0 0
\(311\) −10.3000 −0.584062 −0.292031 0.956409i \(-0.594331\pi\)
−0.292031 + 0.956409i \(0.594331\pi\)
\(312\) 0 0
\(313\) −32.0682 −1.81260 −0.906302 0.422631i \(-0.861107\pi\)
−0.906302 + 0.422631i \(0.861107\pi\)
\(314\) 3.86252 + 0.930087i 0.217974 + 0.0524878i
\(315\) 0 0
\(316\) 0.930870 1.82081i 0.0523655 0.102428i
\(317\) −24.5354 −1.37805 −0.689023 0.724739i \(-0.741960\pi\)
−0.689023 + 0.724739i \(0.741960\pi\)
\(318\) 0 0
\(319\) 18.6564i 1.04456i
\(320\) 0 0
\(321\) 0 0
\(322\) −4.36758 1.05171i −0.243396 0.0586093i
\(323\) 4.82262i 0.268338i
\(324\) 0 0
\(325\) 0 0
\(326\) 5.15002 21.3873i 0.285233 1.18453i
\(327\) 0 0
\(328\) −12.5191 10.7365i −0.691249 0.592826i
\(329\) 10.0736i 0.555375i
\(330\) 0 0
\(331\) −1.36932 −0.0752645 −0.0376322 0.999292i \(-0.511982\pi\)
−0.0376322 + 0.999292i \(0.511982\pi\)
\(332\) −12.8255 + 25.0870i −0.703889 + 1.37683i
\(333\) 0 0
\(334\) 3.12311 12.9698i 0.170889 0.709676i
\(335\) 0 0
\(336\) 0 0
\(337\) −29.8844 −1.62791 −0.813954 0.580929i \(-0.802690\pi\)
−0.813954 + 0.580929i \(0.802690\pi\)
\(338\) 0.621396 2.58057i 0.0337995 0.140364i
\(339\) 0 0
\(340\) 0 0
\(341\) 18.3421 0.993279
\(342\) 0 0
\(343\) 12.2888i 0.663534i
\(344\) −14.3211 + 16.6987i −0.772140 + 0.900334i
\(345\) 0 0
\(346\) 0.561553 2.33205i 0.0301893 0.125372i
\(347\) 14.0877i 0.756265i 0.925751 + 0.378133i \(0.123434\pi\)
−0.925751 + 0.378133i \(0.876566\pi\)
\(348\) 0 0
\(349\) 33.2228i 1.77838i 0.457540 + 0.889189i \(0.348731\pi\)
−0.457540 + 0.889189i \(0.651269\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 4.74137 + 11.5577i 0.252716 + 0.616027i
\(353\) 7.72087i 0.410940i −0.978663 0.205470i \(-0.934128\pi\)
0.978663 0.205470i \(-0.0658724\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 11.9045 23.2856i 0.630940 1.23414i
\(357\) 0 0
\(358\) 11.2927 + 2.71927i 0.596840 + 0.143718i
\(359\) −1.44600 −0.0763172 −0.0381586 0.999272i \(-0.512149\pi\)
−0.0381586 + 0.999272i \(0.512149\pi\)
\(360\) 0 0
\(361\) −9.24621 −0.486643
\(362\) 6.41273 + 1.54417i 0.337046 + 0.0811600i
\(363\) 0 0
\(364\) −5.56155 2.84329i −0.291505 0.149029i
\(365\) 0 0
\(366\) 0 0
\(367\) 32.4149i 1.69204i −0.533148 0.846022i \(-0.678991\pi\)
0.533148 0.846022i \(-0.321009\pi\)
\(368\) 7.94584 + 10.9993i 0.414206 + 0.573379i
\(369\) 0 0
\(370\) 0 0
\(371\) 4.76493i 0.247383i
\(372\) 0 0
\(373\) 9.47954i 0.490832i 0.969418 + 0.245416i \(0.0789246\pi\)
−0.969418 + 0.245416i \(0.921075\pi\)
\(374\) 1.12901 4.68860i 0.0583795 0.242442i
\(375\) 0 0
\(376\) 19.8078 23.0963i 1.02151 1.19110i
\(377\) 28.1753i 1.45110i
\(378\) 0 0
\(379\) 16.4924 0.847159 0.423579 0.905859i \(-0.360773\pi\)
0.423579 + 0.905859i \(0.360773\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −4.36758 + 18.1379i −0.223465 + 0.928018i
\(383\) 10.0138 0.511682 0.255841 0.966719i \(-0.417648\pi\)
0.255841 + 0.966719i \(0.417648\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −7.72503 + 32.0810i −0.393194 + 1.63288i
\(387\) 0 0
\(388\) −3.88884 1.98813i −0.197426 0.100932i
\(389\) 9.89404 0.501648 0.250824 0.968033i \(-0.419298\pi\)
0.250824 + 0.968033i \(0.419298\pi\)
\(390\) 0 0
\(391\) 5.23827i 0.264911i
\(392\) −11.2745 + 13.1463i −0.569447 + 0.663989i
\(393\) 0 0
\(394\) 1.63068 6.77199i 0.0821526 0.341168i
\(395\) 0 0
\(396\) 0 0
\(397\) 10.3007i 0.516977i 0.966014 + 0.258488i \(0.0832244\pi\)
−0.966014 + 0.258488i \(0.916776\pi\)
\(398\) −24.2451 5.83817i −1.21530 0.292641i
\(399\) 0 0
