Properties

Label 180.10.a.e
Level 180
Weight 10
Character orbit 180.a
Self dual yes
Analytic conductor 92.706
Analytic rank 0
Dimension 2
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 180 = 2^{2} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 180.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(92.7064505095\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{79}) \)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 3 \)
Twist minimal: no (minimal twist has level 20)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 48\sqrt{79}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 625 q^{5} + ( -190 + 23 \beta ) q^{7} +O(q^{10})\) \( q + 625 q^{5} + ( -190 + 23 \beta ) q^{7} + ( -51360 - 10 \beta ) q^{11} + ( 89570 + 188 \beta ) q^{13} + ( -158010 - 116 \beta ) q^{17} + ( 68636 + 1720 \beta ) q^{19} + ( 332730 + 2131 \beta ) q^{23} + 390625 q^{25} + ( 3446874 + 1960 \beta ) q^{29} + ( 145916 - 8750 \beta ) q^{31} + ( -118750 + 14375 \beta ) q^{35} + ( 5630690 - 19992 \beta ) q^{37} + ( -14886726 - 24060 \beta ) q^{41} + ( -5854090 - 33205 \beta ) q^{43} + ( -31246650 - 14191 \beta ) q^{47} + ( 55968957 - 8740 \beta ) q^{49} + ( -4708890 + 70844 \beta ) q^{53} + ( -32100000 - 6250 \beta ) q^{55} + ( 46465428 + 124660 \beta ) q^{59} + ( 97836962 + 240480 \beta ) q^{61} + ( 55981250 + 117500 \beta ) q^{65} + ( -109883710 + 67713 \beta ) q^{67} + ( -155603508 + 465870 \beta ) q^{71} + ( -49612030 - 682572 \beta ) q^{73} + ( -32105280 - 1179380 \beta ) q^{77} + ( 271130888 + 23340 \beta ) q^{79} + ( 628457850 - 64319 \beta ) q^{83} + ( -98756250 - 72500 \beta ) q^{85} + ( 231145926 - 1807320 \beta ) q^{89} + ( 770018884 + 2024390 \beta ) q^{91} + ( 42897500 + 1075000 \beta ) q^{95} + ( 835858370 - 967652 \beta ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 1250q^{5} - 380q^{7} + O(q^{10}) \) \( 2q + 1250q^{5} - 380q^{7} - 102720q^{11} + 179140q^{13} - 316020q^{17} + 137272q^{19} + 665460q^{23} + 781250q^{25} + 6893748q^{29} + 291832q^{31} - 237500q^{35} + 11261380q^{37} - 29773452q^{41} - 11708180q^{43} - 62493300q^{47} + 111937914q^{49} - 9417780q^{53} - 64200000q^{55} + 92930856q^{59} + 195673924q^{61} + 111962500q^{65} - 219767420q^{67} - 311207016q^{71} - 99224060q^{73} - 64210560q^{77} + 542261776q^{79} + 1256915700q^{83} - 197512500q^{85} + 462291852q^{89} + 1540037768q^{91} + 85795000q^{95} + 1671716740q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−8.88819
8.88819
0 0 0 625.000 0 −10002.6 0 0 0
1.2 0 0 0 625.000 0 9622.57 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 180.10.a.e 2
3.b odd 2 1 20.10.a.b 2
12.b even 2 1 80.10.a.j 2
15.d odd 2 1 100.10.a.c 2
15.e even 4 2 100.10.c.c 4
24.f even 2 1 320.10.a.l 2
24.h odd 2 1 320.10.a.t 2
60.h even 2 1 400.10.a.l 2
60.l odd 4 2 400.10.c.l 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
20.10.a.b 2 3.b odd 2 1
80.10.a.j 2 12.b even 2 1
100.10.a.c 2 15.d odd 2 1
100.10.c.c 4 15.e even 4 2
180.10.a.e 2 1.a even 1 1 trivial
320.10.a.l 2 24.f even 2 1
320.10.a.t 2 24.h odd 2 1
400.10.a.l 2 60.h even 2 1
400.10.c.l 4 60.l odd 4 2

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(5\) \(-1\)

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(180))\):

