Properties

Label 1800.2.b.g.251.16
Level $1800$
Weight $2$
Character 1800.251
Analytic conductor $14.373$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1800,2,Mod(251,1800)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1800.251"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1800, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1800.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,-12,0,0,0,0,0,0,0,0,0,0,0,-12,0,0,-16,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(22)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.3730723638\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6x^{14} + 28x^{12} + 16x^{10} - 40x^{8} + 610x^{6} + 1625x^{4} - 524x^{2} + 1444 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{29}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 360)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 251.16
Root \(0.744612 + 0.556573i\) of defining polynomial
Character \(\chi\) \(=\) 1800.251
Dual form 1800.2.b.g.251.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.06789 + 0.927153i) q^{2} +(0.280776 + 1.98019i) q^{4} +3.02045i q^{7} +(-1.53610 + 2.37495i) q^{8} +3.62258i q^{11} +1.69614i q^{13} +(-2.80042 + 3.22550i) q^{14} +(-3.84233 + 1.11198i) q^{16} -6.60421i q^{17} -5.12311 q^{19} +(-3.35869 + 3.86852i) q^{22} -6.67026 q^{23} +(-1.57258 + 1.81129i) q^{26} +(-5.98107 + 0.848071i) q^{28} +6.82867 q^{29} +1.73642i q^{31} +(-5.13416 - 2.37495i) q^{32} +(6.12311 - 7.05256i) q^{34} -0.371834i q^{37} +(-5.47091 - 4.74990i) q^{38} +5.83095i q^{41} +5.24477 q^{43} +(-7.17341 + 1.01714i) q^{44} +(-7.12311 - 6.18435i) q^{46} +0.525853 q^{47} -2.12311 q^{49} +(-3.35869 + 0.476236i) q^{52} +10.0054 q^{53} +(-7.17341 - 4.63972i) q^{56} +(7.29226 + 6.33122i) q^{58} -4.86270i q^{59} +(-1.60993 + 1.85431i) q^{62} +(-3.28078 - 7.29634i) q^{64} -13.4347 q^{67} +(13.0776 - 1.85431i) q^{68} +2.45567 q^{71} -14.5845 q^{73} +(0.344747 - 0.397078i) q^{74} +(-1.43845 - 10.1447i) q^{76} -10.9418 q^{77} +14.1051i q^{79} +(-5.40618 + 6.22681i) q^{82} -5.79119i q^{83} +(5.60083 + 4.86270i) q^{86} +(-8.60345 - 5.56466i) q^{88} +10.2477i q^{89} -5.12311 q^{91} +(-1.87285 - 13.2084i) q^{92} +(0.561553 + 0.487546i) q^{94} -9.33976 q^{97} +(-2.26724 - 1.96844i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 12 q^{4} - 12 q^{16} - 16 q^{19} + 32 q^{34} - 48 q^{46} + 32 q^{49} - 36 q^{64} - 56 q^{76} - 16 q^{91} - 24 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1800\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1001\) \(1351\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.06789 + 0.927153i 0.755112 + 0.655596i
\(3\) 0 0
\(4\) 0.280776 + 1.98019i 0.140388 + 0.990097i
\(5\) 0 0
\(6\) 0 0
\(7\) 3.02045i 1.14162i 0.821081 + 0.570811i \(0.193371\pi\)
−0.821081 + 0.570811i \(0.806629\pi\)
\(8\) −1.53610 + 2.37495i −0.543094 + 0.839672i
\(9\) 0 0
\(10\) 0 0
\(11\) 3.62258i 1.09225i 0.837704 + 0.546125i \(0.183898\pi\)
−0.837704 + 0.546125i \(0.816102\pi\)
\(12\) 0 0
\(13\) 1.69614i 0.470425i 0.971944 + 0.235212i \(0.0755786\pi\)
−0.971944 + 0.235212i \(0.924421\pi\)
\(14\) −2.80042 + 3.22550i −0.748443 + 0.862052i
\(15\) 0 0
\(16\) −3.84233 + 1.11198i −0.960582 + 0.277996i
\(17\) 6.60421i 1.60176i −0.598828 0.800878i \(-0.704367\pi\)
0.598828 0.800878i \(-0.295633\pi\)
\(18\) 0 0
\(19\) −5.12311 −1.17532 −0.587661 0.809108i \(-0.699951\pi\)
−0.587661 + 0.809108i \(0.699951\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −3.35869 + 3.86852i −0.716074 + 0.824771i
\(23\) −6.67026 −1.39085 −0.695423 0.718601i \(-0.744783\pi\)
−0.695423 + 0.718601i \(0.744783\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −1.57258 + 1.81129i −0.308409 + 0.355223i
\(27\) 0 0
\(28\) −5.98107 + 0.848071i −1.13032 + 0.160270i
\(29\) 6.82867 1.26805 0.634026 0.773312i \(-0.281401\pi\)
0.634026 + 0.773312i \(0.281401\pi\)
\(30\) 0 0
\(31\) 1.73642i 0.311870i 0.987767 + 0.155935i \(0.0498391\pi\)
−0.987767 + 0.155935i \(0.950161\pi\)
\(32\) −5.13416 2.37495i −0.907600 0.419836i
\(33\) 0 0
\(34\) 6.12311 7.05256i 1.05010 1.20950i
\(35\) 0 0
\(36\) 0 0
\(37\) 0.371834i 0.0611292i −0.999533 0.0305646i \(-0.990269\pi\)
0.999533 0.0305646i \(-0.00973052\pi\)
\(38\) −5.47091 4.74990i −0.887499 0.770536i
\(39\) 0 0
\(40\) 0 0
\(41\) 5.83095i 0.910642i 0.890327 + 0.455321i \(0.150475\pi\)
−0.890327 + 0.455321i \(0.849525\pi\)
\(42\) 0 0
\(43\) 5.24477 0.799819 0.399910 0.916555i \(-0.369041\pi\)
0.399910 + 0.916555i \(0.369041\pi\)
\(44\) −7.17341 + 1.01714i −1.08143 + 0.153339i
\(45\) 0 0
\(46\) −7.12311 6.18435i −1.05024 0.911833i
\(47\) 0.525853 0.0767035 0.0383518 0.999264i \(-0.487789\pi\)
0.0383518 + 0.999264i \(0.487789\pi\)
\(48\) 0 0
\(49\) −2.12311 −0.303301
\(50\) 0 0
\(51\) 0 0
\(52\) −3.35869 + 0.476236i −0.465766 + 0.0660421i
\(53\) 10.0054 1.37435 0.687173 0.726493i \(-0.258851\pi\)
0.687173 + 0.726493i \(0.258851\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −7.17341 4.63972i −0.958588 0.620008i
\(57\) 0 0
\(58\) 7.29226 + 6.33122i 0.957521 + 0.831329i
\(59\) 4.86270i 0.633069i −0.948581 0.316535i \(-0.897481\pi\)
0.948581 0.316535i \(-0.102519\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) −1.60993 + 1.85431i −0.204461 + 0.235497i
\(63\) 0 0
\(64\) −3.28078 7.29634i −0.410097 0.912042i
\(65\) 0 0
\(66\) 0 0
