Properties

Label 180.6.d.c.109.2
Level $180$
Weight $6$
Character 180.109
Analytic conductor $28.869$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [180,6,Mod(109,180)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("180.109"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(180, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 180 = 2^{2} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 180.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.8690875663\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-61}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 61 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 109.2
Root \(-7.81025i\) of defining polynomial
Character \(\chi\) \(=\) 180.109
Dual form 180.6.d.c.109.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(40.0000 + 39.0512i) q^{5} -124.964i q^{7} +80.0000 q^{11} -374.892i q^{13} -546.717i q^{17} +12.0000 q^{19} -2030.66i q^{23} +(75.0000 + 3124.10i) q^{25} +4560.00 q^{29} -344.000 q^{31} +(4880.00 - 4998.56i) q^{35} +4373.74i q^{37} +14240.0 q^{41} -18994.5i q^{43} -24524.2i q^{47} +1191.00 q^{49} -27414.0i q^{53} +(3200.00 + 3124.10i) q^{55} +38000.0 q^{59} -8206.00 q^{61} +(14640.0 - 14995.7i) q^{65} +13246.2i q^{67} +48480.0 q^{71} +42487.8i q^{73} -9997.12i q^{77} +9264.00 q^{79} -33427.9i q^{83} +(21350.0 - 21868.7i) q^{85} -24320.0 q^{89} -46848.0 q^{91} +(480.000 + 468.615i) q^{95} -136711. i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 80 q^{5} + 160 q^{11} + 24 q^{19} + 150 q^{25} + 9120 q^{29} - 688 q^{31} + 9760 q^{35} + 28480 q^{41} + 2382 q^{49} + 6400 q^{55} + 76000 q^{59} - 16412 q^{61} + 29280 q^{65} + 96960 q^{71} + 18528 q^{79}+ \cdots + 960 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/180\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(91\) \(101\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 40.0000 + 39.0512i 0.715542 + 0.698570i
\(6\) 0 0
\(7\) 124.964i 0.963917i −0.876194 0.481959i \(-0.839926\pi\)
0.876194 0.481959i \(-0.160074\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 80.0000 0.199346 0.0996732 0.995020i \(-0.468220\pi\)
0.0996732 + 0.995020i \(0.468220\pi\)
\(12\) 0 0
\(13\) 374.892i 0.615245i −0.951509 0.307622i \(-0.900467\pi\)
0.951509 0.307622i \(-0.0995333\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 546.717i 0.458818i −0.973330 0.229409i \(-0.926321\pi\)
0.973330 0.229409i \(-0.0736794\pi\)
\(18\) 0 0
\(19\) 12.0000 0.00762601 0.00381300 0.999993i \(-0.498786\pi\)
0.00381300 + 0.999993i \(0.498786\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2030.66i 0.800421i −0.916423 0.400211i \(-0.868937\pi\)
0.916423 0.400211i \(-0.131063\pi\)
\(24\) 0 0
\(25\) 75.0000 + 3124.10i 0.0240000 + 0.999712i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4560.00 1.00686 0.503431 0.864036i \(-0.332071\pi\)
0.503431 + 0.864036i \(0.332071\pi\)
\(30\) 0 0
\(31\) −344.000 −0.0642916 −0.0321458 0.999483i \(-0.510234\pi\)
−0.0321458 + 0.999483i \(0.510234\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 4880.00 4998.56i 0.673364 0.689723i
\(36\) 0 0
\(37\) 4373.74i 0.525229i 0.964901 + 0.262614i \(0.0845847\pi\)
−0.964901 + 0.262614i \(0.915415\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 14240.0 1.32297 0.661486 0.749958i \(-0.269926\pi\)
0.661486 + 0.749958i \(0.269926\pi\)
\(42\) 0 0
\(43\) 18994.5i 1.56660i −0.621646 0.783299i \(-0.713536\pi\)
0.621646 0.783299i \(-0.286464\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 24524.2i 1.61938i −0.586855 0.809692i \(-0.699634\pi\)
0.586855 0.809692i \(-0.300366\pi\)
\(48\) 0 0
\(49\) 1191.00 0.0708633
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 27414.0i 1.34055i −0.742114 0.670274i \(-0.766177\pi\)
0.742114 0.670274i \(-0.233823\pi\)
\(54\) 0 0
\(55\) 3200.00 + 3124.10i 0.142641 + 0.139257i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 38000.0 1.42119 0.710597 0.703599i \(-0.248425\pi\)
0.710597 + 0.703599i \(0.248425\pi\)
\(60\) 0 0
\(61\) −8206.00 −0.282362 −0.141181 0.989984i \(-0.545090\pi\)
−0.141181 + 0.989984i \(0.545090\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 14640.0 14995.7i 0.429791 0.440233i
\(66\) 0 0
\(67\) 13246.2i 0.360499i 0.983621 + 0.180249i \(0.0576905\pi\)
−0.983621 + 0.180249i \(0.942310\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 48480.0 1.14134 0.570672 0.821178i \(-0.306683\pi\)
