Properties

Label 18.8
Level 18
Weight 8
Dimension 16
Nonzero newspaces 2
Newform subspaces 4
Sturm bound 144
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 18 = 2 \cdot 3^{2} \)
Weight: \( k \) = \( 8 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 4 \)
Sturm bound: \(144\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(18))\).

Total New Old
Modular forms 71 16 55
Cusp forms 55 16 39
Eisenstein series 16 0 16

Trace form

\( 16 q + 8 q^{2} - 39 q^{3} - 320 q^{4} + 432 q^{5} + 1272 q^{6} - 394 q^{7} - 1024 q^{8} + 57 q^{9} + 768 q^{10} + 327 q^{11} + 1274 q^{13} + 22768 q^{14} + 18360 q^{15} - 20480 q^{16} - 89862 q^{17} - 3408 q^{18}+ \cdots + 15105546 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(18))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
18.8.a \(\chi_{18}(1, \cdot)\) 18.8.a.a 1 1
18.8.a.b 1
18.8.c \(\chi_{18}(7, \cdot)\) 18.8.c.a 6 2
18.8.c.b 8

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(18))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_1(18)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 2}\)