\(67\) −13.4347 −1.64132 −0.820658 0.571420i \(-0.806393\pi\)
−0.820658 + 0.571420i \(0.806393\pi\)
\(68\) 13.0776 1.85431i 1.58589 0.224868i
\(69\) 0 0
\(70\) 0 0
\(71\) 2.45567 0.291434 0.145717 0.989326i \(-0.453451\pi\)
0.145717 + 0.989326i \(0.453451\pi\)
\(72\) 0 0
\(73\) −14.5845 −1.70699 −0.853495 0.521102i \(-0.825521\pi\)
−0.853495 + 0.521102i \(0.825521\pi\)
\(74\) 0.344747 0.397078i 0.0400760 0.0461594i
\(75\) 0 0
\(76\) −1.43845 10.1447i −0.165001 1.16368i
\(77\) −10.9418 −1.24694
\(78\) 0 0
\(79\) 14.1051i 1.58695i 0.608603 + 0.793475i \(0.291730\pi\)
−0.608603 + 0.793475i \(0.708270\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −5.40618 + 6.22681i −0.597013 + 0.687636i
\(83\) 5.79119i 0.635666i −0.948147 0.317833i \(-0.897045\pi\)
0.948147 0.317833i \(-0.102955\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 5.60083 + 4.86270i 0.603953 + 0.524358i
\(87\) 0 0
\(88\) −8.60345 5.56466i −0.917131 0.593195i
\(89\) 10.2477i 1.08625i 0.839651 + 0.543126i \(0.182760\pi\)
−0.839651 + 0.543126i \(0.817240\pi\)
\(90\) 0 0
\(91\) −5.12311 −0.537047
\(92\) −1.87285 13.2084i −0.195258 1.37707i
\(93\) 0 0
\(94\) 0.561553 + 0.487546i 0.0579198 + 0.0502865i
\(95\) 0 0
\(96\) 0 0
\(97\) −9.33976 −0.948309 −0.474154 0.880442i \(-0.657246\pi\)
−0.474154 + 0.880442i \(0.657246\pi\)
\(98\) −2.26724 1.96844i −0.229026 0.198843i
\(99\) 0 0
\(100\) 0 0
\(101\) 4.37300 0.435129 0.217565 0.976046i \(-0.430189\pi\)
0.217565 + 0.976046i \(0.430189\pi\)
\(102\) 0 0
\(103\) 8.31768i 0.819565i 0.912183 + 0.409782i \(0.134395\pi\)
−0.912183 + 0.409782i \(0.865605\pi\)
\(104\) −4.02825 2.60545i −0.395002 0.255485i
\(105\) 0 0
\(106\) 10.6847 + 9.27653i 1.03779 + 0.901016i
\(107\) 7.41722i 0.717050i 0.933520 + 0.358525i \(0.116720\pi\)
−0.933520 + 0.358525i \(0.883280\pi\)
\(108\) 0 0
\(109\) 9.65719i 0.924991i 0.886622 + 0.462496i \(0.153046\pi\)
−0.886622 + 0.462496i \(0.846954\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −3.35869 11.6056i −0.317366 1.09662i
\(113\) 0.813015i 0.0764820i −0.999269 0.0382410i \(-0.987825\pi\)
0.999269 0.0382410i \(-0.0121755\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1.91733 + 13.5221i 0.178019 + 1.25549i
\(117\) 0 0
\(118\) 4.50846 5.19283i 0.415038 0.478038i
\(119\) 19.9477 1.82860
\(120\) 0 0
\(121\) −2.12311 −0.193010
\(122\) 0 0
\(123\) 0 0
\(124\) −3.43845 + 0.487546i −0.308782 + 0.0437829i
\(125\) 0 0
\(126\) 0 0
\(127\) 15.1022i 1.34011i 0.742313 + 0.670054i \(0.233729\pi\)
−0.742313 + 0.670054i \(0.766271\pi\)
\(128\) 3.26131 10.8335i 0.288262 0.957552i
\(129\) 0 0
\(130\) 0 0
\(131\) 6.45101i 0.563627i −0.959469 0.281814i \(-0.909064\pi\)
0.959469 0.281814i \(-0.0909360\pi\)
\(132\) 0 0
\(133\) 15.4741i 1.34177i
\(134\) −14.3468 12.4561i −1.23938 1.07604i
\(135\) 0 0
\(136\) 15.6847 + 10.1447i 1.34495 + 0.869904i
\(137\) 6.60421i 0.564235i −0.959380 0.282118i \(-0.908963\pi\)
0.959380 0.282118i \(-0.0910369\pi\)
\(138\) 0 0
\(139\) 12.0000 1.01783 0.508913 0.860818i \(-0.330047\pi\)
0.508913 + 0.860818i \(0.330047\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 2.62238 + 2.27678i 0.220066 + 0.191063i
\(143\) −6.14441 −0.513821
\(144\) 0 0
\(145\) 0 0
\(146\) −15.5747 13.5221i −1.28897 1.11910i
\(147\) 0 0
\(148\) 0.736303 0.104402i 0.0605238 0.00858181i
\(149\) 15.5747 1.27593 0.637963 0.770067i \(-0.279777\pi\)
0.637963 + 0.770067i \(0.279777\pi\)
\(150\) 0 0
\(151\) 10.6323i 0.865243i 0.901576 + 0.432622i \(0.142411\pi\)
−0.901576 + 0.432622i \(0.857589\pi\)
\(152\) 7.86962 12.1671i 0.638310 0.986884i
\(153\) 0 0
\(154\) −11.6847 10.1447i −0.941577 0.817486i
\(155\) 0 0
\(156\) 0 0
\(157\) 9.06134i 0.723174i −0.932338 0.361587i \(-0.882235\pi\)
0.932338 0.361587i \(-0.117765\pi\)
\(158\) −13.0776 + 15.0627i −1.04040 + 1.19833i
\(159\) 0 0
\(160\) 0 0
\(161\) 20.1472i 1.58782i
\(162\) 0 0
\(163\) 10.4895 0.821604 0.410802 0.911725i \(-0.365249\pi\)
0.410802 + 0.911725i \(0.365249\pi\)
\(164\) −11.5464 + 1.63719i −0.901623 + 0.127843i
\(165\) 0 0
\(166\) 5.36932 6.18435i 0.416740 0.479999i
\(167\) −4.79741 −0.371235 −0.185617 0.982622i \(-0.559429\pi\)
−0.185617 + 0.982622i \(0.559429\pi\)
\(168\) 0 0
\(169\) 10.1231 0.778700
\(170\) 0 0
\(171\) 0 0
\(172\) 1.47261 + 10.3857i 0.112285 + 0.791898i
\(173\) −3.33513 −0.253565 −0.126783 0.991931i \(-0.540465\pi\)
−0.126783 + 0.991931i \(0.540465\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −4.02825 13.9192i −0.303641 1.04920i
\(177\) 0 0
\(178\) −9.50117 + 10.9434i −0.712143 + 0.820243i
\(179\) 20.9413i 1.56523i 0.622506 + 0.782615i \(0.286114\pi\)
−0.622506 + 0.782615i \(0.713886\pi\)
\(180\) 0 0
\(181\) 6.18435i 0.459679i 0.973229 + 0.229840i \(0.0738202\pi\)
−0.973229 + 0.229840i \(0.926180\pi\)
\(182\) −5.47091 4.74990i −0.405531 0.352086i
\(183\) 0 0
\(184\) 10.2462 15.8415i 0.755361 1.16785i
\(185\) 0 0
\(186\) 0 0
\(187\) 23.9243 1.74952
\(188\) 0.147647 + 1.04129i 0.0107683 + 0.0759439i
\(189\) 0 0
\(190\) 0 0
\(191\) 17.4920 1.26568 0.632838 0.774284i \(-0.281890\pi\)
0.632838 + 0.774284i \(0.281890\pi\)
\(192\) 0 0
\(193\) −15.7343 −1.13258 −0.566290 0.824206i \(-0.691622\pi\)
−0.566290 + 0.824206i \(0.691622\pi\)
\(194\) −9.97383 8.65938i −0.716079 0.621707i
\(195\) 0 0
\(196\) −0.596118 4.20416i −0.0425799 0.300297i
\(197\) 24.6929 1.75930 0.879649 0.475623i \(-0.157777\pi\)