0.570672 + 0.821178i \(0.306683\pi\)
\(72\) 0 0
\(73\) 42487.8i 0.933161i 0.884479 + 0.466581i \(0.154514\pi\)
−0.884479 + 0.466581i \(0.845486\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 9997.12i 0.192153i
\(78\) 0 0
\(79\) 9264.00 0.167006 0.0835028 0.996508i \(-0.473389\pi\)
0.0835028 + 0.996508i \(0.473389\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 33427.9i 0.532615i −0.963888 0.266308i \(-0.914196\pi\)
0.963888 0.266308i \(-0.0858037\pi\)
\(84\) 0 0
\(85\) 21350.0 21868.7i 0.320517 0.328304i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −24320.0 −0.325453 −0.162727 0.986671i \(-0.552029\pi\)
−0.162727 + 0.986671i \(0.552029\pi\)
\(90\) 0 0
\(91\) −46848.0 −0.593045
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 480.000 + 468.615i 0.00545673 + 0.00532730i
\(96\) 0 0
\(97\) 136711.i 1.47527i −0.675197 0.737637i \(-0.735941\pi\)
0.675197 0.737637i \(-0.264059\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −105200. −1.02615 −0.513077 0.858343i \(-0.671494\pi\)
−0.513077 + 0.858343i \(0.671494\pi\)
\(102\) 0 0
\(103\) 68105.4i 0.632541i 0.948669 + 0.316270i \(0.102431\pi\)
−0.948669 + 0.316270i \(0.897569\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 21556.3i 0.182018i 0.995850 + 0.0910090i \(0.0290092\pi\)
−0.995850 + 0.0910090i \(0.970991\pi\)
\(108\) 0 0
\(109\) 41438.0 0.334066 0.167033 0.985951i \(-0.446581\pi\)
0.167033 + 0.985951i \(0.446581\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 214391.i 1.57947i 0.613449 + 0.789735i \(0.289782\pi\)
−0.613449 + 0.789735i \(0.710218\pi\)
\(114\) 0 0
\(115\) 79300.0 81226.6i 0.559150 0.572735i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −68320.0 −0.442263
\(120\) 0 0
\(121\) −154651. −0.960261
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −119000. + 127893.i −0.681196 + 0.732101i
\(126\) 0 0
\(127\) 244305.i 1.34407i 0.740519 + 0.672036i \(0.234580\pi\)
−0.740519 + 0.672036i \(0.765420\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −124560. −0.634162 −0.317081 0.948398i \(-0.602703\pi\)
−0.317081 + 0.948398i \(0.602703\pi\)
\(132\) 0 0
\(133\) 1499.57i 0.00735084i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 363880.i 1.65637i 0.560458 + 0.828183i \(0.310625\pi\)
−0.560458 + 0.828183i \(0.689375\pi\)
\(138\) 0 0
\(139\) 89036.0 0.390867 0.195433 0.980717i \(-0.437389\pi\)
0.195433 + 0.980717i \(0.437389\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 29991.4i 0.122647i
\(144\) 0 0
\(145\) 182400. + 178074.i 0.720452 + 0.703363i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −438640. −1.61861 −0.809306 0.587388i \(-0.800156\pi\)
−0.809306 + 0.587388i \(0.800156\pi\)
\(150\) 0 0
\(151\) −351704. −1.25526 −0.627632 0.778510i \(-0.715976\pi\)
−0.627632 + 0.778510i \(0.715976\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −13760.0 13433.6i −0.0460033 0.0449122i
\(156\) 0 0
\(157\) 82351.3i 0.266637i −0.991073 0.133319i \(-0.957437\pi\)
0.991073 0.133319i \(-0.0425634\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −253760. −0.771540
\(162\) 0 0
\(163\) 520100.i 1.53327i −0.642085 0.766634i \(-0.721930\pi\)
0.642085 0.766634i \(-0.278070\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 126995.i 0.352366i −0.984357 0.176183i \(-0.943625\pi\)
0.984357 0.176183i \(-0.0563751\pi\)
\(168\) 0 0
\(169\) 230749. 0.621474
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 323266.i 0.821193i 0.911817 + 0.410596i \(0.134679\pi\)
−0.911817 + 0.410596i \(0.865321\pi\)
\(174\) 0 0
\(175\) 390400. 9372.30i 0.963640 0.0231340i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 495920. 1.15686 0.578428 0.815734i \(-0.303667\pi\)
0.578428 + 0.815734i \(0.303667\pi\)
\(180\) 0 0
\(181\) −683014. −1.54965 −0.774824 0.632177i \(-0.782162\pi\)
−0.774824 + 0.632177i \(0.782162\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −170800. + 174950.i −0.366909 + 0.375823i
\(186\) 0 0
\(187\) 43737.4i 0.0914637i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 625440. 1.24052 0.620258 0.784398i \(-0.287028\pi\)
0.620258 + 0.784398i \(0.287028\pi\)
\(192\) 0 0
\(193\) 70229.8i 0.135715i 0.997695 + 0.0678575i \(0.0216163\pi\)
−0.997695 + 0.0678575i \(0.978384\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 179870.i 0.330212i −0.986276 0.165106i \(-0.947203\pi\)
