# Properties

 Label 18.6.c.a.7.2 Level $18$ Weight $6$ Character 18.7 Analytic conductor $2.887$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$18 = 2 \cdot 3^{2}$$ Weight: $$k$$ $$=$$ $$6$$ Character orbit: $$[\chi]$$ $$=$$ 18.c (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$2.88690875663$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(\zeta_{3})$$ Coefficient field: $$\Q(\sqrt{-2}, \sqrt{-3})$$ Defining polynomial: $$x^{4} - 2x^{2} + 4$$ x^4 - 2*x^2 + 4 Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$2^{2}\cdot 3^{3}$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## Embedding invariants

 Embedding label 7.2 Root $$1.22474 - 0.707107i$$ of defining polynomial Character $$\chi$$ $$=$$ 18.7 Dual form 18.6.c.a.13.2

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(2.00000 - 3.46410i) q^{2} +(14.6969 - 5.19615i) q^{3} +(-8.00000 - 13.8564i) q^{4} +(1.19694 + 2.07316i) q^{5} +(11.3939 - 61.3040i) q^{6} +(25.8485 - 44.7709i) q^{7} -64.0000 q^{8} +(189.000 - 152.735i) q^{9} +O(q^{10})$$ $$q+(2.00000 - 3.46410i) q^{2} +(14.6969 - 5.19615i) q^{3} +(-8.00000 - 13.8564i) q^{4} +(1.19694 + 2.07316i) q^{5} +(11.3939 - 61.3040i) q^{6} +(25.8485 - 44.7709i) q^{7} -64.0000 q^{8} +(189.000 - 152.735i) q^{9} +9.57551 q^{10} +(-335.484 + 581.076i) q^{11} +(-189.576 - 162.078i) q^{12} +(423.469 + 733.470i) q^{13} +(-103.394 - 179.083i) q^{14} +(28.3638 + 24.2496i) q^{15} +(-128.000 + 221.703i) q^{16} -1135.51 q^{17} +(-151.090 - 960.185i) q^{18} +1002.42 q^{19} +(19.1510 - 33.1705i) q^{20} +(147.257 - 792.307i) q^{21} +(1341.94 + 2324.30i) q^{22} +(-1200.79 - 2079.83i) q^{23} +(-940.604 + 332.554i) q^{24} +(1559.63 - 2701.37i) q^{25} +3387.76 q^{26} +(1984.09 - 3226.81i) q^{27} -827.151 q^{28} +(-1884.71 + 3264.41i) q^{29} +(140.731 - 49.7558i) q^{30} +(-2017.08 - 3493.69i) q^{31} +(512.000 + 886.810i) q^{32} +(-1911.23 + 10283.3i) q^{33} +(-2271.02 + 3933.53i) q^{34} +123.756 q^{35} +(-3628.36 - 1396.98i) q^{36} -14537.7 q^{37} +(2004.84 - 3472.49i) q^{38} +(10034.9 + 8579.36i) q^{39} +(-76.6041 - 132.682i) q^{40} +(3941.38 + 6826.67i) q^{41} +(-2450.12 - 2094.73i) q^{42} +(10176.5 - 17626.3i) q^{43} +10735.5 q^{44} +(542.865 + 209.012i) q^{45} -9606.31 q^{46} +(8068.27 - 13974.7i) q^{47} +(-729.208 + 3923.46i) q^{48} +(7067.21 + 12240.8i) q^{49} +(-6238.54 - 10805.5i) q^{50} +(-16688.6 + 5900.29i) q^{51} +(6775.51 - 11735.5i) q^{52} -5549.94 q^{53} +(-7209.83 - 13326.7i) q^{54} -1606.22 q^{55} +(-1654.30 + 2865.34i) q^{56} +(14732.5 - 5208.73i) q^{57} +(7538.84 + 13057.7i) q^{58} +(3206.13 + 5553.17i) q^{59} +(109.102 - 587.017i) q^{60} +(-4440.22 + 7690.68i) q^{61} -16136.7 q^{62} +(-1952.72 - 12409.7i) q^{63} +4096.00 q^{64} +(-1013.73 + 1755.84i) q^{65} +(31799.8 + 27187.2i) q^{66} +(21468.8 + 37185.0i) q^{67} +(9084.10 + 15734.1i) q^{68} +(-28455.0 - 24327.6i) q^{69} +(247.512 - 428.704i) q^{70} -63349.1 q^{71} +(-12096.0 + 9775.04i) q^{72} -12807.7 q^{73} +(-29075.3 + 50360.0i) q^{74} +(8885.14 - 47805.9i) q^{75} +(-8019.36 - 13889.9i) q^{76} +(17343.5 + 30039.8i) q^{77} +(49789.6 - 17603.3i) q^{78} +(1463.87 - 2535.49i) q^{79} -612.832 q^{80} +(12393.0 - 57733.9i) q^{81} +31531.0 q^{82} +(23770.7 - 41172.1i) q^{83} +(-12156.6 + 4298.00i) q^{84} +(-1359.14 - 2354.10i) q^{85} +(-40706.2 - 70505.1i) q^{86} +(-10737.1 + 57770.1i) q^{87} +(21471.0 - 37188.8i) q^{88} +84795.6 q^{89} +(1809.77 - 1462.52i) q^{90} +43784.1 q^{91} +(-19212.6 + 33277.2i) q^{92} +(-47798.7 - 40865.5i) q^{93} +(-32273.1 - 55898.6i) q^{94} +(1199.84 + 2078.18i) q^{95} +(12132.8 + 10373.0i) q^{96} +(-55874.3 + 96777.2i) q^{97} +56537.7 q^{98} +(25344.1 + 161063. i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q + 8 q^{2} - 32 q^{4} - 54 q^{5} - 72 q^{6} + 74 q^{7} - 256 q^{8} + 756 q^{9}+O(q^{10})$$ 4 * q + 8 * q^2 - 32 * q^4 - 54 * q^5 - 72 * q^6 + 74 * q^7 - 256 * q^8 + 756 * q^9 $$4 q + 8 q^{2} - 32 q^{4} - 54 q^{5} - 72 q^{6} + 74 q^{7} - 256 q^{8} + 756 q^{9} - 432 q^{10} - 78 q^{11} - 288 q^{12} + 1106 q^{13} - 296 q^{14} + 378 q^{15} - 512 q^{16} + 984 q^{17} + 1512 q^{18} - 3280 q^{19} - 864 q^{20} - 234 q^{21} + 312 q^{22} - 5538 q^{23} + 3064 q^{25} + 8848 q^{26} - 2368 q^{28} - 3894 q^{29} + 6912 q^{30} + 4718 q^{31} + 2048 q^{32} - 17874 q^{33} + 1968 q^{34} - 2268 q^{35} - 6048 q^{36} - 9592 q^{37} - 6560 q^{38} + 18594 q^{39} + 3456 q^{40} + 15354 q^{41} - 4392 q^{42} + 32858 q^{43} + 2496 q^{44} + 5346 q^{45} - 44304 q^{46} + 24954 q^{47} + 4608 q^{48} + 30444 q^{49} - 12256 q^{50} - 81216 q^{51} + 17696 q^{52} - 32664 q^{53} - 44712 q^{54} - 70092 q^{55} - 4736 q^{56} + 107136 q^{57} + 15576 q^{58} + 21966 q^{59} + 21600 q^{60} + 3050 q^{61} + 37744 q^{62} + 6210 q^{63} + 16384 q^{64} + 12582 q^{65} + 77112 q^{66} + 36758 q^{67} - 7872 q^{68} - 39042 q^{69} - 4536 q^{70} - 147696 q^{71} - 48384 q^{72} - 102376 q^{73} - 19184 q^{74} + 19080 q^{75} + 26240 q^{76} + 21462 q^{77} + 69120 q^{78} - 14926 q^{79} + 27648 q^{80} + 49572 q^{81} + 122832 q^{82} + 90762 q^{83} - 13824 q^{84} - 94500 q^{85} - 131432 q^{86} - 18522 q^{87} + 4992 q^{88} - 18600 q^{89} - 81648 q^{90} + 99124 q^{91} - 88608 q^{92} - 145458 q^{93} - 99816 q^{94} + 151416 q^{95} + 18432 q^{96} - 30262 q^{97} + 243552 q^{98} + 319626 q^{99}+O(q^{100})$$ 4 * q + 8 * q^2 - 32 * q^4 - 54 * q^5 - 72 * q^6 + 74 * q^7 - 256 * q^8 + 756 * q^9 - 432 * q^10 - 78 * q^11 - 288 * q^12 + 1106 * q^13 - 296 * q^14 + 378 * q^15 - 512 * q^16 + 