0.879649 + 0.475623i \(0.157777\pi\)
\(198\) 0 0
\(199\) 10.6323i 0.753703i −0.926274 0.376851i \(-0.877007\pi\)
0.926274 0.376851i \(-0.122993\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 4.66988 + 4.05444i 0.328571 + 0.285269i
\(203\) 20.6256i 1.44764i
\(204\) 0 0
\(205\) 0 0
\(206\) −7.71175 + 8.88236i −0.537303 + 0.618863i
\(207\) 0 0
\(208\) −1.88608 6.51713i −0.130776 0.451882i
\(209\) 18.5589i 1.28374i
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 2.80928 + 19.8126i 0.192942 + 1.36074i
\(213\) 0 0
\(214\) −6.87689 + 7.92077i −0.470095 + 0.541453i
\(215\) 0 0
\(216\) 0 0
\(217\) −5.24477 −0.356038
\(218\) −8.95369 + 10.3128i −0.606420 + 0.698472i
\(219\) 0 0
\(220\) 0 0
\(221\) 11.2017 0.753505
\(222\) 0 0
\(223\) 28.6714i 1.91998i 0.280040 + 0.959988i \(0.409652\pi\)
−0.280040 + 0.959988i \(0.590348\pi\)
\(224\) 7.17341 15.5075i 0.479294 1.03614i
\(225\) 0 0
\(226\) 0.753789 0.868210i 0.0501413 0.0577525i
\(227\) 13.2084i 0.876673i −0.898811 0.438337i \(-0.855568\pi\)
0.898811 0.438337i \(-0.144432\pi\)
\(228\) 0 0
\(229\) 22.0259i 1.45551i 0.685836 + 0.727756i \(0.259437\pi\)
−0.685836 + 0.727756i \(0.740563\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −10.4895 + 16.2177i −0.688672 + 1.06475i
\(233\) 21.4386i 1.40449i −0.711934 0.702246i \(-0.752181\pi\)
0.711934 0.702246i \(-0.247819\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 9.62908 1.36533i 0.626800 0.0888755i
\(237\) 0 0
\(238\) 21.3019 + 18.4945i 1.38080 + 1.19882i
\(239\) 4.91134 0.317688 0.158844 0.987304i \(-0.449223\pi\)
0.158844 + 0.987304i \(0.449223\pi\)
\(240\) 0 0
\(241\) −4.00000 −0.257663 −0.128831 0.991667i \(-0.541123\pi\)
−0.128831 + 0.991667i \(0.541123\pi\)
\(242\) −2.26724 1.96844i −0.145744 0.126536i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 8.68951i 0.552900i
\(248\) −4.12391 2.66732i −0.261869 0.169375i
\(249\) 0 0
\(250\) 0 0
\(251\) 9.27944i 0.585713i −0.956156 0.292856i \(-0.905394\pi\)
0.956156 0.292856i \(-0.0946058\pi\)
\(252\) 0 0
\(253\) 24.1636i 1.51915i
\(254\) −14.0021 + 16.1275i −0.878569 + 1.01193i
\(255\) 0 0
\(256\) 13.5270 8.54521i 0.845437 0.534076i
\(257\) 12.3954i 0.773204i 0.922247 + 0.386602i \(0.126351\pi\)
−0.922247 + 0.386602i \(0.873649\pi\)
\(258\) 0 0
\(259\) 1.12311 0.0697864
\(260\) 0 0
\(261\) 0 0
\(262\) 5.98107 6.88897i 0.369512 0.425602i
\(263\) −12.2888 −0.757761 −0.378881 0.925446i \(-0.623691\pi\)
−0.378881 + 0.925446i \(0.623691\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 14.3468 16.5246i 0.879660 1.01319i
\(267\) 0 0
\(268\) −3.77216 26.6034i −0.230421 1.62506i
\(269\) 1.91733 0.116902 0.0584508 0.998290i \(-0.481384\pi\)
0.0584508 + 0.998290i \(0.481384\pi\)
\(270\) 0 0
\(271\) 26.4738i 1.60817i −0.594514 0.804085i \(-0.702656\pi\)
0.594514 0.804085i \(-0.297344\pi\)
\(272\) 7.34376 + 25.3755i 0.445281 + 1.53862i
\(273\) 0 0
\(274\) 6.12311 7.05256i 0.369910 0.426061i
\(275\) 0 0
\(276\) 0 0
\(277\) 11.8730i 0.713379i 0.934223 + 0.356689i \(0.116095\pi\)
−0.934223 + 0.356689i \(0.883905\pi\)
\(278\) 12.8147 + 11.1258i 0.768573 + 0.667283i
\(279\) 0 0
\(280\) 0 0
\(281\) 8.65938i 0.516575i 0.966068 + 0.258288i \(0.0831582\pi\)
−0.966068 + 0.258288i \(0.916842\pi\)
\(282\) 0 0
\(283\) 15.7343 0.935307 0.467654 0.883912i \(-0.345100\pi\)
0.467654 + 0.883912i \(0.345100\pi\)
\(284\) 0.689494 + 4.86270i 0.0409139 + 0.288548i
\(285\) 0 0
\(286\) −6.56155 5.69681i −0.387993 0.336859i
\(287\) −17.6121 −1.03961
\(288\) 0 0
\(289\) −26.6155 −1.56562
\(290\) 0 0
\(291\) 0 0
\(292\) −4.09499 28.8802i −0.239641 1.69008i
\(293\) 16.9710 0.991454 0.495727 0.868478i \(-0.334902\pi\)
0.495727 + 0.868478i \(0.334902\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0.883088 + 0.571175i 0.0513284 + 0.0331989i
\(297\) 0 0
\(298\) 16.6320 + 14.4401i 0.963467 + 0.836492i
\(299\) 11.3137i 0.654289i
\(300\) 0 0
\(301\) 15.8415i 0.913091i
\(302\) −9.85775 + 11.3541i −0.567250 + 0.653355i
\(303\) 0 0
\(304\) 19.6847 5.69681i 1.12899 0.326734i
\(305\) 0 0
\(306\) 0 0
\(307\) 18.6795 1.06610 0.533048 0.846085i \(-0.321046\pi\)
0.533048 + 0.846085i \(0.321046\pi\)
\(308\) −3.07221 21.6669i −0.175055 1.23459i
\(309\) 0 0
\(310\) 0 0
\(311\) −22.4033 −1.27038 −0.635188 0.772358i \(-0.719077\pi\)
−0.635188 + 0.772358i \(0.719077\pi\)
\(312\) 0 0
\(313\) 21.6247 1.22230 0.611151 0.791514i \(-0.290707\pi\)
0.611151 + 0.791514i \(0.290707\pi\)
\(314\) 8.40125 9.67651i 0.474110 0.546077i
\(315\) 0 0
\(316\) −27.9309 + 3.96039i −1.57123 + 0.222789i
\(317\) 0.115279 0.00647473 0.00323737 0.999995i \(-0.498970\pi\)
0.00323737 + 0.999995i \(0.498970\pi\)
\(318\) 0 0
\(319\) 24.7374i 1.38503i
\(320\) 0 0
\(321\) 0 0
\(322\) 18.6795 21.5150i 1.04097 1.19898i
\(323\) 33.8340i 1.88258i
\(324\) 0 0
\(325\) 0 0
\(326\) 11.2017 + 9.72540i 0.620403 + 0.538640i
\(327\) 0 0
\(328\) −13.8482 8.95694i −0.764640 0.494564i
\(329\) 1.58831i 0.0875664i
\(330\) 0 0
\(331\) 23.3693 1.28449 0.642247 0.766498i \(-0.278002\pi\)
0.642247 + 0.766498i \(0.278002\pi\)
\(332\) 11.4677 1.62603i 0.629370 0.0892400i
\(333\) 0 0
\(334\) −5.12311 4.44793i −0.280324 0.243380i
\(335\) 0 0
\(336\) 0 0
\(337\) 12.2850 0.669205 0.334602 0.942359i \(-0.391398\pi\)
0.334602 + 0.942359i \(0.391398\pi\)
\(338\) 10.8104 + 9.38566i 0.588006 + 0.510513i
\(339\) 0 0