0.986276 0.165106i \(-0.0527967\pi\)
\(198\) 0 0
\(199\) 295728. 0.529371 0.264685 0.964335i \(-0.414732\pi\)
0.264685 + 0.964335i \(0.414732\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 569836.i 0.970532i
\(204\) 0 0
\(205\) 569600. + 556090.i 0.946641 + 0.924188i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 960.000 0.00152022
\(210\) 0 0
\(211\) −1.04824e6 −1.62089 −0.810444 0.585816i \(-0.800774\pi\)
−0.810444 + 0.585816i \(0.800774\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 741760. 759781.i 1.09438 1.12097i
\(216\) 0 0
\(217\) 42987.6i 0.0619718i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −204960. −0.282285
\(222\) 0 0
\(223\) 799395.i 1.07646i 0.842797 + 0.538231i \(0.180907\pi\)
−0.842797 + 0.538231i \(0.819093\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.00315e6i 1.29211i −0.763289 0.646057i \(-0.776417\pi\)
0.763289 0.646057i \(-0.223583\pi\)
\(228\) 0 0
\(229\) 593002. 0.747253 0.373626 0.927579i \(-0.378114\pi\)
0.373626 + 0.927579i \(0.378114\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 630834.i 0.761246i −0.924730 0.380623i \(-0.875710\pi\)
0.924730 0.380623i \(-0.124290\pi\)
\(234\) 0 0
\(235\) 957700. 980967.i 1.13125 1.15874i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.00240e6 1.13513 0.567566 0.823328i \(-0.307885\pi\)
0.567566 + 0.823328i \(0.307885\pi\)
\(240\) 0 0
\(241\) −1.58637e6 −1.75938 −0.879692 0.475543i \(-0.842251\pi\)
−0.879692 + 0.475543i \(0.842251\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 47640.0 + 46510.0i 0.0507057 + 0.0495030i
\(246\) 0 0
\(247\) 4498.70i 0.00469186i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 1.62552e6 1.62858 0.814288 0.580461i \(-0.197128\pi\)
0.814288 + 0.580461i \(0.197128\pi\)
\(252\) 0 0
\(253\) 162453.i 0.159561i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 668479.i 0.631328i 0.948871 + 0.315664i \(0.102227\pi\)
−0.948871 + 0.315664i \(0.897773\pi\)
\(258\) 0 0
\(259\) 546560. 0.506277
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1.09672e6i 0.977698i −0.872369 0.488849i \(-0.837417\pi\)
0.872369 0.488849i \(-0.162583\pi\)
\(264\) 0 0
\(265\) 1.07055e6 1.09656e6i 0.936467 0.959218i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 562800. 0.474213 0.237106 0.971484i \(-0.423801\pi\)
0.237106 + 0.971484i \(0.423801\pi\)
\(270\) 0 0
\(271\) −1.87645e6 −1.55208 −0.776039 0.630685i \(-0.782774\pi\)
−0.776039 + 0.630685i \(0.782774\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6000.00 + 249928.i 0.00478431 + 0.199289i
\(276\) 0 0
\(277\) 768654.i 0.601910i −0.953638 0.300955i \(-0.902695\pi\)
0.953638 0.300955i \(-0.0973053\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −687360. −0.519300 −0.259650 0.965703i \(-0.583607\pi\)
−0.259650 + 0.965703i \(0.583607\pi\)
\(282\) 0 0
\(283\) 607575.i 0.450956i 0.974248 + 0.225478i \(0.0723943\pi\)
−0.974248 + 0.225478i \(0.927606\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.77949e6i 1.27523i
\(288\) 0 0
\(289\) 1.12096e6 0.789486
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.87001e6i 1.27255i 0.771463 + 0.636274i \(0.219525\pi\)
−0.771463 + 0.636274i \(0.780475\pi\)
\(294\) 0 0
\(295\) 1.52000e6 + 1.48395e6i 1.01692 + 0.992804i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −761280. −0.492455
\(300\) 0 0
\(301\) −2.37363e6 −1.51007
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −328240. 320455.i −0.202042 0.197250i
\(306\) 0 0
\(307\) 874248.i 0.529406i 0.964330 + 0.264703i \(0.0852739\pi\)
−0.964330 + 0.264703i \(0.914726\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −1.02096e6 −0.598560 −0.299280 0.954165i \(-0.596746\pi\)
−0.299280 + 0.954165i \(0.596746\pi\)
\(312\) 0 0
\(313\) 532097.i 0.306994i 0.988149 + 0.153497i \(0.0490535\pi\)
−0.988149 + 0.153497i \(0.950946\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.75535e6i 0.981107i 0.871411 + 0.490554i \(0.163205\pi\)
−0.871411 + 0.490554i \(0.836795\pi\)
\(318\) 0 0
\(319\) 364800. 0.200714
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 6560.61i 0.00349895i
\(324\) 0 0
\(325\) 1.17120e6 28116.9i 0.615067 0.0147659i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −3.06464e6 −1.56095
\(330\) 0 0
\(331\) −2.24395e6 −1.12575 −0.562876 0.826541i \(-0.690305\pi\)
−0.562876 + 0.826541i \(0.690305\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −517280. + 529847.i −0.251834 + 0.257952i