984 * q^17 + 1512 * q^18 - 3280 * q^19 - 864 * q^20 - 234 * q^21 + 312 * q^22 - 5538 * q^23 + 3064 * q^25 + 8848 * q^26 - 2368 * q^28 - 3894 * q^29 + 6912 * q^30 + 4718 * q^31 + 2048 * q^32 - 17874 * q^33 + 1968 * q^34 - 2268 * q^35 - 6048 * q^36 - 9592 * q^37 - 6560 * q^38 + 18594 * q^39 + 3456 * q^40 + 15354 * q^41 - 4392 * q^42 + 32858 * q^43 + 2496 * q^44 + 5346 * q^45 - 44304 * q^46 + 24954 * q^47 + 4608 * q^48 + 30444 * q^49 - 12256 * q^50 - 81216 * q^51 + 17696 * q^52 - 32664 * q^53 - 44712 * q^54 - 70092 * q^55 - 4736 * q^56 + 107136 * q^57 + 15576 * q^58 + 21966 * q^59 + 21600 * q^60 + 3050 * q^61 + 37744 * q^62 + 6210 * q^63 + 16384 * q^64 + 12582 * q^65 + 77112 * q^66 + 36758 * q^67 - 7872 * q^68 - 39042 * q^69 - 4536 * q^70 - 147696 * q^71 - 48384 * q^72 - 102376 * q^73 - 19184 * q^74 + 19080 * q^75 + 26240 * q^76 + 21462 * q^77 + 69120 * q^78 - 14926 * q^79 + 27648 * q^80 + 49572 * q^81 + 122832 * q^82 + 90762 * q^83 - 13824 * q^84 - 94500 * q^85 - 131432 * q^86 - 18522 * q^87 + 4992 * q^88 - 18600 * q^89 - 81648 * q^90 + 99124 * q^91 - 88608 * q^92 - 145458 * q^93 - 99816 * q^94 + 151416 * q^95 + 18432 * q^96 - 30262 * q^97 + 243552 * q^98 + 319626 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/18\mathbb{Z}\right)^\times$$.

 $$n$$ $$11$$ $$\chi(n)$$ $$e\left(\frac{2}{3}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 2.00000 3.46410i 0.353553 0.612372i
$$3$$ 14.6969 5.19615i 0.942809 0.333333i
$$4$$ −8.00000 13.8564i −0.250000 0.433013i
$$5$$ 1.19694 + 2.07316i 0.0214115 + 0.0370858i 0.876533 0.481342i $$-0.159851\pi$$
−0.855121 + 0.518428i $$0.826517\pi$$
$$6$$ 11.3939 61.3040i 0.129209 0.695201i
$$7$$ 25.8485 44.7709i 0.199384 0.345343i −0.748945 0.662632i $$-0.769439\pi$$
0.948329 + 0.317289i $$0.102773\pi$$
$$8$$ −64.0000 −0.353553
$$9$$ 189.000 152.735i 0.777778 0.628539i
$$10$$ 9.57551 0.0302804
$$11$$ −335.484 + 581.076i −0.835969 + 1.44794i 0.0572695 + 0.998359i $$0.481761\pi$$
−0.893239 + 0.449583i $$0.851573\pi$$
$$12$$ −189.576 162.078i −0.380040 0.324915i
$$13$$ 423.469 + 733.470i 0.694966 + 1.20372i 0.970192 + 0.242337i $$0.0779140\pi$$
−0.275226 + 0.961380i $$0.588753\pi$$
$$14$$ −103.394 179.083i −0.140986 0.244194i
$$15$$ 28.3638 + 24.2496i 0.0325489 + 0.0278276i
$$16$$ −128.000 + 221.703i −0.125000 + 0.216506i
$$17$$ −1135.51 −0.952949 −0.476474 0.879188i $$-0.658085\pi$$
−0.476474 + 0.879188i $$0.658085\pi$$
$$18$$ −151.090 960.185i −0.109914 0.698512i
$$19$$ 1002.42 0.637039 0.318519 0.947916i $$-0.396814\pi$$
0.318519 + 0.947916i $$0.396814\pi$$
$$20$$ 19.1510 33.1705i 0.0107057 0.0185429i
$$21$$ 147.257 792.307i 0.0728665 0.392054i
$$22$$ 1341.94 + 2324.30i 0.591120 + 1.02385i
