Defining parameters
Level: | \( N \) | = | \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \) |
Weight: | \( k \) | = | \( 1 \) |
Character orbit: | \([\chi]\) | = | 1800.y (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | = | \( 60 \) |
Character field: | \(\Q(i)\) | ||
Newforms: | \( 0 \) | ||
Sturm bound: | \(360\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(1800, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 136 | 0 | 136 |
Cusp forms | 40 | 0 | 40 |
Eisenstein series | 96 | 0 | 96 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 0 | 0 | 0 | 0 |
Decomposition of \(S_{1}^{\mathrm{old}}(1800, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(1800, [\chi]) \cong \) \(S_{1}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(300, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(900, [\chi])\)\(^{\oplus 2}\)