\(336\) 0 0
\(337\) 927733.i 0.444988i 0.974934 + 0.222494i \(0.0714197\pi\)
−0.974934 + 0.222494i \(0.928580\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −27520.0 −0.0128163
\(342\) 0 0
\(343\) 2.24910e6i 1.03222i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4.12569e6i 1.83938i 0.392640 + 0.919692i \(0.371562\pi\)
−0.392640 + 0.919692i \(0.628438\pi\)
\(348\) 0 0
\(349\) 1.63749e6 0.719638 0.359819 0.933022i \(-0.382838\pi\)
0.359819 + 0.933022i \(0.382838\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.98310e6i 0.847048i 0.905885 + 0.423524i \(0.139207\pi\)
−0.905885 + 0.423524i \(0.860793\pi\)
\(354\) 0 0
\(355\) 1.93920e6 + 1.89320e6i 0.816680 + 0.797309i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.14720e6 0.469789 0.234895 0.972021i \(-0.424526\pi\)
0.234895 + 0.972021i \(0.424526\pi\)
\(360\) 0 0
\(361\) −2.47596e6 −0.999942
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −1.65920e6 + 1.69951e6i −0.651878 + 0.667716i
\(366\) 0 0
\(367\) 4.09395e6i 1.58663i −0.608808 0.793317i \(-0.708352\pi\)
0.608808 0.793317i \(-0.291648\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −3.42576e6 −1.29218
\(372\) 0 0
\(373\) 2.99126e6i 1.11322i −0.830773 0.556612i \(-0.812101\pi\)
0.830773 0.556612i \(-0.187899\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.70951e6i 0.619466i
\(378\) 0 0
\(379\) −98228.0 −0.0351267 −0.0175633 0.999846i \(-0.505591\pi\)
−0.0175633 + 0.999846i \(0.505591\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 2.70969e6i 0.943892i 0.881627 + 0.471946i \(0.156448\pi\)
−0.881627 + 0.471946i \(0.843552\pi\)
\(384\) 0 0
\(385\) 390400. 399885.i 0.134233 0.137494i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −1.03064e6 −0.345329 −0.172664 0.984981i \(-0.555238\pi\)
−0.172664 + 0.984981i \(0.555238\pi\)
\(390\) 0 0
\(391\) −1.11020e6 −0.367248
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 370560. + 361771.i 0.119499 + 0.116665i
\(396\) 0 0
\(397\) 6.10312e6i 1.94346i 0.236097 + 0.971730i \(0.424132\pi\)
−0.236097 + 0.971730i \(0.575868\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2.42192e6 −0.752140 −0.376070 0.926591i \(-0.622725\pi\)
−0.376070 + 0.926591i \(0.622725\pi\)
\(402\) 0 0
\(403\) 128963.i 0.0395551i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 349899.i 0.104702i
\(408\) 0 0
\(409\) 1.32812e6 0.392581 0.196291 0.980546i \(-0.437110\pi\)
0.196291 + 0.980546i \(0.437110\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 4.74863e6i 1.36991i
\(414\) 0 0
\(415\) 1.30540e6 1.33711e6i 0.372069 0.381108i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −4.65944e6 −1.29658 −0.648289 0.761394i \(-0.724515\pi\)
−0.648289 + 0.761394i \(0.724515\pi\)
\(420\) 0 0
\(421\) −1.39140e6 −0.382602 −0.191301 0.981531i \(-0.561271\pi\)
−0.191301 + 0.981531i \(0.561271\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.70800e6 41003.8i 0.458686 0.0110116i
\(426\) 0 0
\(427\) 1.02545e6i 0.272174i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 4.76096e6 1.23453 0.617265 0.786756i \(-0.288241\pi\)
0.617265 + 0.786756i \(0.288241\pi\)
\(432\) 0 0
\(433\) 5.14627e6i 1.31908i 0.751668 + 0.659542i \(0.229250\pi\)
−0.751668 + 0.659542i \(0.770750\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 24368.0i 0.00610402i
\(438\) 0 0
\(439\) −1.30171e6 −0.322369 −0.161185 0.986924i \(-0.551531\pi\)
−0.161185 + 0.986924i \(0.551531\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 3.02069e6i 0.731303i 0.930752 + 0.365651i \(0.119154\pi\)
−0.930752 + 0.365651i \(0.880846\pi\)
\(444\) 0 0
\(445\) −972800. 949726.i −0.232875 0.227352i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 8.07504e6 1.89029 0.945146 0.326649i \(-0.105919\pi\)
0.945146 + 0.326649i \(0.105919\pi\)
\(450\) 0 0
\(451\) 1.13920e6 0.263729
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1.87392e6 1.82947e6i −0.424348 0.414283i
\(456\) 0 0
\(457\) 4.78487e6i 1.07172i −0.844308 0.535858i \(-0.819988\pi\)
0.844308 0.535858i \(-0.180012\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 5.02104e6 1.10038 0.550188 0.835041i \(-0.314556\pi\)
0.550188 + 0.835041i \(0.314556\pi\)
\(462\) 0 0
\(463\) 2.46117e6i 0.533566i 0.963757 + 0.266783i \(0.0859608\pi\)
−0.963757 + 0.266783i \(0.914039\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 2.38244e6i 0.505510i −0.967530 0.252755i \(-0.918663\pi\)