\( T_{7}^{2} + 380 T_{7} - 96250364 \)
\( T_{11}^{2} + 102720 T_{11} + 2619648000 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ \( ( 1 - 625 T )^{2} \)
$7$ \( 1 + 380 T - 15543150 T^{2} + 15334370660 T^{3} + 1628413597910449 T^{4} \)
$11$ \( 1 + 102720 T + 7335543382 T^{2} + 242208386819520 T^{3} + 5559917313492231481 T^{4} \)
$13$ \( 1 - 179140 T + 22798610142 T^{2} - 1899690017679220 T^{3} + \)\(11\!\cdots\!29\)\( T^{4} \)
$17$ \( 1 + 316020 T + 259693705798 T^{2} + 37476140730581940 T^{3} + \)\(14\!\cdots\!09\)\( T^{4} \)
$19$ \( 1 - 137272 T + 111610161654 T^{2} - 44295985649518888 T^{3} + \)\(10\!\cdots\!41\)\( T^{4} \)
$23$ \( 1 - 665460 T + 2886450615250 T^{2} - 1198595050097167980 T^{3} + \)\(32\!\cdots\!69\)\( T^{4} \)
$29$ \( 1 - 6893748 T + 40195999658014 T^{2} - \)\(10\!\cdots\!12\)\( T^{3} + \)\(21\!\cdots\!61\)\( T^{4} \)
$31$ \( 1 - 291832 T + 38964935800398 T^{2} - 7715927814392939272 T^{3} + \)\(69\!\cdots\!41\)\( T^{4} \)
$37$ \( 1 - 11261380 T + 218879982937230 T^{2} - \)\(14\!\cdots\!60\)\( T^{3} + \)\(16\!\cdots\!29\)\( T^{4} \)
$41$ \( 1 + 29773452 T + 771012402449398 T^{2} + \)\(97\!\cdots\!72\)\( T^{3} + \)\(10\!\cdots\!21\)\( T^{4} \)
$43$ \( 1 + 11708180 T + 838769843899386 T^{2} + \)\(58\!\cdots\!40\)\( T^{3} + \)\(25\!\cdots\!49\)\( T^{4} \)
$47$ \( 1 + 62493300 T + 3177958884734338 T^{2} + \)\(69\!\cdots\!00\)\( T^{3} + \)\(12\!\cdots\!89\)\( T^{4} \)
$53$ \( 1 + 9417780 T + 5708185761526990 T^{2} + \)\(31\!\cdots\!40\)\( T^{3} + \)\(10\!\cdots\!89\)\( T^{4} \)
$59$ \( 1 - 92930856 T + 16656477955483462 T^{2} - \)\(80\!\cdots\!84\)\( T^{3} + \)\(75\!\cdots\!21\)\( T^{4} \)
$61$ \( 1 - 195673924 T + 22434263296171326 T^{2} - \)\(22\!\cdots\!84\)\( T^{3} + \)\(13\!\cdots\!81\)\( T^{4} \)
$67$ \( 1 + 219767420 T + 65652945987990090 T^{2} + \)\(59\!\cdots\!40\)\( T^{3} + \)\(74\!\cdots\!09\)\( T^{4} \)
$71$ \( 1 + 311207016 T + 76405636625293726 T^{2} + \)\(14\!\cdots\!96\)\( T^{3} + \)\(21\!\cdots\!61\)\( T^{4} \)
$73$ \( 1 + 99224060 T + 35402447061205782 T^{2} + \)\(58\!\cdots\!80\)\( T^{3} + \)\(34\!\cdots\!69\)\( T^{4} \)
$79$ \( 1 - 542261776 T + 313115996157615582 T^{2} - \)\(64\!\cdots\!44\)\( T^{3} + \)\(14\!\cdots\!61\)\( T^{4} \)
$83$ \( 1 - 1256915700 T + 768086791626261130 T^{2} - \)\(23\!\cdots\!00\)\( T^{3} + \)\(34\!\cdots\!09\)\( T^{4} \)
$89$ \( 1 - 462291852 T + 159603168035249494 T^{2} - \)\(16\!\cdots\!68\)\( T^{3} + \)\(12\!\cdots\!81\)\( T^{4} \)
$97$ \( 1 - 1671716740 T + 2048690578856969670 T^{2} - \)\(12\!\cdots\!80\)\( T^{3} + \)\(57\!\cdots\!89\)\( T^{4} \)
show more
show less