\(340\) 0 0
\(341\) −6.29033 −0.340640
\(342\) 0 0
\(343\) 14.7304i 0.795367i
\(344\) −8.05650 + 12.4561i −0.434377 + 0.671586i
\(345\) 0 0
\(346\) −3.56155 3.09218i −0.191470 0.166236i
\(347\) 5.79119i 0.310887i 0.987845 + 0.155444i \(0.0496807\pi\)
−0.987845 + 0.155444i \(0.950319\pi\)
\(348\) 0 0
\(349\) 6.94568i 0.371794i −0.982569 0.185897i \(-0.940481\pi\)
0.982569 0.185897i \(-0.0595190\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 8.60345 18.5989i 0.458566 0.991326i
\(353\) 33.0210i 1.75753i −0.477253 0.878766i \(-0.658367\pi\)
0.477253 0.878766i \(-0.341633\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −20.2924 + 2.87731i −1.07550 + 0.152497i
\(357\) 0 0
\(358\) −19.4158 + 22.3630i −1.02616 + 1.18192i
\(359\) 19.9477 1.05280 0.526399 0.850238i \(-0.323542\pi\)
0.526399 + 0.850238i \(0.323542\pi\)
\(360\) 0 0
\(361\) 7.24621 0.381380
\(362\) −5.73384 + 6.60421i −0.301364 + 0.347109i
\(363\) 0 0
\(364\) −1.43845 10.1447i −0.0753951 0.531729i
\(365\) 0 0
\(366\) 0 0
\(367\) 19.9819i 1.04304i −0.853238 0.521522i \(-0.825364\pi\)
0.853238 0.521522i \(-0.174636\pi\)
\(368\) 25.6294 7.41722i 1.33602 0.386649i
\(369\) 0 0
\(370\) 0 0
\(371\) 30.2208i 1.56898i
\(372\) 0 0
\(373\) 5.66906i 0.293533i −0.989171 0.146766i \(-0.953113\pi\)
0.989171 0.146766i \(-0.0468866\pi\)
\(374\) 25.5485 + 22.1815i 1.32108 + 1.14698i
\(375\) 0 0
\(376\) −0.807764 + 1.24887i −0.0416573 + 0.0644058i
\(377\) 11.5824i 0.596523i
\(378\) 0 0
\(379\) −16.4924 −0.847159 −0.423579 0.905859i \(-0.639227\pi\)
−0.423579 + 0.905859i \(0.639227\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 18.6795 + 16.2177i 0.955727 + 0.829772i
\(383\) 14.6875 0.750498 0.375249 0.926924i \(-0.377557\pi\)
0.375249 + 0.926924i \(0.377557\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −16.8025 14.5881i −0.855224 0.742515i
\(387\) 0 0
\(388\) −2.62238 18.4945i −0.133131 0.938917i
\(389\) −13.1190 −0.665159 −0.332580 0.943075i \(-0.607919\pi\)
−0.332580 + 0.943075i \(0.607919\pi\)
\(390\) 0 0
\(391\) 44.0518i 2.22779i
\(392\) 3.26131 5.04227i 0.164721 0.254673i
\(393\) 0 0
\(394\) 26.3693 + 22.8941i 1.32847 + 1.15339i
\(395\) 0 0
\(396\) 0 0
\(397\) 33.2249i 1.66751i −0.552134 0.833756i \(-0.686186\pi\)
0.552134 0.833756i \(-0.313814\pi\)
\(398\) 9.85775 11.3541i 0.494124 0.569130i
\(399\) 0 0
\(400\) 0 0
\(401\) 34.4634i 1.72102i 0.509433 + 0.860510i \(0.329855\pi\)
−0.509433 + 0.860510i \(0.670145\pi\)
\(402\) 0 0
\(403\) −2.94521 −0.146712
\(404\) 1.22783 + 8.65938i 0.0610870 + 0.430820i
\(405\) 0 0
\(406\) −19.1231 + 22.0259i −0.949064 + 1.09313i
\(407\) 1.34700 0.0667683
\(408\) 0 0
\(409\) 5.12311 0.253321 0.126661 0.991946i \(-0.459574\pi\)
0.126661 + 0.991946i \(0.459574\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −16.4706 + 2.33541i −0.811448 + 0.115057i
\(413\) 14.6875 0.722726
\(414\) 0 0
\(415\) 0 0
\(416\) 4.02825 8.70826i 0.197501 0.426958i
\(417\) 0 0
\(418\) 17.2069 19.8188i 0.841617 0.969371i
\(419\) 8.38752i 0.409757i −0.978787 0.204878i \(-0.934320\pi\)
0.978787 0.204878i \(-0.0656799\pi\)
\(420\) 0 0
\(421\) 15.0802i 0.734965i −0.930030 0.367482i \(-0.880220\pi\)
0.930030 0.367482i \(-0.119780\pi\)
\(422\) 4.27156 + 3.70861i 0.207936 + 0.180532i
\(423\) 0 0
\(424\) −15.3693 + 23.7623i −0.746400 + 1.15400i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −14.6875 + 2.08258i −0.709948 + 0.100665i
\(429\) 0 0
\(430\) 0 0
\(431\) 19.9477 0.960845 0.480422 0.877037i \(-0.340483\pi\)
0.480422 + 0.877037i \(0.340483\pi\)
\(432\) 0 0
\(433\) −10.4895 −0.504095 −0.252047 0.967715i \(-0.581104\pi\)
−0.252047 + 0.967715i \(0.581104\pi\)
\(434\) −5.60083 4.86270i −0.268849 0.233417i
\(435\) 0 0
\(436\) −19.1231 + 2.71151i −0.915831 + 0.129858i
\(437\) 34.1725 1.63469
\(438\) 0 0
\(439\) 23.0010i 1.09778i −0.835895 0.548889i \(-0.815051\pi\)
0.835895 0.548889i \(-0.184949\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 11.9621 + 10.3857i 0.568981 + 0.493995i
\(443\) 1.62603i 0.0772550i 0.999254 + 0.0386275i \(0.0122986\pi\)
−0.999254 + 0.0386275i \(0.987701\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −26.5827 + 30.6179i −1.25873 + 1.44980i
\(447\) 0 0
\(448\) 22.0382 9.90941i 1.04121 0.468176i
\(449\) 9.89949i 0.467186i 0.972334 + 0.233593i \(0.0750483\pi\)
−0.972334 + 0.233593i \(0.924952\pi\)
\(450\) 0 0
\(451\) −21.1231 −0.994648
\(452\) 1.60993 0.228275i 0.0757246 0.0107372i
\(453\) 0 0
\(454\) 12.2462 14.1051i 0.574743 0.661986i
\(455\) 0 0
\(456\) 0 0
\(457\) −19.8293 −0.927575 −0.463788 0.885946i \(-0.653510\pi\)
−0.463788 + 0.885946i \(0.653510\pi\)
\(458\) −20.4214 + 23.5212i −0.954228 + 1.09907i
\(459\) 0 0
\(460\) 0 0
\(461\) −15.5747 −0.725384 −0.362692 0.931909i \(-0.618142\pi\)
−0.362692 + 0.931909i \(0.618142\pi\)
\(462\) 0 0
\(463\) 17.7509i 0.824952i −0.910968 0.412476i \(-0.864664\pi\)
0.910968 0.412476i \(-0.135336\pi\)
\(464\) −26.2380 + 7.59336i −1.21807 + 0.352513i
\(465\) 0 0
\(466\) 19.8769 22.8941i 0.920779 1.06055i
\(467\) 28.0429i 1.29767i 0.760930 + 0.648834i \(0.224743\pi\)
−0.760930 + 0.648834i \(0.775257\pi\)
\(468\) 0 0
\(469\) 40.5790i 1.87376i
\(470\) 0 0
\(471\) 0 0
\(472\) 11.5487 + 7.46960i 0.531570 + 0.343816i
\(473\) 18.9996i 0.873603i
\(474\) 0 0
\(475\) 0 0
\(476\) 5.60083 + 39.5002i 0.256714 + 1.81049i
\(477\) 0 0