0.967530 0.252755i \(-0.0813366\pi\)
\(468\) 0 0
\(469\) 1.65530e6 0.347491
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.51956e6i 0.312295i
\(474\) 0 0
\(475\) 900.000 + 37489.2i 0.000183024 + 0.00762381i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 2.79568e6 0.556735 0.278368 0.960475i \(-0.410207\pi\)
0.278368 + 0.960475i \(0.410207\pi\)
\(480\) 0 0
\(481\) 1.63968e6 0.323144
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 5.33872e6 5.46842e6i 1.03058 1.05562i
\(486\) 0 0
\(487\) 3.99372e6i 0.763055i −0.924358 0.381527i \(-0.875398\pi\)
0.924358 0.381527i \(-0.124602\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −5.04552e6 −0.944501 −0.472250 0.881465i \(-0.656558\pi\)
−0.472250 + 0.881465i \(0.656558\pi\)
\(492\) 0 0
\(493\) 2.49303e6i 0.461967i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 6.05825e6i 1.10016i
\(498\) 0 0
\(499\) −4.80013e6 −0.862982 −0.431491 0.902117i \(-0.642012\pi\)
−0.431491 + 0.902117i \(0.642012\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 9.24718e6i 1.62963i −0.579720 0.814816i \(-0.696838\pi\)
0.579720 0.814816i \(-0.303162\pi\)
\(504\) 0 0
\(505\) −4.20800e6 4.10819e6i −0.734256 0.716840i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 1.71816e6 0.293947 0.146974 0.989140i \(-0.453047\pi\)
0.146974 + 0.989140i \(0.453047\pi\)
\(510\) 0 0
\(511\) 5.30944e6 0.899490
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −2.65960e6 + 2.72422e6i −0.441874 + 0.452609i
\(516\) 0 0
\(517\) 1.96193e6i 0.322818i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1.20789e7 1.94954 0.974770 0.223210i \(-0.0716534\pi\)
0.974770 + 0.223210i \(0.0716534\pi\)
\(522\) 0 0
\(523\) 5.19325e6i 0.830205i 0.909775 + 0.415102i \(0.136254\pi\)
−0.909775 + 0.415102i \(0.863746\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 188071.i 0.0294982i
\(528\) 0 0
\(529\) 2.31274e6 0.359326
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 5.33846e6i 0.813951i
\(534\) 0 0
\(535\) −841800. + 862252.i −0.127152 + 0.130242i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 95280.0 0.0141263
\(540\) 0 0
\(541\) 4.68747e6 0.688566 0.344283 0.938866i \(-0.388122\pi\)
0.344283 + 0.938866i \(0.388122\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1.65752e6 + 1.61821e6i 0.239038 + 0.233369i
\(546\) 0 0
\(547\) 6.27819e6i 0.897152i 0.893745 + 0.448576i \(0.148069\pi\)
−0.893745 + 0.448576i \(0.851931\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 54720.0 0.00767834
\(552\) 0 0
\(553\) 1.15767e6i 0.160980i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 8.89408e6i 1.21468i −0.794441 0.607341i \(-0.792236\pi\)
0.794441 0.607341i \(-0.207764\pi\)
\(558\) 0 0
\(559\) −7.12090e6 −0.963840
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.18135e7i 1.57075i 0.619021 + 0.785374i \(0.287529\pi\)
−0.619021 + 0.785374i \(0.712471\pi\)
\(564\) 0 0
\(565\) −8.37225e6 + 8.57565e6i −1.10337 + 1.13018i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 2.89744e6 0.375175 0.187587 0.982248i \(-0.439933\pi\)
0.187587 + 0.982248i \(0.439933\pi\)
\(570\) 0 0
\(571\) 1.01834e7 1.30709 0.653543 0.756889i \(-0.273282\pi\)
0.653543 + 0.756889i \(0.273282\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 6.34400e6 152300.i 0.800191 0.0192101i
\(576\) 0 0
\(577\) 1.79898e6i 0.224951i 0.993655 + 0.112475i \(0.0358779\pi\)
−0.993655 + 0.112475i \(0.964122\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −4.17728e6 −0.513397
\(582\) 0 0
\(583\) 2.19312e6i 0.267233i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.29178e7i 1.54737i 0.633569 + 0.773686i \(0.281589\pi\)
−0.633569 + 0.773686i \(0.718411\pi\)
\(588\) 0 0
\(589\) −4128.00 −0.000490288
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 5.13907e6i 0.600133i −0.953918 0.300066i \(-0.902991\pi\)
0.953918 0.300066i \(-0.0970089\pi\)
\(594\) 0 0
\(595\) −2.73280e6 2.66798e6i −0.316458 0.308952i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −5.62272e6 −0.640294 −0.320147 0.947368i \(-0.603732\pi\)
−0.320147 + 0.947368i \(0.603732\pi\)
\(600\) 0 0
\(601\) 7.48833e6 0.845665 0.422833 0.906208i \(-0.361036\pi\)
0.422833 + 0.906208i \(0.361036\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −6.18604e6 6.03931e6i −0.687107 0.670810i
\(606\) 0 0