\(400\) 0 0
\(401\) 0.522293i 0.0260821i 0.999915 + 0.0130410i \(0.00415121\pi\)
−0.999915 + 0.0130410i \(0.995849\pi\)
\(402\) 0 0
\(403\) 27.7006 1.37987
\(404\) 5.87302 + 3.00252i 0.292194 + 0.149381i
\(405\) 0 0
\(406\) −10.8769 2.61914i −0.539811 0.129986i
\(407\) 16.7984 0.832665
\(408\) 0 0
\(409\) −3.12311 −0.154428 −0.0772138 0.997015i \(-0.524602\pi\)
−0.0772138 + 0.997015i \(0.524602\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −16.4079 + 32.0943i −0.808359 + 1.58117i
\(413\) 10.0138 0.492748
\(414\) 0 0
\(415\) 0 0
\(416\) 7.16053 + 17.4547i 0.351074 + 0.855787i
\(417\) 0 0
\(418\) 9.48274 + 2.28343i 0.463816 + 0.111686i
\(419\) 32.4291i 1.58427i −0.610348 0.792134i \(-0.708970\pi\)
0.610348 0.792134i \(-0.291030\pi\)
\(420\) 0 0
\(421\) 30.6037i 1.49153i −0.666207 0.745767i \(-0.732083\pi\)
0.666207 0.745767i \(-0.267917\pi\)
\(422\) 1.32431 5.49966i 0.0644663 0.267719i
\(423\) 0 0
\(424\) 9.36932 10.9248i 0.455014 0.530558i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −10.0138 + 19.5873i −0.484036 + 0.946789i
\(429\) 0 0
\(430\) 0 0
\(431\) −1.44600 −0.0696516 −0.0348258 0.999393i \(-0.511088\pi\)
−0.0348258 + 0.999393i \(0.511088\pi\)
\(432\) 0 0
\(433\) −15.5554 −0.747544 −0.373772 0.927521i \(-0.621936\pi\)
−0.373772 + 0.927521i \(0.621936\pi\)
\(434\) −2.57501 + 10.6937i −0.123604 + 0.513312i
\(435\) 0 0
\(436\) −10.8769 + 21.2755i −0.520909 + 1.01891i
\(437\) 10.5945 0.506802
\(438\) 0 0
\(439\) 26.9621i 1.28683i −0.765517 0.643415i \(-0.777517\pi\)
0.765517 0.643415i \(-0.222483\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 1.70505 7.08084i 0.0811011 0.336801i
\(443\) 25.0870i 1.19192i −0.803015 0.595959i \(-0.796772\pi\)
0.803015 0.595959i \(-0.203228\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 30.2466 + 7.28333i 1.43222 + 0.344876i
\(447\) 0 0
\(448\) −7.40390 + 1.14171i −0.349801 + 0.0539409i
\(449\) 9.89949i 0.467186i −0.972334 0.233593i \(-0.924952\pi\)
0.972334 0.233593i \(-0.0750483\pi\)
\(450\) 0 0
\(451\) −12.8769 −0.606349
\(452\) 11.4196 22.3371i 0.537135 1.05065i
\(453\) 0 0
\(454\) −4.24621 1.02248i −0.199285 0.0479874i
\(455\) 0 0
\(456\) 0 0
\(457\) −13.3716 −0.625496 −0.312748 0.949836i \(-0.601250\pi\)
−0.312748 + 0.949836i \(0.601250\pi\)
\(458\) −3.60109 0.867135i −0.168268 0.0405186i
\(459\) 0 0
\(460\) 0 0
\(461\) −1.85201 −0.0862567 −0.0431283 0.999070i \(-0.513732\pi\)
−0.0431283 + 0.999070i \(0.513732\pi\)
\(462\) 0 0
\(463\) 13.2252i 0.614629i 0.951608 + 0.307315i \(0.0994304\pi\)
−0.951608 + 0.307315i \(0.900570\pi\)
\(464\) 19.7881 + 27.3924i 0.918639 + 1.27166i
\(465\) 0 0
\(466\) 28.1231 + 6.77199i 1.30278 + 0.313706i
\(467\) 18.9103i 0.875063i −0.899203 0.437532i \(-0.855853\pi\)
0.899203 0.437532i \(-0.144147\pi\)
\(468\) 0 0
\(469\) 11.3732i 0.525163i
\(470\) 0 0
\(471\) 0 0
\(472\) −22.9593 19.6902i −1.05679 0.906316i
\(473\) 17.1760i 0.789754i
\(474\) 0 0
\(475\) 0 0
\(476\) 2.57501 + 1.31645i 0.118025 + 0.0603393i
\(477\) 0 0
\(478\) 7.77769 32.2996i 0.355743 1.47735i
\(479\) 14.6381 0.668830 0.334415 0.942426i \(-0.391461\pi\)
0.334415 + 0.942426i \(0.391461\pi\)
\(480\) 0 0
\(481\) 25.3693 1.15674
\(482\) −1.32431 + 5.49966i −0.0603205 + 0.250502i
\(483\) 0 0
\(484\) −10.9039 5.57450i −0.495631 0.253386i
\(485\) 0 0
\(486\) 0 0
\(487\) 29.4903i 1.33633i 0.744011 + 0.668167i \(0.232921\pi\)
−0.744011 + 0.668167i \(0.767079\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 16.3505i 0.737888i 0.929452 + 0.368944i \(0.120281\pi\)
