Defining parameters
| Level: | \( N \) | \(=\) | \( 180 = 2^{2} \cdot 3^{2} \cdot 5 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 180.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(72\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(180))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 48 | 1 | 47 |
| Cusp forms | 25 | 1 | 24 |
| Eisenstein series | 23 | 0 | 23 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(5\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(5\) | \(0\) | \(5\) | \(2\) | \(0\) | \(2\) | \(3\) | \(0\) | \(3\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(7\) | \(0\) | \(7\) | \(3\) | \(0\) | \(3\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(7\) | \(0\) | \(7\) | \(3\) | \(0\) | \(3\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(7\) | \(0\) | \(7\) | \(3\) | \(0\) | \(3\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(7\) | \(0\) | \(7\) | \(5\) | \(0\) | \(5\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(5\) | \(0\) | \(5\) | \(3\) | \(0\) | \(3\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(5\) | \(0\) | \(5\) | \(3\) | \(0\) | \(3\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(5\) | \(1\) | \(4\) | \(3\) | \(1\) | \(2\) | \(2\) | \(0\) | \(2\) | |||
| Plus space | \(+\) | \(22\) | \(0\) | \(22\) | \(11\) | \(0\) | \(11\) | \(11\) | \(0\) | \(11\) | |||||
| Minus space | \(-\) | \(26\) | \(1\) | \(25\) | \(14\) | \(1\) | \(13\) | \(12\) | \(0\) | \(12\) | |||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(180))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | 5 | |||||||
| 180.2.a.a | $1$ | $1.437$ | \(\Q\) | None | \(0\) | \(0\) | \(1\) | \(2\) | $-$ | $-$ | $-$ | \(q+q^{5}+2q^{7}+2q^{13}+6q^{17}-4q^{19}+\cdots\) | |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(180))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(180)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(90))\)\(^{\oplus 2}\)