\(607\) 7.03610e6i 0.775104i 0.921848 + 0.387552i \(0.126679\pi\)
−0.921848 + 0.387552i \(0.873321\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −9.19392e6 −0.996317
\(612\) 0 0
\(613\) 1.54499e7i 1.66064i −0.557288 0.830319i \(-0.688158\pi\)
0.557288 0.830319i \(-0.311842\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 7.86750e6i 0.832001i 0.909364 + 0.416000i \(0.136569\pi\)
−0.909364 + 0.416000i \(0.863431\pi\)
\(618\) 0 0
\(619\) −8.69805e6 −0.912421 −0.456211 0.889872i \(-0.650794\pi\)
−0.456211 + 0.889872i \(0.650794\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 3.03912e6i 0.313710i
\(624\) 0 0
\(625\) −9.75438e6 + 468615.i −0.998848 + 0.0479862i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 2.39120e6 0.240985
\(630\) 0 0
\(631\) 1.50252e7 1.50226 0.751132 0.660152i \(-0.229508\pi\)
0.751132 + 0.660152i \(0.229508\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −9.54040e6 + 9.77218e6i −0.938928 + 0.961739i
\(636\) 0 0
\(637\) 446496.i 0.0435983i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −6.88048e6 −0.661414 −0.330707 0.943733i \(-0.607287\pi\)
−0.330707 + 0.943733i \(0.607287\pi\)
\(642\) 0 0
\(643\) 1.18953e7i 1.13462i −0.823506 0.567308i \(-0.807985\pi\)
0.823506 0.567308i \(-0.192015\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 5.03339e6i 0.472716i −0.971666 0.236358i \(-0.924046\pi\)
0.971666 0.236358i \(-0.0759538\pi\)
\(648\) 0 0
\(649\) 3.04000e6 0.283310
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.12571e7i 1.03311i 0.856255 + 0.516554i \(0.172785\pi\)
−0.856255 + 0.516554i \(0.827215\pi\)
\(654\) 0 0
\(655\) −4.98240e6 4.86422e6i −0.453770 0.443007i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −1.84982e7 −1.65926 −0.829631 0.558312i \(-0.811449\pi\)
−0.829631 + 0.558312i \(0.811449\pi\)
\(660\) 0 0
\(661\) 1.13143e7 1.00722 0.503610 0.863931i \(-0.332005\pi\)
0.503610 + 0.863931i \(0.332005\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 58560.0 59982.7i 0.00513508 0.00525983i
\(666\) 0 0
\(667\) 9.25983e6i 0.805914i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −656480. −0.0562879
\(672\) 0 0
\(673\) 2.04878e7i 1.74365i 0.489820 + 0.871824i \(0.337063\pi\)
−0.489820 + 0.871824i \(0.662937\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 6.31873e6i 0.529856i 0.964268 + 0.264928i \(0.0853482\pi\)
−0.964268 + 0.264928i \(0.914652\pi\)
\(678\) 0 0
\(679\) −1.70839e7 −1.42204
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.41028e7i 1.15679i 0.815757 + 0.578394i \(0.196320\pi\)
−0.815757 + 0.578394i \(0.803680\pi\)
\(684\) 0 0
\(685\) −1.42100e7 + 1.45552e7i −1.15709 + 1.18520i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1.02773e7 −0.824765
\(690\) 0 0
\(691\) 1.49779e7 1.19332 0.596660 0.802494i \(-0.296494\pi\)
0.596660 + 0.802494i \(0.296494\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 3.56144e6 + 3.47697e6i 0.279681 + 0.273048i
\(696\) 0 0
\(697\) 7.78526e6i 0.607003i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 1.93112e6 0.148427 0.0742137 0.997242i \(-0.476355\pi\)
0.0742137 + 0.997242i \(0.476355\pi\)
\(702\) 0 0
\(703\) 52484.9i 0.00400540i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.31462e7i 0.989127i
\(708\) 0 0
\(709\) 7.55428e6 0.564388 0.282194 0.959357i \(-0.408938\pi\)
0.282194 + 0.959357i \(0.408938\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 698549.i 0.0514604i
\(714\) 0 0
\(715\) 1.17120e6 1.19965e6i 0.0856773 0.0877589i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 9.20608e6 0.664129 0.332065 0.943257i \(-0.392255\pi\)
0.332065 + 0.943257i \(0.392255\pi\)
\(720\) 0 0
\(721\) 8.51072e6 0.609717
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 342000. + 1.42459e7i 0.0241647 + 1.00657i
\(726\) 0 0
\(727\) 2.02918e7i 1.42392i 0.702223 + 0.711958i \(0.252191\pi\)
−0.702223 + 0.711958i \(0.747809\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −1.03846e7 −0.718783
\(732\) 0 0
\(733\) 1.93413e7i 1.32961i 0.747015 + 0.664807i \(0.231486\pi\)
−0.747015 + 0.664807i \(0.768514\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.05969e6i 0.0718641i
\(738\) 0 0
\(739\) −1.45942e7 −0.983033 −0.491517 0.870868i \(-0.663557\pi\)
−0.491517 + 0.870868i \(0.663557\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1.82896e7i 1.21543i −0.794153 0.607717i \(-0.792085\pi\)