−0.929452 + 0.368944i \(0.879719\pi\)
\(492\) 0 0
\(493\) 13.0452i 0.587528i
\(494\) 14.3211 + 3.44849i 0.644335 + 0.155155i
\(495\) 0 0
\(496\) 26.9309 19.4547i 1.20923 0.873542i
\(497\) 10.9993i 0.493387i
\(498\) 0 0
\(499\) −16.8769 −0.755514 −0.377757 0.925905i \(-0.623304\pi\)
−0.377757 + 0.925905i \(0.623304\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 4.74137 + 1.14171i 0.211618 + 0.0509572i
\(503\) −16.0547 −0.715844 −0.357922 0.933751i \(-0.616515\pi\)
−0.357922 + 0.933751i \(0.616515\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 10.3000 + 2.48023i 0.457893 + 0.110260i
\(507\) 0 0
\(508\) −4.26263 + 8.33783i −0.189124 + 0.369931i
\(509\) 3.29801 0.146182 0.0730909 0.997325i \(-0.476714\pi\)
0.0730909 + 0.997325i \(0.476714\pi\)
\(510\) 0 0
\(511\) 5.23827i 0.231728i
\(512\) 19.2203 + 11.9407i 0.849426 + 0.527707i
\(513\) 0 0
\(514\) 21.4924 + 5.17534i 0.947990 + 0.228274i
\(515\) 0 0
\(516\) 0 0
\(517\) 23.7565i 1.04481i
\(518\) −2.35829 + 9.79366i −0.103618 + 0.430309i
\(519\) 0 0
\(520\) 0 0
\(521\) 2.65433i 0.116288i 0.998308 + 0.0581441i \(0.0185183\pi\)
−0.998308 + 0.0581441i \(0.981482\pi\)
\(522\) 0 0
\(523\) −4.36758 −0.190981 −0.0954905 0.995430i \(-0.530442\pi\)
−0.0954905 + 0.995430i \(0.530442\pi\)
\(524\) 0.564503 1.10418i 0.0246604 0.0482365i
\(525\) 0 0
\(526\) −4.87689 + 20.2530i −0.212643 + 0.883074i
\(527\) −12.8255 −0.558686
\(528\) 0 0
\(529\) −11.4924 −0.499671
\(530\) 0 0
\(531\) 0 0
\(532\) −2.66253 + 5.20798i −0.115435 + 0.225795i
\(533\) −19.4470 −0.842343
\(534\) 0 0
\(535\) 0 0
\(536\) −22.3631 + 26.0759i −0.965939 + 1.12631i
\(537\) 0 0
\(538\) −4.98074 + 20.6843i −0.214735 + 0.891763i
\(539\) 13.5221i 0.582437i
\(540\) 0 0
\(541\) 9.90237i 0.425736i 0.977081 + 0.212868i \(0.0682804\pi\)
−0.977081 + 0.212868i \(0.931720\pi\)
\(542\) −14.2313 3.42687i −0.611286 0.147197i
\(543\) 0 0
\(544\) −3.31534 8.08156i −0.142144 0.346494i
\(545\) 0 0
\(546\) 0 0
\(547\) −16.5129 −0.706039 −0.353019 0.935616i \(-0.614845\pi\)
−0.353019 + 0.935616i \(0.614845\pi\)
\(548\) −1.40582 + 2.74983i −0.0600537 + 0.117467i
\(549\) 0 0
\(550\) 0 0
\(551\) 26.3841 1.12400
\(552\) 0 0
\(553\) 0.957477 0.0407161
\(554\) 32.0986 + 7.72929i 1.36374 + 0.328386i
\(555\) 0 0
\(556\) −21.3693 10.9248i −0.906261 0.463317i
\(557\) 32.6443 1.38318 0.691591 0.722289i \(-0.256910\pi\)
0.691591 + 0.722289i \(0.256910\pi\)
\(558\) 0 0
\(559\) 25.9396i 1.09713i
\(560\) 0 0
\(561\) 0 0
\(562\) 4.12821 + 0.994066i 0.174138 + 0.0419321i
\(563\) 14.0877i 0.593724i 0.954920 + 0.296862i \(0.0959401\pi\)
−0.954920 + 0.296862i \(0.904060\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 7.72503 32.0810i 0.324707 1.34846i
\(567\) 0 0
\(568\) −21.6280 + 25.2188i −0.907491 + 1.05816i
\(569\) 30.0467i 1.25962i −0.776748 0.629811i \(-0.783132\pi\)
0.776748 0.629811i \(-0.216868\pi\)
\(570\) 0 0
\(571\) 33.8617 1.41707 0.708535 0.705676i \(-0.249356\pi\)
0.708535 + 0.705676i \(0.249356\pi\)
\(572\) 13.1158 + 6.70531i 0.548398 + 0.280363i
\(573\) 0 0
\(574\) 1.80776 7.50738i 0.0754546 0.313352i
\(575\) 0 0
\(576\) 0 0
\(577\) 7.77769 0.323789 0.161895 0.986808i \(-0.448240\pi\)
0.161895 + 0.986808i \(0.448240\pi\)
\(578\) 4.83886 20.0951i 0.201270 0.835846i
\(579\) 0 0
\(580\) 0 0
\(581\) −13.1921 −0.547299
\(582\) 0 0
\(583\) 11.2371i 0.465394i
\(584\) 10.3000 12.0101i 0.426219 0.496981i
\(585\) 0 0
\(586\) 9.87689 41.0173i 0.408011 1.69441i
