Properties

Label 1800.2.a.s
Level 1800
Weight 2
Character orbit 1800.a
Self dual Yes
Analytic conductor 14.373
Analytic rank 0
Dimension 1
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 1800.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(14.3730723638\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 2q^{7} + O(q^{10}) \) \( q + 2q^{7} + 4q^{11} + 4q^{13} - 4q^{19} + 2q^{23} - 2q^{29} + 4q^{37} - 2q^{41} - 6q^{43} + 6q^{47} - 3q^{49} + 4q^{53} + 12q^{59} - 10q^{61} + 14q^{67} - 8q^{71} + 8q^{73} + 8q^{77} + 16q^{79} - 2q^{83} - 6q^{89} + 8q^{91} + 16q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 0 0 2.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(5\) \(-1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1800))\):

\( T_{7} - 2 \)
\( T_{11} - 4 \)
\( T_{13} - 4 \)