Properties

Label 1800.1.l
Level $1800$
Weight $1$
Character orbit 1800.l
Rep. character $\chi_{1800}(1601,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $2$
Sturm bound $360$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1800.l (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 3 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(360\)
Trace bound: \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(1800, [\chi])\).

Total New Old
Modular forms 60 4 56
Cusp forms 12 4 8
Eisenstein series 48 0 48

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 0 0 4 0

Trace form

\( 4 q + O(q^{10}) \) \( 4 q + 4 q^{19} + 4 q^{31} + 4 q^{61} - 4 q^{91} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(1800, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1800.1.l.a 1800.l 3.b $2$ $0.898$ \(\Q(\sqrt{-2}) \) $S_{4}$ None None 1800.1.l.a \(0\) \(0\) \(0\) \(-2\) \(q-q^{7}-\beta q^{11}+q^{13}+\beta q^{17}+q^{19}+\cdots\)
1800.1.l.b 1800.l 3.b $2$ $0.898$ \(\Q(\sqrt{-2}) \) $S_{4}$ None None 1800.1.l.a \(0\) \(0\) \(0\) \(2\) \(q+q^{7}-\beta q^{11}-q^{13}-\beta q^{17}+q^{19}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(1800, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(1800, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(300, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(600, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(900, [\chi])\)\(^{\oplus 2}\)