\(587\) 10.9993i 0.453990i 0.973896 + 0.226995i \(0.0728901\pi\)
−0.973896 + 0.226995i \(0.927110\pi\)
\(588\) 0 0
\(589\) 25.9396i 1.06882i
\(590\) 0 0
\(591\) 0 0
\(592\) 24.6643 17.8174i 1.01370 0.732290i
\(593\) 43.8071i 1.79894i 0.436978 + 0.899472i \(0.356049\pi\)
−0.436978 + 0.899472i \(0.643951\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −3.29801 1.68608i −0.135092 0.0690644i
\(597\) 0 0
\(598\) 15.5554 + 3.74571i 0.636107 + 0.153173i
\(599\) −45.5382 −1.86064 −0.930320 0.366749i \(-0.880471\pi\)
−0.930320 + 0.366749i \(0.880471\pi\)
\(600\) 0 0
\(601\) −23.3693 −0.953254 −0.476627 0.879106i \(-0.658141\pi\)
−0.476627 + 0.879106i \(0.658141\pi\)
\(602\) −10.0138 2.41131i −0.408133 0.0982776i
\(603\) 0 0
\(604\) 16.0540 31.4020i 0.653227 1.27773i
\(605\) 0 0
\(606\) 0 0
\(607\) 9.71010i 0.394121i 0.980391 + 0.197060i \(0.0631395\pi\)
−0.980391 + 0.197060i \(0.936860\pi\)
\(608\) 16.3450 6.70531i 0.662879 0.271936i
\(609\) 0 0
\(610\) 0 0
\(611\) 35.8776i 1.45145i
\(612\) 0 0
\(613\) 23.8718i 0.964172i 0.876124 + 0.482086i \(0.160121\pi\)
−0.876124 + 0.482086i \(0.839879\pi\)
\(614\) −1.44600 + 6.00505i −0.0583560 + 0.242344i
\(615\) 0 0
\(616\) −3.80776 + 4.43994i −0.153419 + 0.178890i
\(617\) 15.6318i 0.629314i −0.949205 0.314657i \(-0.898111\pi\)
0.949205 0.314657i \(-0.101889\pi\)
\(618\) 0 0
\(619\) −18.7386 −0.753169 −0.376585 0.926382i \(-0.622902\pi\)
−0.376585 + 0.926382i \(0.622902\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −3.41011 + 14.1617i −0.136733 + 0.567831i
\(623\) 12.2448 0.490578
\(624\) 0 0
\(625\) 0 0
\(626\) −10.6170 + 44.0911i −0.424342 + 1.76223i
\(627\) 0 0
\(628\) 2.55758 5.00270i 0.102059 0.199629i
\(629\) −11.7460 −0.468346
\(630\) 0 0
\(631\) 17.6339i 0.701995i 0.936376 + 0.350997i \(0.114157\pi\)
−0.936376 + 0.350997i \(0.885843\pi\)
\(632\) −2.19526 1.88269i −0.0873229 0.0748895i
\(633\) 0 0
\(634\) −8.12311 + 33.7341i −0.322610 + 1.33975i
\(635\) 0 0
\(636\) 0 0
\(637\) 20.4214i 0.809124i
\(638\) 25.6509 + 6.17669i 1.01553 + 0.244538i
\(639\) 0 0
\(640\) 0 0
\(641\) 7.07107i 0.279290i 0.990202 + 0.139645i \(0.0445962\pi\)
−0.990202 + 0.139645i \(0.955404\pi\)
\(642\) 0 0
\(643\) −8.73516 −0.344481 −0.172241 0.985055i \(-0.555101\pi\)
−0.172241 + 0.985055i \(0.555101\pi\)
\(644\) −2.89201 + 5.65685i −0.113961 + 0.222911i
\(645\) 0 0
\(646\) −6.63068 1.59666i −0.260881 0.0628196i
\(647\) 1.32431 0.0520639 0.0260319 0.999661i \(-0.491713\pi\)
0.0260319 + 0.999661i \(0.491713\pi\)
\(648\) 0 0
\(649\) −23.6155 −0.926991
\(650\) 0 0
\(651\) 0 0
\(652\) −27.7006 14.1617i −1.08484 0.554614i
\(653\) −15.8459 −0.620098 −0.310049 0.950721i \(-0.600346\pi\)
−0.310049 + 0.950721i \(0.600346\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −18.9066 + 13.6580i −0.738178 + 0.533256i
\(657\) 0 0
\(658\) 13.8503 + 3.33513i 0.539942 + 0.130017i
\(659\) 33.3211i 1.29800i −0.760786 0.649002i \(-0.775187\pi\)
0.760786 0.649002i \(-0.224813\pi\)
\(660\) 0 0
\(661\) 44.5960i 1.73458i 0.497800 + 0.867292i \(0.334141\pi\)
−0.497800 + 0.867292i \(0.665859\pi\)
\(662\) −0.453349 + 1.88269i −0.0176199 + 0.0731729i
\(663\) 0 0
\(664\) 30.2462 + 25.9396i 1.17378 + 1.00665i
\(665\) 0 0
\(666\) 0 0
\(667\) 28.6581 1.10965
\(668\) −16.7984 8.58800i −0.649949 0.332280i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(674\) −9.89404 + 41.0885i −0.381104 + 1.58267i
\(675\) 0 0
\(676\) −3.34233 1.70873i −0.128551 0.0657205i
\(677\) 5.25145 0.201830 0.100915 0.994895i \(-0.467823\pi\)