0.794153 0.607717i \(-0.207915\pi\)
\(744\) 0 0
\(745\) −1.75456e7 1.71294e7i −1.15818 1.13071i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 2.69376e6 0.175450
\(750\) 0 0
\(751\) 1.98542e7 1.28456 0.642279 0.766471i \(-0.277989\pi\)
0.642279 + 0.766471i \(0.277989\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −1.40682e7 1.37345e7i −0.898194 0.876889i
\(756\) 0 0
\(757\) 1.30876e7i 0.830081i −0.909803 0.415040i \(-0.863767\pi\)
0.909803 0.415040i \(-0.136233\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −5.17392e6 −0.323861 −0.161930 0.986802i \(-0.551772\pi\)
−0.161930 + 0.986802i \(0.551772\pi\)
\(762\) 0 0
\(763\) 5.17826e6i 0.322012i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.42459e7i 0.874382i
\(768\) 0 0
\(769\) 3.02498e6 0.184462 0.0922309 0.995738i \(-0.470600\pi\)
0.0922309 + 0.995738i \(0.470600\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 3.16901e6i 0.190754i −0.995441 0.0953772i \(-0.969594\pi\)
0.995441 0.0953772i \(-0.0304057\pi\)
\(774\) 0 0
\(775\) −25800.0 1.07469e6i −0.00154300 0.0642731i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 170880. 0.0100890
\(780\) 0 0
\(781\) 3.87840e6 0.227523
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 3.21592e6 3.29405e6i 0.186265 0.190790i
\(786\) 0 0
\(787\) 1.71533e7i 0.987213i −0.869685 0.493607i \(-0.835678\pi\)
0.869685 0.493607i \(-0.164322\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 2.67912e7 1.52248
\(792\) 0 0
\(793\) 3.07636e6i 0.173722i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 4.40084e6i 0.245409i −0.992443 0.122704i \(-0.960843\pi\)
0.992443 0.122704i \(-0.0391567\pi\)
\(798\) 0 0
\(799\) −1.34078e7 −0.743003
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 3.39902e6i 0.186022i
\(804\) 0 0
\(805\) −1.01504e7 9.90964e6i −0.552069 0.538975i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.61328e6 0.0866639 0.0433320 0.999061i \(-0.486203\pi\)
0.0433320 + 0.999061i \(0.486203\pi\)
\(810\) 0 0
\(811\) 1.18501e7 0.632658 0.316329 0.948650i \(-0.397550\pi\)
0.316329 + 0.948650i \(0.397550\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 2.03106e7 2.08040e7i 1.07109 1.09712i
\(816\) 0 0
\(817\) 227934.i 0.0119469i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 5.22232e6 0.270399 0.135200 0.990818i \(-0.456832\pi\)
0.135200 + 0.990818i \(0.456832\pi\)
\(822\) 0 0
\(823\) 1.19744e7i 0.616247i 0.951346 + 0.308124i \(0.0997011\pi\)
−0.951346 + 0.308124i \(0.900299\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 2.34245e6i 0.119099i −0.998225 0.0595493i \(-0.981034\pi\)
0.998225 0.0595493i \(-0.0189663\pi\)
\(828\) 0 0
\(829\) 1.62647e7 0.821976 0.410988 0.911641i \(-0.365184\pi\)
0.410988 + 0.911641i \(0.365184\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 651141.i 0.0325134i
\(834\) 0 0
\(835\) 4.95930e6 5.07979e6i 0.246152 0.252133i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 3.72685e7 1.82783 0.913917 0.405901i \(-0.133042\pi\)
0.913917 + 0.405901i \(0.133042\pi\)
\(840\) 0 0
\(841\) 282451. 0.0137706
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 9.22996e6 + 9.01104e6i 0.444691 + 0.434143i
\(846\) 0 0
\(847\) 1.93258e7i 0.925612i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 8.88160e6 0.420404
\(852\) 0 0
\(853\) 3.75696e7i 1.76792i −0.467559 0.883962i \(-0.654867\pi\)
0.467559 0.883962i \(-0.345133\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1.34720e7i 0.626584i −0.949657 0.313292i \(-0.898568\pi\)
0.949657 0.313292i \(-0.101432\pi\)
\(858\) 0 0
\(859\) −2.75912e7 −1.27582 −0.637908 0.770112i \(-0.720200\pi\)
−0.637908 + 0.770112i \(0.720200\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 2.91240e7i 1.33114i −0.746336 0.665569i \(-0.768189\pi\)
0.746336 0.665569i \(-0.231811\pi\)
\(864\) 0 0
\(865\) −1.26240e7 + 1.29306e7i −0.573661 + 0.587598i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 741120. 0.0332919
\(870\) 0 0
\(871\) 4.96589e6 0.221795
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1.59820e7 + 1.48707e7i 0.705685 + 0.656616i
\(876\) 0 0
\(877\) 2.59561e7i 1.13957i 0.821794 + 0.569785i \(0.192974\pi\)
−0.821794 + 0.569785i \(0.807026\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −4.36704e6 −0.189560 −0.0947802 0.995498i \(-0.530215\pi\)
−0.0947802 + 0.995498i \(0.530215\pi\)
\(882\) 0 0