\(478\) 5.24477 + 4.55356i 0.239890 + 0.208275i
\(479\) −37.4396 −1.71066 −0.855331 0.518083i \(-0.826646\pi\)
−0.855331 + 0.518083i \(0.826646\pi\)
\(480\) 0 0
\(481\) 0.630683 0.0287567
\(482\) −4.27156 3.70861i −0.194564 0.168923i
\(483\) 0 0
\(484\) −0.596118 4.20416i −0.0270963 0.191098i
\(485\) 0 0
\(486\) 0 0
\(487\) 4.50778i 0.204267i 0.994771 + 0.102134i \(0.0325669\pi\)
−0.994771 + 0.102134i \(0.967433\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 10.5196i 0.474741i −0.971419 0.237370i \(-0.923714\pi\)
0.971419 0.237370i \(-0.0762855\pi\)
\(492\) 0 0
\(493\) 45.0979i 2.03111i
\(494\) 8.05650 9.27944i 0.362479 0.417502i
\(495\) 0 0
\(496\) −1.93087 6.67190i −0.0866986 0.299577i
\(497\) 7.41722i 0.332708i
\(498\) 0 0
\(499\) −25.1231 −1.12466 −0.562332 0.826911i \(-0.690096\pi\)
−0.562332 + 0.826911i \(0.690096\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 8.60345 9.90941i 0.383991 0.442279i
\(503\) −16.5604 −0.738391 −0.369195 0.929352i \(-0.620367\pi\)
−0.369195 + 0.929352i \(0.620367\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 22.4033 25.8040i 0.995949 1.14713i
\(507\) 0 0
\(508\) −29.9054 + 4.24035i −1.32684 + 0.188135i
\(509\) −4.37300 −0.193830 −0.0969148 0.995293i \(-0.530897\pi\)
−0.0969148 + 0.995293i \(0.530897\pi\)
\(510\) 0 0
\(511\) 44.0518i 1.94874i
\(512\) 22.3680 + 3.41624i 0.988537 + 0.150978i
\(513\) 0 0
\(514\) −11.4924 + 13.2369i −0.506909 + 0.583855i
\(515\) 0 0
\(516\) 0 0
\(517\) 1.90495i 0.0837794i
\(518\) 1.19935 + 1.04129i 0.0526965 + 0.0457517i
\(519\) 0 0
\(520\) 0 0
\(521\) 14.3162i 0.627206i −0.949554 0.313603i \(-0.898464\pi\)
0.949554 0.313603i \(-0.101536\pi\)
\(522\) 0 0
\(523\) 18.6795 0.816798 0.408399 0.912803i \(-0.366087\pi\)
0.408399 + 0.912803i \(0.366087\pi\)
\(524\) 12.7742 1.81129i 0.558045 0.0791266i
\(525\) 0 0
\(526\) −13.1231 11.3936i −0.572195 0.496785i
\(527\) 11.4677 0.499540
\(528\) 0 0
\(529\) 21.4924 0.934453
\(530\) 0 0
\(531\) 0 0
\(532\) 30.6417 4.34475i 1.32848 0.188369i
\(533\) −9.89012 −0.428389
\(534\) 0 0
\(535\) 0 0
\(536\) 20.6372 31.9069i 0.891389 1.37817i
\(537\) 0 0
\(538\) 2.04750 + 1.77766i 0.0882738 + 0.0766402i
\(539\) 7.69113i 0.331280i
\(540\) 0 0
\(541\) 37.8674i 1.62805i −0.580831 0.814024i \(-0.697272\pi\)
0.580831 0.814024i \(-0.302728\pi\)
\(542\) 24.5453 28.2711i 1.05431 1.21435i
\(543\) 0 0
\(544\) −15.6847 + 33.9071i −0.672474 + 1.45375i
\(545\) 0 0
\(546\) 0 0
\(547\) 32.1143 1.37311 0.686553 0.727079i \(-0.259123\pi\)
0.686553 + 0.727079i \(0.259123\pi\)
\(548\) 13.0776 1.85431i 0.558647 0.0792120i
\(549\) 0 0
\(550\) 0 0
\(551\) −34.9840 −1.49037
\(552\) 0 0
\(553\) −42.6038 −1.81170
\(554\) −11.0081 + 12.6790i −0.467688 + 0.538681i
\(555\) 0 0
\(556\) 3.36932 + 23.7623i 0.142891 + 1.00775i
\(557\) −9.18425 −0.389149 −0.194575 0.980888i \(-0.562333\pi\)
−0.194575 + 0.980888i \(0.562333\pi\)
\(558\) 0 0
\(559\) 8.89586i 0.376255i
\(560\) 0 0
\(561\) 0 0
\(562\) −8.02857 + 9.24726i −0.338665 + 0.390072i
\(563\) 5.79119i 0.244070i 0.992526 + 0.122035i \(0.0389419\pi\)
−0.992526 + 0.122035i \(0.961058\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 16.8025 + 14.5881i 0.706262 + 0.613183i
\(567\) 0 0
\(568\) −3.77216 + 5.83209i −0.158276 + 0.244709i
\(569\) 6.72287i 0.281837i 0.990021 + 0.140919i \(0.0450056\pi\)
−0.990021 + 0.140919i \(0.954994\pi\)
\(570\) 0 0
\(571\) −23.8617 −0.998583 −0.499291 0.866434i \(-0.666406\pi\)
−0.499291 + 0.866434i \(0.666406\pi\)
\(572\) −1.72521 12.1671i −0.0721345 0.508733i
\(573\) 0 0
\(574\) −18.8078 16.3291i −0.785021 0.681563i
\(575\) 0 0
\(576\) 0 0
\(577\) 5.24477 0.218342 0.109171 0.994023i \(-0.465180\pi\)
0.109171 + 0.994023i \(0.465180\pi\)
\(578\) −28.4224 24.6767i −1.18222 1.02641i
\(579\) 0 0
\(580\) 0 0
\(581\) 17.4920 0.725690
\(582\) 0 0
\(583\) 36.2454i 1.50113i
\(584\) 22.4033 34.6375i 0.927056 1.43331i
\(585\) 0 0
\(586\) 18.1231 + 15.7347i 0.748659 + 0.649993i
\(587\) 7.41722i 0.306141i −0.988215 0.153071i \(-0.951084\pi\)
0.988215 0.153071i \(-0.0489162\pi\)
\(588\) 0 0
\(589\) 8.89586i 0.366548i
\(590\) 0 0
\(591\) 0 0
\(592\) 0.413473 + 1.42871i 0.0169936 + 0.0587196i
\(593\) 23.9778i 0.984649i 0.870412 + 0.492325i \(0.163853\pi\)
−0.870412 + 0.492325i \(0.836147\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 4.37300 + 30.8408i 0.179125 + 1.26329i
\(597\) 0 0
\(598\) 10.4895 12.0818i 0.428949 0.494061i
\(599\) −29.7703 −1.21638 −0.608191 0.793790i \(-0.708105\pi\)
−0.608191 + 0.793790i \(0.708105\pi\)
\(600\) 0 0
\(601\) 1.36932 0.0558556 0.0279278 0.999610i \(-0.491109\pi\)
0.0279278 + 0.999610i \(0.491109\pi\)
\(602\) −14.6875 + 16.9170i −0.598619 + 0.689486i
\(603\) 0 0
\(604\) −21.0540 + 2.98529i −0.856674 + 0.121470i
\(605\) 0 0
\(606\) 0 0
\(607\) 43.4018i 1.76162i 0.473467 + 0.880812i \(0.343002\pi\)
−0.473467 + 0.880812i \(0.656998\pi\)
\(608\) 26.3029 + 12.1671i 1.06672 + 0.493442i
\(609\) 0 0
\(610\) 0 0
\(611\) 0.891921i 0.0360832i
\(612\) 0 0
\(613\) 22.6305i 0.914036i 0.889457 + 0.457018i \(0.151083\pi\)
−0.889457 + 0.457018i \(0.848917\pi\)
\(614\) 19.9477 + 17.3188i 0.805022 + 0.698928i
\(615\) 0 0
\(616\) 16.8078 25.9863i 0.677204 1.04702i
\(617\) 12.3954i 0.499020i −0.968372 0.249510i \(-0.919730\pi\)
0.968372 0.249510i \(-0.0802695\pi\)
\(618\) 0 0
\(619\) 30.7386 1.23549 0.617745 0.786378i \(-0.288046\pi\)