0.100915 + 0.994895i \(0.467823\pi\)
\(678\) 0 0
\(679\) 2.04496i 0.0784783i
\(680\) 0 0
\(681\) 0 0
\(682\) 6.07263 25.2188i 0.232533 0.965677i
\(683\) 20.2644i 0.775394i −0.921787 0.387697i \(-0.873271\pi\)
0.921787 0.387697i \(-0.126729\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −16.8961 4.06854i −0.645095 0.155338i
\(687\) 0 0
\(688\) 18.2179 + 25.2188i 0.694551 + 0.961457i
\(689\) 16.9706i 0.646527i
\(690\) 0 0
\(691\) −23.1231 −0.879644 −0.439822 0.898085i \(-0.644959\pi\)
−0.439822 + 0.898085i \(0.644959\pi\)
\(692\) −3.02045 1.54417i −0.114820 0.0587007i
\(693\) 0 0
\(694\) 19.3693 + 4.66410i 0.735249 + 0.177047i
\(695\) 0 0
\(696\) 0 0
\(697\) 9.00400 0.341051
\(698\) 45.6786 + 10.9993i 1.72896 + 0.416330i
\(699\) 0 0
\(700\) 0 0
\(701\) −20.1941 −0.762720 −0.381360 0.924427i \(-0.624544\pi\)
−0.381360 + 0.924427i \(0.624544\pi\)
\(702\) 0 0
\(703\) 23.7565i 0.895993i
\(704\) 17.4606 2.69250i 0.658070 0.101477i
\(705\) 0 0
\(706\) −10.6155 2.55620i −0.399521 0.0962038i
\(707\) 3.08835i 0.116149i
\(708\) 0 0
\(709\) 30.6037i 1.14935i 0.818383 + 0.574673i \(0.194871\pi\)
−0.818383 + 0.574673i \(0.805129\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −28.0744 24.0771i −1.05213 0.902326i
\(713\) 28.1753i 1.05517i
\(714\) 0 0
\(715\) 0 0
\(716\) 7.47753 14.6263i 0.279448 0.546609i
\(717\) 0 0
\(718\) −0.478739 + 1.98813i −0.0178664 + 0.0741964i
\(719\) −32.3461 −1.20631 −0.603154 0.797625i \(-0.706089\pi\)
−0.603154 + 0.797625i \(0.706089\pi\)
\(720\) 0 0
\(721\) −16.8769 −0.628528
\(722\) −3.06121 + 12.7127i −0.113926 + 0.473119i
\(723\) 0 0
\(724\) 4.24621 8.30571i 0.157809 0.308679i
\(725\) 0 0
\(726\) 0 0
\(727\) 9.47954i 0.351577i 0.984428 + 0.175788i \(0.0562475\pi\)
−0.984428 + 0.175788i \(0.943753\pi\)
\(728\) −5.75058 + 6.70531i −0.213131 + 0.248515i
\(729\) 0 0
\(730\) 0 0
\(731\) 12.0101i 0.444210i
\(732\) 0 0
\(733\) 19.6002i 0.723951i 0.932188 + 0.361975i \(0.117898\pi\)
−0.932188 + 0.361975i \(0.882102\pi\)
\(734\) −44.5677 10.7318i −1.64502 0.396119i
\(735\) 0 0
\(736\) 17.7538 7.28323i 0.654413 0.268463i
\(737\) 26.8212i 0.987973i
\(738\) 0 0
\(739\) −35.6155 −1.31014 −0.655069 0.755569i \(-0.727361\pi\)
−0.655069 + 0.755569i \(0.727361\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 6.55137 + 1.57756i 0.240508 + 0.0579140i
\(743\) 10.0138 0.367371 0.183686 0.982985i \(-0.441197\pi\)
0.183686 + 0.982985i \(0.441197\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 13.0336 + 3.13846i 0.477192 + 0.114907i
\(747\) 0 0
\(748\) −6.07263 3.10457i −0.222038 0.113514i
\(749\) −10.3000 −0.376355
\(750\) 0 0
\(751\) 41.5286i 1.51540i −0.652604 0.757699i \(-0.726323\pi\)
0.652604 0.757699i \(-0.273677\pi\)
\(752\) −25.1976 34.8806i −0.918861 1.27197i
\(753\) 0 0
\(754\) 38.7386 + 9.32819i 1.41078 + 0.339713i
\(755\) 0 0
\(756\) 0 0
\(757\) 3.33513i 0.121217i −0.998162 0.0606087i \(-0.980696\pi\)
0.998162 0.0606087i \(-0.0193042\pi\)
\(758\) 5.46026 22.6757i 0.198325 0.823617i
\(759\) 0 0
\(760\) 0 0
\(761\) 49.3019i 1.78719i −0.448870 0.893597i \(-0.648173\pi\)
0.448870 0.893597i \(-0.351827\pi\)
\(762\) 0 0
\(763\) −11.1878 −0.405025
\(764\) 23.4921 + 12.0101i 0.849914 + 0.434510i
\(765\) 0 0
\(766\) 3.31534 13.7681i 0.119788 0.497463i
\(767\) −35.6647 −1.28778
\(768\) 0 0
\(769\) −25.6155 −0.923720 −0.461860 0.886953i \(-0.652818\pi\)
−0.461860 + 0.886953i \(0.652818\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 41.5510 + 21.2425i 1.49545 + 0.764535i
