Defining parameters
Level: | \( N \) | \(=\) | \( 18 = 2 \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 7 \) |
Character orbit: | \([\chi]\) | \(=\) | 18.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 3 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(21\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{7}(18, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 22 | 2 | 20 |
Cusp forms | 14 | 2 | 12 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{7}^{\mathrm{new}}(18, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
18.7.b.a | $2$ | $4.141$ | \(\Q(\sqrt{-2}) \) | None | \(0\) | \(0\) | \(0\) | \(-968\) | \(q+4\beta q^{2}-2^{5}q^{4}+123\beta q^{5}-22^{2}q^{7}+\cdots\) |
Decomposition of \(S_{7}^{\mathrm{old}}(18, [\chi])\) into lower level spaces
\( S_{7}^{\mathrm{old}}(18, [\chi]) \simeq \) \(S_{7}^{\mathrm{new}}(3, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(6, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 2}\)