0.617745 + 0.786378i \(0.288046\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −23.9243 20.7713i −0.959276 0.832853i
\(623\) −30.9526 −1.24009
\(624\) 0 0
\(625\) 0 0
\(626\) 23.0928 + 20.0494i 0.922975 + 0.801336i
\(627\) 0 0
\(628\) 17.9432 2.54421i 0.716012 0.101525i
\(629\) −2.45567 −0.0979139
\(630\) 0 0
\(631\) 10.6323i 0.423265i 0.977349 + 0.211632i \(0.0678779\pi\)
−0.977349 + 0.211632i \(0.932122\pi\)
\(632\) −33.4990 21.6669i −1.33252 0.861864i
\(633\) 0 0
\(634\) 0.123106 + 0.106882i 0.00488915 + 0.00424481i
\(635\) 0 0
\(636\) 0 0
\(637\) 3.60109i 0.142680i
\(638\) −22.9354 + 26.4168i −0.908019 + 1.04585i
\(639\) 0 0
\(640\) 0 0
\(641\) 7.07107i 0.279290i −0.990202 0.139645i \(-0.955404\pi\)
0.990202 0.139645i \(-0.0445962\pi\)
\(642\) 0 0
\(643\) 37.3590 1.47330 0.736648 0.676276i \(-0.236407\pi\)
0.736648 + 0.676276i \(0.236407\pi\)
\(644\) 39.8953 5.65685i 1.57210 0.222911i
\(645\) 0 0
\(646\) −31.3693 + 36.1310i −1.23421 + 1.42156i
\(647\) 4.27156 0.167932 0.0839661 0.996469i \(-0.473241\pi\)
0.0839661 + 0.996469i \(0.473241\pi\)
\(648\) 0 0
\(649\) 17.6155 0.691470
\(650\) 0 0
\(651\) 0 0
\(652\) 2.94521 + 20.7713i 0.115343 + 0.813467i
\(653\) 10.5312 0.412120 0.206060 0.978539i \(-0.433936\pi\)
0.206060 + 0.978539i \(0.433936\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −6.48392 22.4044i −0.253155 0.874746i
\(657\) 0 0
\(658\) −1.47261 + 1.69614i −0.0574082 + 0.0661225i
\(659\) 27.4901i 1.07086i 0.844579 + 0.535431i \(0.179851\pi\)
−0.844579 + 0.535431i \(0.820149\pi\)
\(660\) 0 0
\(661\) 33.6333i 1.30818i 0.756416 + 0.654091i \(0.226949\pi\)
−0.756416 + 0.654091i \(0.773051\pi\)
\(662\) 24.9559 + 21.6669i 0.969937 + 0.842109i
\(663\) 0 0
\(664\) 13.7538 + 8.89586i 0.533751 + 0.345226i
\(665\) 0 0
\(666\) 0 0
\(667\) −45.5490 −1.76366
\(668\) −1.34700 9.49980i −0.0521170 0.367558i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(674\) 13.1190 + 11.3900i 0.505325 + 0.438728i
\(675\) 0 0
\(676\) 2.84233 + 20.0457i 0.109320 + 0.770989i
\(677\) −44.7037 −1.71810 −0.859052 0.511889i \(-0.828946\pi\)
−0.859052 + 0.511889i \(0.828946\pi\)
\(678\) 0 0
\(679\) 28.2102i 1.08261i
\(680\) 0 0
\(681\) 0 0
\(682\) −6.71737 5.83209i −0.257222 0.223322i
\(683\) 32.2080i 1.23241i −0.787588 0.616203i \(-0.788670\pi\)
0.787588 0.616203i \(-0.211330\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −13.6573 + 15.7304i −0.521439 + 0.600591i
\(687\) 0 0
\(688\) −20.1521 + 5.83209i −0.768292 + 0.222346i
\(689\) 16.9706i 0.646527i
\(690\) 0 0
\(691\) −14.8769 −0.565944 −0.282972 0.959128i \(-0.591320\pi\)
−0.282972 + 0.959128i \(0.591320\pi\)
\(692\) −0.936426 6.60421i −0.0355976 0.251054i
\(693\) 0 0
\(694\) −5.36932 + 6.18435i −0.203816 + 0.234755i
\(695\) 0 0
\(696\) 0 0
\(697\) 38.5088 1.45862
\(698\) 6.43971 7.41722i 0.243746 0.280746i
\(699\) 0 0
\(700\) 0 0
\(701\) −9.28434 −0.350665 −0.175332 0.984509i \(-0.556100\pi\)
−0.175332 + 0.984509i \(0.556100\pi\)
\(702\) 0 0
\(703\) 1.90495i 0.0718464i
\(704\) 26.4316 11.8849i 0.996178 0.447928i
\(705\) 0 0
\(706\) 30.6155 35.2628i 1.15223 1.32713i
\(707\) 13.2084i 0.496753i
\(708\) 0 0
\(709\) 15.0802i 0.566349i 0.959068 + 0.283175i \(0.0913876\pi\)
−0.959068 + 0.283175i \(0.908612\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −24.3378 15.7415i −0.912096 0.589938i
\(713\) 11.5824i 0.433764i
\(714\) 0 0
\(715\) 0 0
\(716\) −41.4679 + 5.87983i −1.54973 + 0.219740i
\(717\) 0 0
\(718\) 21.3019 + 18.4945i 0.794980 + 0.690209i
\(719\) −47.2623 −1.76259 −0.881294 0.472569i \(-0.843327\pi\)
−0.881294 + 0.472569i \(0.843327\pi\)
\(720\) 0 0
\(721\) −25.1231 −0.935633
\(722\) 7.73815 + 6.71834i 0.287984 + 0.250031i
\(723\) 0 0
\(724\) −12.2462 + 1.73642i −0.455127 + 0.0645335i
\(725\) 0 0
\(726\) 0 0
\(727\) 5.66906i 0.210254i −0.994459 0.105127i \(-0.966475\pi\)
0.994459 0.105127i \(-0.0335249\pi\)
\(728\) 7.86962 12.1671i 0.291667 0.450943i
\(729\) 0 0
\(730\) 0 0
\(731\) 34.6375i 1.28111i
\(732\) 0 0
\(733\) 23.9548i 0.884790i 0.896820 + 0.442395i \(0.145871\pi\)
−0.896820 + 0.442395i \(0.854129\pi\)
\(734\) 18.5262 21.3384i 0.683816 0.787615i
\(735\) 0 0
\(736\) 34.2462 + 15.8415i 1.26233 + 0.583927i
\(737\) 48.6685i 1.79273i
\(738\) 0 0
\(739\) 5.61553 0.206571 0.103285 0.994652i \(-0.467065\pi\)
0.103285 + 0.994652i \(0.467065\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −28.0193 + 32.2725i −1.02862 + 1.18476i
\(743\) 14.6875 0.538833 0.269417 0.963024i \(-0.413169\pi\)
0.269417 + 0.963024i \(0.413169\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 5.25608 6.05393i 0.192439 0.221650i
\(747\) 0 0
\(748\) 6.71737 + 47.3747i 0.245611 + 1.73219i
\(749\) −22.4033 −0.818600
\(750\) 0 0
\(751\) 8.68210i 0.316814i 0.987374 + 0.158407i \(0.0506359\pi\)
−0.987374 + 0.158407i \(0.949364\pi\)
\(752\) −2.02050 + 0.584739i −0.0736800 + 0.0213233i
\(753\) 0 0
\(754\) −10.7386 + 12.3687i −0.391078 + 0.450442i
\(755\) 0 0
\(756\) 0 0
\(757\) 1.69614i 0.0616473i −0.999525 0.0308236i \(-0.990187\pi\)
0.999525 0.0308236i \(-0.00981303\pi\)
\(758\) −17.6121 15.2910i −0.639700 0.555394i
\(759\) 0 0
\(760\) 0 0
\(761\) 32.3314i 1.17201i −0.810307 0.586006i \(-0.800700\pi\)
0.810307 0.586006i \(-0.199300\pi\)
\(762\) 0 0
\(763\) −29.1690 −1.05599
\(764\) 4.91134 + 34.6375i 0.177686 + 1.25314i
\(765\) 0 0