\(773\) 2.27678 0.0818901 0.0409450 0.999161i \(-0.486963\pi\)
0.0409450 + 0.999161i \(0.486963\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −4.02102 + 4.68860i −0.144346 + 0.168311i
\(777\) 0 0
\(778\) 3.27569 13.6035i 0.117439 0.487707i
\(779\) 18.2107i 0.652465i
\(780\) 0 0
\(781\) 25.9396i 0.928192i
\(782\) −7.20217 1.73427i −0.257549 0.0620174i
\(783\) 0 0
\(784\) 14.3423 + 19.8539i 0.512226 + 0.709067i
\(785\) 0 0
\(786\) 0 0
\(787\) 19.9230 0.710177 0.355088 0.934833i \(-0.384451\pi\)
0.355088 + 0.934833i \(0.384451\pi\)
\(788\) −8.77102 4.48410i −0.312455 0.159739i
\(789\) 0 0
\(790\) 0 0
\(791\) 11.7460 0.417641
\(792\) 0 0
\(793\) 0 0
\(794\) 14.1626 + 3.41032i 0.502611 + 0.121028i
\(795\) 0 0
\(796\) −16.0540 + 31.4020i −0.569018 + 1.11302i
\(797\) −15.6829 −0.555516 −0.277758 0.960651i \(-0.589591\pi\)
−0.277758 + 0.960651i \(0.589591\pi\)
\(798\) 0 0
\(799\) 16.6114i 0.587670i
\(800\) 0 0
\(801\) 0 0
\(802\) 0.718108 + 0.172919i 0.0253573 + 0.00610598i
\(803\) 12.3534i 0.435942i
\(804\) 0 0
\(805\) 0 0
\(806\) 9.17104 38.0860i 0.323036 1.34152i
\(807\) 0 0
\(808\) 6.07263 7.08084i 0.213635 0.249103i
\(809\) 20.6695i 0.726700i −0.931653 0.363350i \(-0.881633\pi\)
0.931653 0.363350i \(-0.118367\pi\)
\(810\) 0 0
\(811\) −49.4773 −1.73738 −0.868691 0.495354i \(-0.835038\pi\)
−0.868691 + 0.495354i \(0.835038\pi\)
\(812\) −7.20217 + 14.0877i −0.252747 + 0.494380i
\(813\) 0 0
\(814\) 5.56155 23.0963i 0.194932 0.809526i
\(815\) 0 0
\(816\) 0 0
\(817\) 24.2905 0.849818
\(818\) −1.03399 + 4.29400i −0.0361525 + 0.150136i
\(819\) 0 0
\(820\) 0 0
\(821\) −12.1521 −0.424110 −0.212055 0.977258i \(-0.568016\pi\)
−0.212055 + 0.977258i \(0.568016\pi\)
\(822\) 0 0
\(823\) 28.6692i 0.999345i −0.866214 0.499673i \(-0.833454\pi\)
0.866214 0.499673i \(-0.166546\pi\)
\(824\) 38.6947 + 33.1851i 1.34799 + 1.15606i
\(825\) 0 0
\(826\) 3.31534 13.7681i 0.115355 0.479055i
\(827\) 39.1746i 1.36224i −0.732174 0.681118i \(-0.761494\pi\)
0.732174 0.681118i \(-0.238506\pi\)
\(828\) 0 0
\(829\) 4.66410i 0.161991i −0.996714 0.0809954i \(-0.974190\pi\)
0.996714 0.0809954i \(-0.0258099\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 26.3694 4.06627i 0.914194 0.140973i
\(833\) 9.45514i 0.327601i
\(834\) 0 0
\(835\) 0 0
\(836\) 6.27903 12.2820i 0.217165 0.424781i
\(837\) 0 0
\(838\) −44.5873 10.7365i −1.54024 0.370887i
\(839\) −24.9381 −0.860959 −0.430479 0.902600i \(-0.641656\pi\)
−0.430479 + 0.902600i \(0.641656\pi\)
\(840\) 0 0
\(841\) 42.3693 1.46101
\(842\) −42.0775 10.1322i −1.45009 0.349178i
\(843\) 0 0
\(844\) −7.12311 3.64162i −0.245187 0.125350i
\(845\) 0 0
\(846\) 0 0
\(847\) 5.73384i 0.197017i
\(848\) −11.9188 16.4990i −0.409292 0.566577i
\(849\) 0 0
\(850\) 0 0
\(851\) 25.8040i 0.884551i
\(852\) 0 0
\(853\) 45.5249i 1.55874i −0.626563 0.779371i \(-0.715539\pi\)
0.626563 0.779371i \(-0.284461\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 23.6155 + 20.2530i 0.807162 + 0.692235i
\(857\) 40.7188i 1.39093i −0.718561 0.695464i \(-0.755199\pi\)
0.718561 0.695464i \(-0.244801\pi\)
\(858\) 0 0
\(859\) 33.7538 1.15166 0.575832 0.817568i \(-0.304678\pi\)
0.575832 + 0.817568i \(0.304678\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −0.478739 + 1.98813i −0.0163059 + 0.0677160i
\(863\) 45.6786 1.55492 0.777458 0.628935i \(-0.216509\pi\)
0.777458 + 0.628935i \(0.216509\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −5.15002 + 21.3873i −0.175005 + 0.726770i
