Defining parameters
| Level: | \( N \) | \(=\) | \( 180 = 2^{2} \cdot 3^{2} \cdot 5 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 180.i (of order \(3\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
| Character field: | \(\Q(\zeta_{3})\) | ||
| Newform subspaces: | \( 3 \) | ||
| Sturm bound: | \(144\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(180, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 228 | 24 | 204 |
| Cusp forms | 204 | 24 | 180 |
| Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(180, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 180.4.i.a | $2$ | $10.620$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(9\) | \(5\) | \(7\) | \(q+(6-3\zeta_{6})q^{3}+5\zeta_{6}q^{5}+(7-7\zeta_{6})q^{7}+\cdots\) |
| 180.4.i.b | $8$ | $10.620$ | 8.0.\(\cdots\).1 | None | \(0\) | \(-12\) | \(20\) | \(13\) | \(q+(-2-\beta _{5})q^{3}+5\beta _{2}q^{5}+(5-3\beta _{2}+\cdots)q^{7}+\cdots\) |
| 180.4.i.c | $14$ | $10.620$ | \(\mathbb{Q}[x]/(x^{14} - \cdots)\) | None | \(0\) | \(5\) | \(-35\) | \(-8\) | \(q+(-\beta _{3}+\beta _{5})q^{3}+(-5+5\beta _{2})q^{5}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(180, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(180, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 2}\)