\(766\) 15.6847 + 13.6176i 0.566710 + 0.492023i
\(767\) 8.24782 0.297812
\(768\) 0 0
\(769\) 15.6155 0.563110 0.281555 0.959545i \(-0.409150\pi\)
0.281555 + 0.959545i \(0.409150\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −4.41782 31.1570i −0.159001 1.12136i
\(773\) 16.1498 0.580868 0.290434 0.956895i \(-0.406200\pi\)
0.290434 + 0.956895i \(0.406200\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 14.3468 22.1815i 0.515021 0.796268i
\(777\) 0 0
\(778\) −14.0096 12.1633i −0.502270 0.436076i
\(779\) 29.8726i 1.07030i
\(780\) 0 0
\(781\) 8.89586i 0.318319i
\(782\) −40.8427 + 47.0425i −1.46053 + 1.68223i
\(783\) 0 0
\(784\) 8.15767 2.36086i 0.291345 0.0843163i
\(785\) 0 0
\(786\) 0 0
\(787\) −8.18998 −0.291941 −0.145971 0.989289i \(-0.546631\pi\)
−0.145971 + 0.989289i \(0.546631\pi\)
\(788\) 6.93319 + 48.8968i 0.246985 + 1.74187i
\(789\) 0 0
\(790\) 0 0
\(791\) 2.45567 0.0873135
\(792\) 0 0
\(793\) 0 0
\(794\) 30.8046 35.4806i 1.09321 1.25916i
\(795\) 0 0
\(796\) 21.0540 2.98529i 0.746238 0.105811i
\(797\) −24.1671 −0.856042 −0.428021 0.903769i \(-0.640789\pi\)
−0.428021 + 0.903769i \(0.640789\pi\)
\(798\) 0 0
\(799\) 3.47284i 0.122860i
\(800\) 0 0
\(801\) 0 0
\(802\) −31.9528 + 36.8031i −1.12829 + 1.29956i
\(803\) 52.8336i 1.86446i
\(804\) 0 0
\(805\) 0 0
\(806\) −3.14516 2.73066i −0.110784 0.0961835i
\(807\) 0 0
\(808\) −6.71737 + 10.3857i −0.236316 + 0.365366i
\(809\) 37.6400i 1.32335i −0.749789 0.661677i \(-0.769845\pi\)
0.749789 0.661677i \(-0.230155\pi\)
\(810\) 0 0
\(811\) 49.4773 1.73738 0.868691 0.495354i \(-0.164962\pi\)
0.868691 + 0.495354i \(0.164962\pi\)
\(812\) −40.8427 + 5.79119i −1.43330 + 0.203231i
\(813\) 0 0
\(814\) 1.43845 + 1.24887i 0.0504175 + 0.0437730i
\(815\) 0 0
\(816\) 0 0
\(817\) −26.8695 −0.940045
\(818\) 5.47091 + 4.74990i 0.191286 + 0.166076i
\(819\) 0 0
\(820\) 0 0
\(821\) −37.9780 −1.32544 −0.662720 0.748867i \(-0.730598\pi\)
−0.662720 + 0.748867i \(0.730598\pi\)
\(822\) 0 0
\(823\) 32.0636i 1.11767i −0.829279 0.558834i \(-0.811249\pi\)
0.829279 0.558834i \(-0.188751\pi\)
\(824\) −19.7541 12.7768i −0.688165 0.445101i
\(825\) 0 0
\(826\) 15.6847 + 13.6176i 0.545739 + 0.473816i
\(827\) 4.16516i 0.144837i −0.997374 0.0724184i \(-0.976928\pi\)
0.997374 0.0724184i \(-0.0230717\pi\)
\(828\) 0 0
\(829\) 6.18435i 0.214791i −0.994216 0.107396i \(-0.965749\pi\)
0.994216 0.107396i \(-0.0342512\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 12.3756 5.56466i 0.429047 0.192920i
\(833\) 14.0214i 0.485814i
\(834\) 0 0
\(835\) 0 0
\(836\) 36.7502 5.21089i 1.27103 0.180223i
\(837\) 0 0
\(838\) 7.77651 8.95694i 0.268635 0.309412i
\(839\) 15.0363 0.519111 0.259556 0.965728i \(-0.416424\pi\)
0.259556 + 0.965728i \(0.416424\pi\)
\(840\) 0 0
\(841\) 17.6307 0.607955
\(842\) 13.9817 16.1040i 0.481840 0.554981i
\(843\) 0 0
\(844\) 1.12311 + 7.92077i 0.0386589 + 0.272644i
\(845\) 0 0
\(846\) 0 0
\(847\) 6.41273i 0.220344i
\(848\) −38.4440 + 11.1258i −1.32017 + 0.382063i
\(849\) 0 0
\(850\) 0 0
\(851\) 2.48023i 0.0850213i
\(852\) 0 0
\(853\) 22.3044i 0.763689i 0.924227 + 0.381844i \(0.124711\pi\)
−0.924227 + 0.381844i \(0.875289\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −17.6155 11.3936i −0.602086 0.389426i
\(857\) 10.7694i 0.367875i −0.982938 0.183937i \(-0.941116\pi\)
0.982938 0.183937i \(-0.0588843\pi\)
\(858\) 0 0
\(859\) 50.2462 1.71438 0.857189 0.515001i \(-0.172209\pi\)
0.857189 + 0.515001i \(0.172209\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 21.3019 + 18.4945i 0.725545 + 0.629926i
\(863\) 6.43971 0.219210 0.109605 0.993975i \(-0.465041\pi\)
0.109605 + 0.993975i \(0.465041\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −11.2017 9.72540i −0.380648 0.330482i
\(867\) 0 0
\(868\) −1.47261 10.3857i −0.0499835 0.352512i
\(869\) −51.0970 −1.73335
\(870\) 0 0
\(871\) 22.7872i 0.772116i
\(872\) −22.9354 14.8344i −0.776689 0.502358i
\(873\) 0 0
\(874\) 36.4924 + 31.6831i 1.23437 + 1.07170i
\(875\) 0 0
\(876\) 0 0
\(877\) 0.789443i 0.0266576i 0.999911 + 0.0133288i \(0.00424281\pi\)
−0.999911 + 0.0133288i \(0.995757\pi\)
\(878\) 21.3254 24.5625i 0.719698 0.828945i
\(879\) 0 0
\(880\) 0 0
\(881\) 5.83095i 0.196450i −0.995164 0.0982249i \(-0.968684\pi\)
0.995164 0.0982249i \(-0.0313164\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 3.14516 + 22.1815i 0.105783 + 0.746043i
\(885\) 0 0
\(886\) −1.50758 + 1.73642i −0.0506481 + 0.0583362i
\(887\) 18.1379 0.609012 0.304506 0.952510i \(-0.401509\pi\)
0.304506 + 0.952510i \(0.401509\pi\)
\(888\) 0 0
\(889\) −45.6155 −1.52990
\(890\) 0 0
\(891\) 0 0
\(892\) −56.7748 + 8.05024i −1.90096 + 0.269542i
\(893\) −2.69400 −0.0901513
\(894\) 0 0
\(895\) 0 0
\(896\) 32.7219 + 9.85061i 1.09316 + 0.329086i
\(897\) 0 0
\(898\) −9.17834 + 10.5716i −0.306285 + 0.352778i
\(899\) 11.8574i 0.395468i
\(900\) 0 0
\(901\) 66.0777i 2.20137i
\(902\) −22.5571 19.5843i −0.751071 0.652087i
\(903\) 0 0
\(904\) 1.93087 + 1.24887i 0.0642198 + 0.0415369i
\(905\) 0 0
\(906\) 0 0
\(907\) −32.1143 −1.06634 −0.533168 0.846009i \(-0.678999\pi\)
−0.533168 + 0.846009i \(0.678999\pi\)
\(908\) 26.1552 3.70861i 0.867991 0.123075i
\(909\) 0 0
\(910\) 0 0
\(911\) 12.5807 0.416816 0.208408 0.978042i \(-0.433172\pi\)
0.208408 + 0.978042i \(0.433172\pi\)
\(912\) 0 0
\(913\) 20.9791 0.694306
\(914\) −21.1755 18.3848i −0.700423 0.608114i