\(867\) 0 0
\(868\) 13.8503 + 7.08084i 0.470111 + 0.240339i
\(869\) −2.25801 −0.0765978
\(870\) 0 0
\(871\) 40.5061i 1.37250i
\(872\) 25.6509 + 21.9986i 0.868650 + 0.744967i
\(873\) 0 0
\(874\) 3.50758 14.5665i 0.118646 0.492718i
\(875\) 0 0
\(876\) 0 0
\(877\) 46.5766i 1.57278i −0.617731 0.786389i \(-0.711948\pi\)
0.617731 0.786389i \(-0.288052\pi\)
\(878\) −37.0706 8.92652i −1.25107 0.301256i
\(879\) 0 0
\(880\) 0 0
\(881\) 5.83095i 0.196450i −0.995164 0.0982249i \(-0.968684\pi\)
0.995164 0.0982249i \(-0.0313164\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) −9.17104 4.68860i −0.308455 0.157695i
\(885\) 0 0
\(886\) −34.4924 8.30571i −1.15880 0.279036i
\(887\) −16.2177 −0.544538 −0.272269 0.962221i \(-0.587774\pi\)
−0.272269 + 0.962221i \(0.587774\pi\)
\(888\) 0 0
\(889\) −4.38447 −0.147050
\(890\) 0 0
\(891\) 0 0
\(892\) 20.0279 39.1752i 0.670584 1.31168i
\(893\) −33.5968 −1.12427
\(894\) 0 0
\(895\) 0 0
\(896\) −0.881502 + 10.5577i −0.0294489 + 0.352709i
\(897\) 0 0
\(898\) −13.6110 3.27749i −0.454203 0.109371i
\(899\) 70.1670i 2.34020i
\(900\) 0 0
\(901\) 7.85741i 0.261768i
\(902\) −4.26324 + 17.7046i −0.141950 + 0.589499i
\(903\) 0 0
\(904\) −26.9309 23.0963i −0.895707 0.768172i
\(905\) 0 0
\(906\) 0 0
\(907\) 16.5129 0.548300 0.274150 0.961687i \(-0.411603\pi\)
0.274150 + 0.961687i \(0.411603\pi\)
\(908\) −2.81164 + 5.49966i −0.0933077 + 0.182512i
\(909\) 0 0
\(910\) 0 0
\(911\) −36.6842 −1.21540 −0.607700 0.794167i \(-0.707908\pi\)
−0.607700 + 0.794167i \(0.707908\pi\)
\(912\) 0 0
\(913\) 31.1107 1.02962
\(914\) −4.42702 + 18.3848i −0.146433 + 0.608114i
\(915\) 0 0
\(916\) −2.38447 + 4.66410i −0.0787852 + 0.154106i
\(917\) 0.580639 0.0191744
\(918\) 0 0
\(919\) 30.1554i 0.994735i 0.867540 + 0.497368i \(0.165700\pi\)
−0.867540 + 0.497368i \(0.834300\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −0.613157 + 2.54635i −0.0201933 + 0.0838597i
\(923\) 39.1746i 1.28945i
\(924\) 0 0
\(925\) 0 0
\(926\) 18.1836 + 4.37857i 0.597549 + 0.143889i
\(927\) 0 0
\(928\) 44.2135 18.1379i 1.45138 0.595407i
\(929\) 3.00252i 0.0985096i 0.998786 + 0.0492548i \(0.0156846\pi\)
−0.998786 + 0.0492548i \(0.984315\pi\)
\(930\) 0 0
\(931\) 19.1231 0.626734
\(932\) 18.6218 36.4248i 0.609978 1.19313i
\(933\) 0 0
\(934\) −26.0000 6.26075i −0.850746 0.204858i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) −15.6371 3.76539i −0.510570 0.122944i
\(939\) 0 0
\(940\) 0 0
\(941\) 3.29801 0.107512 0.0537561 0.998554i \(-0.482881\pi\)
0.0537561 + 0.998554i \(0.482881\pi\)
\(942\) 0 0
\(943\) 19.7802i 0.644133i
\(944\) −34.6736 + 25.0481i −1.12853 + 0.815245i
\(945\) 0 0
\(946\) 23.6155 + 5.68658i 0.767807 + 0.184887i
\(947\) 32.9979i 1.07229i 0.844126 + 0.536144i \(0.180120\pi\)
−0.844126 + 0.536144i \(0.819880\pi\)
\(948\) 0 0
\(949\) 18.6564i 0.605612i
\(950\) 0 0
\(951\) 0 0
\(952\) 2.66253 3.10457i 0.0862931 0.100620i
\(953\) 12.5435i 0.406323i −0.979145 0.203162i \(-0.934878\pi\)
0.979145 0.203162i \(-0.0651217\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −41.8342 21.3873i −1.35301 0.691715i
\(957\) 0 0
\(958\) 4.84632 20.1261i 0.156578 0.650244i
\(959\) −1.44600 −0.0466939
\(960\) 0 0
\(961\) −37.9848 −1.22532
\(962\) 8.39919 34.8806i 0.270801 1.12460i
\(963\) 0 0
\(964\) 7.12311 + 3.64162i 0.229420 + 0.117289i
\(965\) 0 0
\(966\) 0 0
\(967\) 15.0981i 0.485522i −0.970086 0.242761i \(-0.921947\pi\)
0.970086 0.242761i \(-0.0780531\pi\)
