Properties

Label 1800.2.a.k
Level 1800
Weight 2
Character orbit 1800.a
Self dual yes
Analytic conductor 14.373
Analytic rank 1
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 1800.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(14.3730723638\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{7} + O(q^{10}) \) \( q - q^{7} - 4q^{11} + q^{13} + 4q^{17} + q^{19} - 4q^{23} - 4q^{29} - 5q^{31} + 6q^{37} - 12q^{41} - 5q^{43} + 8q^{47} - 6q^{49} - 12q^{53} - 8q^{59} + 7q^{61} - 13q^{67} - 12q^{71} + 6q^{73} + 4q^{77} + 12q^{79} - 8q^{83} - q^{91} + 13q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 0 0 −1.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1800.2.a.k 1
3.b odd 2 1 1800.2.a.l yes 1
4.b odd 2 1 3600.2.a.y 1
5.b even 2 1 1800.2.a.o yes 1
5.c odd 4 2 1800.2.f.b 2
12.b even 2 1 3600.2.a.w 1
15.d odd 2 1 1800.2.a.p yes 1
15.e even 4 2 1800.2.f.i 2
20.d odd 2 1 3600.2.a.r 1
20.e even 4 2 3600.2.f.s 2
60.h even 2 1 3600.2.a.p 1
60.l odd 4 2 3600.2.f.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1800.2.a.k 1 1.a even 1 1 trivial
1800.2.a.l yes 1 3.b odd 2 1
1800.2.a.o yes 1 5.b even 2 1
1800.2.a.p yes 1 15.d odd 2 1
1800.2.f.b 2 5.c odd 4 2
1800.2.f.i 2 15.e even 4 2
3600.2.a.p 1 60.h even 2 1
3600.2.a.r 1 20.d odd 2 1
3600.2.a.w 1 12.b even 2 1
3600.2.a.y 1 4.b odd 2 1
3600.2.f.d 2 60.l odd 4 2
3600.2.f.s 2 20.e even 4 2

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(5\) \(-1\)

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1800))\):

\( T_{7} + 1 \)
\( T_{11} + 4 \)
\( T_{13} - 1 \)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( \)
$3$ \( \)
$5$ \( \)
$7$ \( 1 + T + 7 T^{2} \)
$11$ \( 1 + 4 T + 11 T^{2} \)
$13$ \( 1 - T + 13 T^{2} \)
$17$ \( 1 - 4 T + 17 T^{2} \)
$19$ \( 1 - T + 19 T^{2} \)
$23$ \( 1 + 4 T + 23 T^{2} \)
$29$ \( 1 + 4 T + 29 T^{2} \)
$31$ \( 1 + 5 T + 31 T^{2} \)
$37$ \( 1 - 6 T + 37 T^{2} \)
$41$ \( 1 + 12 T + 41 T^{2} \)
$43$ \( 1 + 5 T + 43 T^{2} \)
$47$ \( 1 - 8 T + 47 T^{2} \)
$53$ \( 1 + 12 T + 53 T^{2} \)
$59$ \( 1 + 8 T + 59 T^{2} \)
$61$ \( 1 - 7 T + 61 T^{2} \)
$67$ \( 1 + 13 T + 67 T^{2} \)
$71$ \( 1 + 12 T + 71 T^{2} \)
$73$ \( 1 - 6 T + 73 T^{2} \)
$79$ \( 1 - 12 T + 79 T^{2} \)
$83$ \( 1 + 8 T + 83 T^{2} \)
$89$ \( 1 + 89 T^{2} \)
$97$ \( 1 - 13 T + 97 T^{2} \)
show more
show less