# Properties

 Label 1800.2.a.e Level $1800$ Weight $2$ Character orbit 1800.a Self dual yes Analytic conductor $14.373$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1800 = 2^{3} \cdot 3^{2} \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1800.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$14.3730723638$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 600) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

 $$f(q)$$ $$=$$ $$q - 3q^{7} + O(q^{10})$$ $$q - 3q^{7} - 2q^{11} + 3q^{13} + 6q^{17} - 7q^{19} + 6q^{23} + 2q^{29} - 5q^{31} - 10q^{37} - 12q^{41} - 3q^{43} - 10q^{47} + 2q^{49} + 6q^{59} - 13q^{61} - 7q^{67} + 4q^{71} + 6q^{73} + 6q^{77} - 8q^{79} - 6q^{83} - 16q^{89} - 9q^{91} + 7q^{97} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 0 0 0 0 −3.00000 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$5$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1800.2.a.e 1
3.b odd 2 1 600.2.a.b 1
4.b odd 2 1 3600.2.a.bl 1
5.b even 2 1 1800.2.a.t 1
5.c odd 4 2 1800.2.f.e 2
12.b even 2 1 1200.2.a.q 1
15.d odd 2 1 600.2.a.i yes 1
15.e even 4 2 600.2.f.d 2
20.d odd 2 1 3600.2.a.i 1
20.e even 4 2 3600.2.f.o 2
24.f even 2 1 4800.2.a.bd 1
24.h odd 2 1 4800.2.a.bp 1
60.h even 2 1 1200.2.a.b 1
60.l odd 4 2 1200.2.f.c 2
120.i odd 2 1 4800.2.a.bc 1
120.m even 2 1 4800.2.a.bs 1
120.q odd 4 2 4800.2.f.z 2
120.w even 4 2 4800.2.f.k 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
600.2.a.b 1 3.b odd 2 1
600.2.a.i yes 1 15.d odd 2 1
600.2.f.d 2 15.e even 4 2
1200.2.a.b 1 60.h even 2 1
1200.2.a.q 1 12.b even 2 1
1200.2.f.c 2 60.l odd 4 2
1800.2.a.e 1 1.a even 1 1 trivial
1800.2.a.t 1 5.b even 2 1
1800.2.f.e 2 5.c odd 4 2
3600.2.a.i 1 20.d odd 2 1
3600.2.a.bl 1 4.b odd 2 1
3600.2.f.o 2 20.e even 4 2
4800.2.a.bc 1 120.i odd 2 1
4800.2.a.bd 1 24.f even 2 1
4800.2.a.bp 1 24.h odd 2 1
4800.2.a.bs 1 120.m even 2 1
4800.2.f.k 2 120.w even 4 2
4800.2.f.z 2 120.q odd 4 2

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(1800))$$:

 $$T_{7} + 3$$ $$T_{11} + 2$$ $$T_{13} - 3$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T$$
$5$ $$T$$
$7$ $$3 + T$$
$11$ $$2 + T$$
$13$ $$-3 + T$$
$17$ $$-6 + T$$
$19$ $$7 + T$$
$23$ $$-6 + T$$
$29$ $$-2 + T$$
$31$ $$5 + T$$
$37$ $$10 + T$$
$41$ $$12 + T$$
$43$ $$3 + T$$
$47$ $$10 + T$$
$53$ $$T$$
$59$ $$-6 + T$$
$61$ $$13 + T$$
$67$ $$7 + T$$
$71$ $$-4 + T$$
$73$ $$-6 + T$$
$79$ $$8 + T$$
$83$ $$6 + T$$
$89$ $$16 + T$$
$97$ $$-7 + T$$