\(968\) −11.2745 + 13.1463i −0.362375 + 0.422538i
\(969\) 0 0
\(970\) 0 0
\(971\) 19.8753i 0.637829i 0.947783 + 0.318915i \(0.103318\pi\)
−0.947783 + 0.318915i \(0.896682\pi\)
\(972\) 0 0
\(973\) 11.2371i 0.360245i
\(974\) 40.5467 + 9.76356i 1.29920 + 0.312845i
\(975\) 0 0
\(976\) 0 0
\(977\) 37.6305i 1.20390i −0.798532 0.601952i \(-0.794390\pi\)
0.798532 0.601952i \(-0.205610\pi\)
\(978\) 0 0
\(979\) −28.8769 −0.922910
\(980\) 0 0
\(981\) 0 0
\(982\) 22.4805 + 5.41327i 0.717383 + 0.172744i
\(983\) −53.0438 −1.69183 −0.845917 0.533315i \(-0.820946\pi\)
−0.845917 + 0.533315i \(0.820946\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −17.9361 4.31897i −0.571201 0.137544i
\(987\) 0 0
\(988\) 9.48274 18.5485i 0.301686 0.590107i
\(989\) 26.3841 0.838966
\(990\) 0 0
\(991\) 17.6339i 0.560159i −0.959977 0.280080i \(-0.909639\pi\)
0.959977 0.280080i \(-0.0903609\pi\)
\(992\) −17.8324 43.4686i −0.566178 1.38013i
\(993\) 0 0
\(994\) −15.1231 3.64162i −0.479676 0.115505i
\(995\) 0 0
\(996\) 0 0
\(997\) 25.5141i 0.808039i −0.914750 0.404019i \(-0.867613\pi\)
0.914750 0.404019i \(-0.132387\pi\)
\(998\) −5.58755 + 23.2043i −0.176871 + 0.734519i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1800.2.b.g.251.9 16
3.2 odd 2 inner 1800.2.b.g.251.7 16
4.3 odd 2 7200.2.b.i.4751.9 16
5.2 odd 4 360.2.m.c.179.15 yes 16
5.3 odd 4 360.2.m.c.179.1 16
5.4 even 2 inner 1800.2.b.g.251.8 16
8.3 odd 2 inner 1800.2.b.g.251.6 16
8.5 even 2 7200.2.b.i.4751.5 16
12.11 even 2 7200.2.b.i.4751.12 16
15.2 even 4 360.2.m.c.179.2 yes 16
15.8 even 4 360.2.m.c.179.16 yes 16
15.14 odd 2 inner 1800.2.b.g.251.10 16
20.3 even 4 1440.2.m.c.719.6 16
20.7 even 4 1440.2.m.c.719.7 16
20.19 odd 2 7200.2.b.i.4751.6 16
24.5 odd 2 7200.2.b.i.4751.8 16
24.11 even 2 inner 1800.2.b.g.251.12 16
40.3 even 4 360.2.m.c.179.4 yes 16
40.13 odd 4 1440.2.m.c.719.11 16
40.19 odd 2 inner 1800.2.b.g.251.11 16
40.27 even 4 360.2.m.c.179.14 yes 16
40.29 even 2 7200.2.b.i.4751.10 16
40.37 odd 4 1440.2.m.c.719.10 16
60.23 odd 4 1440.2.m.c.719.12 16
60.47 odd 4 1440.2.m.c.719.9 16
60.59 even 2 7200.2.b.i.4751.7 16
120.29 odd 2 7200.2.b.i.4751.11 16
120.53 even 4 1440.2.m.c.719.5 16
120.59 even 2 inner 1800.2.b.g.251.5 16
120.77 even 4 1440.2.m.c.719.8 16
120.83 odd 4 360.2.m.c.179.13 yes 16
120.107 odd 4 360.2.m.c.179.3 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
360.2.m.c.179.1 16 5.3 odd 4
360.2.m.c.179.2 yes 16 15.2 even 4
360.2.m.c.179.3 yes 16 120.107 odd 4
360.2.m.c.179.4 yes 16 40.3 even 4
360.2.m.c.179.13 yes 16 120.83 odd 4
360.2.m.c.179.14 yes 16 40.27 even 4
360.2.m.c.179.15 yes 16 5.2 odd 4
360.2.m.c.179.16 yes 16 15.8 even 4
1440.2.m.c.719.5 16 120.53 even 4
1440.2.m.c.719.6 16 20.3 even 4
1440.2.m.c.719.7 16 20.7 even 4
1440.2.m.c.719.8 16 120.77 even 4
1440.2.m.c.719.9 16 60.47 odd 4
1440.2.m.c.719.10 16 40.37 odd 4
1440.2.m.c.719.11 16 40.13 odd 4
1440.2.m.c.719.12 16 60.23 odd 4
1800.2.b.g.251.5 16 120.59 even 2 inner
1800.2.b.g.251.6 16 8.3 odd 2 inner
1800.2.b.g.251.7 16 3.2 odd 2 inner
1800.2.b.g.251.8 16 5.4 even 2 inner
1800.2.b.g.251.9 16 1.1 even 1 trivial
1800.2.b.g.251.10 16 15.14 odd 2 inner
1800.2.b.g.251.11 16 40.19 odd 2 inner
1800.2.b.g.251.12 16 24.11 even 2 inner
7200.2.b.i.4751.5 16 8.5 even 2
7200.2.b.i.4751.6 16 20.19 odd 2
7200.2.b.i.4751.7 16 60.59 even 2
7200.2.b.i.4751.8 16 24.5 odd 2
7200.2.b.i.4751.9 16 4.3 odd 2
7200.2.b.i.4751.10 16 40.29 even 2
7200.2.b.i.4751.11 16 120.29 odd 2
7200.2.b.i.4751.12 16 12.11 even 2