Properties

Label 180.1.f
Level $180$
Weight $1$
Character orbit 180.f
Rep. character $\chi_{180}(19,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $1$
Sturm bound $36$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 180 = 2^{2} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 180.f (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 20 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(36\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(180, [\chi])\).

Total New Old
Modular forms 10 4 6
Cusp forms 2 2 0
Eisenstein series 8 2 6

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 2 0 0 0

Trace form

\( 2q - 2q^{4} + O(q^{10}) \) \( 2q - 2q^{4} - 2q^{10} + 2q^{16} - 2q^{25} + 4q^{34} + 2q^{40} - 2q^{49} - 4q^{61} - 2q^{64} + 4q^{85} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(180, [\chi])\) into newform subspaces

Label Dim. \(A\) Field Image CM RM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
180.1.f.a \(2\) \(0.090\) \(\Q(\sqrt{-1}) \) \(D_{2}\) \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-15}) \) \(\Q(\sqrt{15}) \) \(0\) \(0\) \(0\) \(0\) \(q-iq^{2}-q^{4}-iq^{5}+iq^{8}-q^{10}+\cdots\)