\(883\) 2.04414e7i 0.882283i 0.897437 + 0.441142i \(0.145426\pi\)
−0.897437 + 0.441142i \(0.854574\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 4.38694e7i 1.87220i −0.351732 0.936101i \(-0.614407\pi\)
0.351732 0.936101i \(-0.385593\pi\)
\(888\) 0 0
\(889\) 3.05293e7 1.29557
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 294290.i 0.0123494i
\(894\) 0 0
\(895\) 1.98368e7 + 1.93663e7i 0.827778 + 0.808144i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −1.56864e6 −0.0647327
\(900\) 0 0
\(901\) −1.49877e7 −0.615068
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2.73206e7 2.66725e7i −1.10884 1.08254i
\(906\) 0 0
\(907\) 982217.i 0.0396451i −0.999804 0.0198225i \(-0.993690\pi\)
0.999804 0.0198225i \(-0.00631012\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 3.14842e7 1.25689 0.628443 0.777855i \(-0.283692\pi\)
0.628443 + 0.777855i \(0.283692\pi\)
\(912\) 0 0
\(913\) 2.67423e6i 0.106175i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.55655e7i 0.611280i
\(918\) 0 0
\(919\) −1.84427e7 −0.720338 −0.360169 0.932887i \(-0.617281\pi\)
−0.360169 + 0.932887i \(0.617281\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.81748e7i 0.702206i
\(924\) 0 0
\(925\) −1.36640e7 + 328030.i −0.525078 + 0.0126055i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1.20322e7 −0.457409 −0.228704 0.973496i \(-0.573449\pi\)
−0.228704 + 0.973496i \(0.573449\pi\)
\(930\) 0 0
\(931\) 14292.0 0.000540404
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1.70800e6 1.74950e6i 0.0638938 0.0654461i
\(936\) 0 0
\(937\) 2.32728e7i 0.865963i −0.901403 0.432982i \(-0.857461\pi\)
0.901403 0.432982i \(-0.142539\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −4.15912e6 −0.153118 −0.0765592 0.997065i \(-0.524393\pi\)
−0.0765592 + 0.997065i \(0.524393\pi\)
\(942\) 0 0
\(943\) 2.89167e7i 1.05893i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.55721e7i 0.564250i 0.959378 + 0.282125i \(0.0910393\pi\)
−0.959378 + 0.282125i \(0.908961\pi\)
\(948\) 0 0
\(949\) 1.59283e7 0.574122
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1.97834e7i 0.705618i 0.935695 + 0.352809i \(0.114773\pi\)
−0.935695 + 0.352809i \(0.885227\pi\)
\(954\) 0 0
\(955\) 2.50176e7 + 2.44242e7i 0.887641 + 0.866587i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 4.54718e7 1.59660
\(960\) 0 0
\(961\) −2.85108e7 −0.995867
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −2.74256e6 + 2.80919e6i −0.0948064 + 0.0971098i
\(966\) 0 0
\(967\) 3.84196e7i 1.32125i −0.750715 0.660627i \(-0.770291\pi\)
0.750715 0.660627i \(-0.229709\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −3.37188e7 −1.14769 −0.573844 0.818964i \(-0.694549\pi\)
−0.573844 + 0.818964i \(0.694549\pi\)
\(972\) 0 0
\(973\) 1.11263e7i 0.376763i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 3.32199e7i 1.11343i 0.830705 + 0.556713i \(0.187938\pi\)
−0.830705 + 0.556713i \(0.812062\pi\)
\(978\) 0 0
\(979\) −1.94560e6 −0.0648779
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1.71493e7i 0.566059i −0.959111 0.283030i \(-0.908660\pi\)
0.959111 0.283030i \(-0.0913395\pi\)
\(984\) 0 0
\(985\) 7.02415e6 7.19480e6i 0.230676 0.236281i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −3.85715e7 −1.25394
\(990\) 0 0
\(991\) −9.28074e6 −0.300191 −0.150096 0.988671i \(-0.547958\pi\)
−0.150096 + 0.988671i \(0.547958\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1.18291e7 + 1.15485e7i 0.378787 + 0.369802i
\(996\) 0 0
\(997\) 3.71124e7i 1.18245i 0.806508 + 0.591223i \(0.201355\pi\)
−0.806508 + 0.591223i \(0.798645\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 180.6.d.c.109.2 yes 2
3.2 odd 2 180.6.d.a.109.1 2
4.3 odd 2 720.6.f.e.289.2 2
5.2 odd 4 900.6.a.p.1.2 2
5.3 odd 4 900.6.a.p.1.1 2
5.4 even 2 inner 180.6.d.c.109.1 yes 2
12.11 even 2 720.6.f.b.289.1 2
15.2 even 4 900.6.a.o.1.2 2
15.8 even 4 900.6.a.o.1.1 2
15.14 odd 2 180.6.d.a.109.2 yes 2
20.19 odd 2 720.6.f.e.289.1 2
60.59 even 2 720.6.f.b.289.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.6.d.a.109.1 2 3.2 odd 2
180.6.d.a.109.2 yes 2 15.14 odd 2
180.6.d.c.109.1 yes 2 5.4 even 2 inner
180.6.d.c.109.2 yes 2 1.1 even 1 trivial
720.6.f.b.289.1 2 12.11 even 2
720.6.f.b.289.2 2 60.59 even 2
720.6.f.e.289.1 2 20.19 odd 2
720.6.f.e.289.2 2 4.3 odd 2
900.6.a.o.1.1 2 15.8 even 4
900.6.a.o.1.2 2 15.2 even 4
900.6.a.p.1.1 2 5.3 odd 4
900.6.a.p.1.2 2 5.2 odd 4