Properties

Label 1800.1.c
Level 1800
Weight 1
Character orbit c
Rep. character \(\chi_{1800}(449,\cdot)\)
Character field \(\Q\)
Dimension 4
Newforms 1
Sturm bound 360
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) = \( 1 \)
Character orbit: \([\chi]\) = 1800.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 15 \)
Character field: \(\Q\)
Newforms: \( 1 \)
Sturm bound: \(360\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(1800, [\chi])\).

Total New Old
Modular forms 60 4 56
Cusp forms 12 4 8
Eisenstein series 48 0 48

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 0 0 4 0

Trace form

\( 4q + O(q^{10}) \) \( 4q - 4q^{19} + 4q^{31} + 4q^{61} - 4q^{91} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(1800, [\chi])\) into irreducible Hecke orbits

Label Dim. \(A\) Field Image CM RM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
1800.1.c.a \(4\) \(0.898\) \(\Q(\zeta_{8})\) \(S_{4}\) None None \(0\) \(0\) \(0\) \(0\) \(q+\zeta_{8}^{2}q^{7}+(-\zeta_{8}-\zeta_{8}^{3})q^{11}+\zeta_{8}^{2}q^{13}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(1800, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(1800, [\chi]) \cong \) \(S_{1}^{\mathrm{new}}(300, [\chi])\)\(^{\oplus 4}\)