\(915\) 0 0
\(916\) −43.6155 + 6.18435i −1.44110 + 0.204337i
\(917\) 19.4849 0.643449
\(918\) 0 0
\(919\) 49.2611i 1.62497i −0.582981 0.812486i \(-0.698114\pi\)
0.582981 0.812486i \(-0.301886\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −16.6320 14.4401i −0.547746 0.475559i
\(923\) 4.16516i 0.137098i
\(924\) 0 0
\(925\) 0 0
\(926\) 16.4577 18.9560i 0.540835 0.622931i
\(927\) 0 0
\(928\) −35.0595 16.2177i −1.15088 0.532373i
\(929\) 8.65938i 0.284105i 0.989859 + 0.142053i \(0.0453702\pi\)
−0.989859 + 0.142053i \(0.954630\pi\)
\(930\) 0 0
\(931\) 10.8769 0.356476
\(932\) 42.4527 6.01947i 1.39058 0.197174i
\(933\) 0 0
\(934\) −26.0000 + 29.9467i −0.850746 + 0.979885i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 37.6229 43.3338i 1.22843 1.41490i
\(939\) 0 0
\(940\) 0 0
\(941\) −4.37300 −0.142556 −0.0712778 0.997457i \(-0.522708\pi\)
−0.0712778 + 0.997457i \(0.522708\pi\)
\(942\) 0 0
\(943\) 38.8940i 1.26656i
\(944\) 5.40724 + 18.6841i 0.175991 + 0.608115i
\(945\) 0 0
\(946\) −17.6155 + 20.2895i −0.572730 + 0.659668i
\(947\) 22.2517i 0.723082i −0.932356 0.361541i \(-0.882251\pi\)
0.932356 0.361541i \(-0.117749\pi\)
\(948\) 0 0
\(949\) 24.7374i 0.803010i
\(950\) 0 0
\(951\) 0 0
\(952\) −30.6417 + 47.3747i −0.993102 + 1.53542i
\(953\) 0.813015i 0.0263361i 0.999913 + 0.0131681i \(0.00419165\pi\)
−0.999913 + 0.0131681i \(0.995808\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 1.37899 + 9.72540i 0.0445997 + 0.314542i
\(957\) 0 0
\(958\) −39.9814 34.7123i −1.29174 1.12150i
\(959\) 19.9477 0.644143
\(960\) 0 0
\(961\) 27.9848 0.902737
\(962\) 0.673500 + 0.584739i 0.0217145 + 0.0188528i
\(963\) 0 0
\(964\) −1.12311 7.92077i −0.0361728 0.255111i
\(965\) 0 0
\(966\) 0 0
\(967\) 23.7917i 0.765091i 0.923937 + 0.382546i \(0.124952\pi\)
−0.923937 + 0.382546i \(0.875048\pi\)
\(968\) 3.26131 5.04227i 0.104822 0.162065i
\(969\) 0 0
\(970\) 0 0
\(971\) 32.6032i 1.04629i 0.852244 + 0.523144i \(0.175241\pi\)
−0.852244 + 0.523144i \(0.824759\pi\)
\(972\) 0 0
\(973\) 36.2454i 1.16197i
\(974\) −4.17940 + 4.81382i −0.133917 + 0.154245i
\(975\) 0 0
\(976\) 0 0
\(977\) 2.43904i 0.0780319i 0.999239 + 0.0390160i \(0.0124223\pi\)
−0.999239 + 0.0390160i \(0.987578\pi\)
\(978\) 0 0
\(979\) −37.1231 −1.18646
\(980\) 0 0
\(981\) 0 0
\(982\) 9.75323 11.2337i 0.311238 0.358482i
\(983\) −12.5841 −0.401371 −0.200685 0.979656i \(-0.564317\pi\)
−0.200685 + 0.979656i \(0.564317\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 41.8126 48.1596i 1.33159 1.53371i
\(987\) 0 0
\(988\) 17.2069 2.43981i 0.547425 0.0776207i
\(989\) −34.9840 −1.11243
\(990\) 0 0
\(991\) 10.6323i 0.337746i −0.985638 0.168873i \(-0.945987\pi\)
0.985638 0.168873i \(-0.0540127\pi\)
\(992\) 4.12391 8.91506i 0.130934 0.283053i
\(993\) 0 0
\(994\) −6.87689 + 7.92077i −0.218122 + 0.251232i
\(995\) 0 0
\(996\) 0 0
\(997\) 32.4813i 1.02869i 0.857583 + 0.514346i \(0.171965\pi\)
−0.857583 + 0.514346i \(0.828035\pi\)
\(998\) −26.8287 23.2930i −0.849248 0.737325i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1800.2.b.g.251.16 16
3.2 odd 2 inner 1800.2.b.g.251.2 16
4.3 odd 2 7200.2.b.i.4751.1 16
5.2 odd 4 360.2.m.c.179.8 yes 16
5.3 odd 4 360.2.m.c.179.10 yes 16
5.4 even 2 inner 1800.2.b.g.251.1 16
8.3 odd 2 inner 1800.2.b.g.251.3 16
8.5 even 2 7200.2.b.i.4751.13 16
12.11 even 2 7200.2.b.i.4751.4 16
15.2 even 4 360.2.m.c.179.9 yes 16
15.8 even 4 360.2.m.c.179.7 yes 16
15.14 odd 2 inner 1800.2.b.g.251.15 16
20.3 even 4 1440.2.m.c.719.13 16
20.7 even 4 1440.2.m.c.719.16 16
20.19 odd 2 7200.2.b.i.4751.14 16
24.5 odd 2 7200.2.b.i.4751.16 16
24.11 even 2 inner 1800.2.b.g.251.13 16
40.3 even 4 360.2.m.c.179.11 yes 16
40.13 odd 4 1440.2.m.c.719.4 16
40.19 odd 2 inner 1800.2.b.g.251.14 16
40.27 even 4 360.2.m.c.179.5 16
40.29 even 2 7200.2.b.i.4751.2 16
40.37 odd 4 1440.2.m.c.719.1 16
60.23 odd 4 1440.2.m.c.719.3 16
60.47 odd 4 1440.2.m.c.719.2 16
60.59 even 2 7200.2.b.i.4751.15 16
120.29 odd 2 7200.2.b.i.4751.3 16
120.53 even 4 1440.2.m.c.719.14 16
120.59 even 2 inner 1800.2.b.g.251.4 16
120.77 even 4 1440.2.m.c.719.15 16
120.83 odd 4 360.2.m.c.179.6 yes 16
120.107 odd 4 360.2.m.c.179.12 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
360.2.m.c.179.5 16 40.27 even 4
360.2.m.c.179.6 yes 16 120.83 odd 4
360.2.m.c.179.7 yes 16 15.8 even 4
360.2.m.c.179.8 yes 16 5.2 odd 4
360.2.m.c.179.9 yes 16 15.2 even 4
360.2.m.c.179.10 yes 16 5.3 odd 4
360.2.m.c.179.11 yes 16 40.3 even 4
360.2.m.c.179.12 yes 16 120.107 odd 4
1440.2.m.c.719.1 16 40.37 odd 4
1440.2.m.c.719.2 16 60.47 odd 4
1440.2.m.c.719.3 16 60.23 odd 4
1440.2.m.c.719.4 16 40.13 odd 4
1440.2.m.c.719.13 16 20.3 even 4
1440.2.m.c.719.14 16 120.53 even 4
1440.2.m.c.719.15 16 120.77 even 4
1440.2.m.c.719.16 16 20.7 even 4
1800.2.b.g.251.1 16 5.4 even 2 inner
1800.2.b.g.251.2 16 3.2 odd 2 inner
1800.2.b.g.251.3 16 8.3 odd 2 inner
1800.2.b.g.251.4 16 120.59 even 2 inner
1800.2.b.g.251.13 16 24.11 even 2 inner
1800.2.b.g.251.14 16 40.19 odd 2 inner
1800.2.b.g.251.15 16 15.14 odd 2 inner
1800.2.b.g.251.16 16 1.1 even 1 trivial
7200.2.b.i.4751.1 16 4.3 odd 2
7200.2.b.i.4751.2 16 40.29 even 2
7200.2.b.i.4751.3 16 120.29 odd 2
7200.2.b.i.4751.4 16 12.11 even 2
7200.2.b.i.4751.13 16 8.5 even 2
7200.2.b.i.4751.14 16 20.19 odd 2
7200.2.b.i.4751.15 16 60.59 even 2
7200.2.b.i.4751.16 16 24.5 odd 2