$$23$$ −1200.79 2079.83i −0.473311 0.819799i 0.526222 0.850347i $$-0.323608\pi$$
−0.999533 + 0.0305480i $$0.990275\pi$$
$$24$$ −940.604 + 332.554i −0.333333 + 0.117851i
$$25$$ 1559.63 2701.37i 0.499083 0.864437i
$$26$$ 3387.76 0.982831
$$27$$ 1984.09 3226.81i 0.523783 0.851852i
$$28$$ −827.151 −0.199384
$$29$$ −1884.71 + 3264.41i −0.416150 + 0.720792i −0.995548 0.0942518i $$-0.969954\pi$$
0.579399 + 0.815044i $$0.303287\pi$$
$$30$$ 140.731 49.7558i 0.0285486 0.0100935i
$$31$$ −2017.08 3493.69i −0.376981 0.652951i 0.613640 0.789586i $$-0.289705\pi$$
−0.990621 + 0.136635i $$0.956371\pi$$
$$32$$ 512.000 + 886.810i 0.0883883 + 0.153093i
$$33$$ −1911.23 + 10283.3i −0.305512 + 1.64379i
$$34$$ −2271.02 + 3933.53i −0.336918 + 0.583559i
$$35$$ 123.756 0.0170764
$$36$$ −3628.36 1396.98i −0.466610 0.179653i
$$37$$ −14537.7 −1.74578 −0.872892 0.487913i $$-0.837758\pi$$
−0.872892 + 0.487913i $$0.837758\pi$$
$$38$$ 2004.84 3472.49i 0.225227 0.390105i
$$39$$ 10034.9 + 8579.36i 1.05646 + 0.903220i
$$40$$ −76.6041 132.682i −0.00757010 0.0131118i
$$41$$ 3941.38 + 6826.67i 0.366175 + 0.634233i 0.988964 0.148156i $$-0.0473339\pi$$
−0.622789 + 0.782390i $$0.714001\pi$$
$$42$$ −2450.12 2094.73i −0.214321 0.183233i
$$43$$ 10176.5 17626.3i 0.839323 1.45375i −0.0511388 0.998692i $$-0.516285\pi$$
0.890462 0.455058i $$-0.150382\pi$$
$$44$$ 10735.5 0.835969
$$45$$ 542.865 + 209.012i 0.0399633 + 0.0153865i
$$46$$ −9606.31 −0.669363
$$47$$ 8068.27 13974.7i 0.532765 0.922776i −0.466503 0.884520i $$-0.654486\pi$$
0.999268 0.0382565i $$-0.0121804\pi$$
$$48$$ −729.208 + 3923.46i −0.0456823 + 0.245791i
$$49$$ 7067.21 + 12240.8i 0.420492 + 0.728314i
$$50$$ −6238.54 10805.5i −0.352905 0.611249i
$$51$$ −16688.6 + 5900.29i −0.898449 + 0.317650i
$$52$$ 6775.51 11735.5i 0.347483 0.601858i
$$53$$ −5549.94 −0.271393 −0.135697 0.990750i $$-0.543327\pi$$
−0.135697 + 0.990750i $$0.543327\pi$$
$$54$$ −7209.83 13326.7i −0.336465 0.621925i
$$55$$ −1606.22 −0.0715974
$$56$$ −1654.30 + 2865.34i −0.0704928 + 0.122097i
$$57$$ 14732.5 5208.73i 0.600606 0.212346i
$$58$$ 7538.84 + 13057.7i 0.294262 + 0.509677i
$$59$$ 3206.13 + 5553.17i 0.119909 + 0.207688i 0.919731 0.392549i $$-0.128406\pi$$
−0.799823 + 0.600236i $$0.795073\pi$$
$$60$$ 109.102 587.017i 0.00391251 0.0210510i
$$61$$ −4440.22 + 7690.68i −0.152785 + 0.264631i −0.932250 0.361814i $$-0.882157\pi$$
0.779466 + 0.626445i $$0.215491\pi$$
$$62$$ −16136.7 −0.533132
$$63$$ −1952.72 12409.7i −0.0619853 0.393920i
$$64$$ 4096.00 0.125000
$$65$$ −1013.73 + 1755.84i −0.0297605 + 0.0515467i
$$66$$ 31799.8 + 27187.2i 0.898596 + 0.768254i
$$67$$ 21468.8 + 37185.0i 0.584279 + 1.01200i 0.994965 + 0.100225i $$0.0319561\pi$$
−0.410685 + 0.911777i $$0.634711\pi$$
$$68$$ 9084.10 + 15734.1i 0.238237 + 0.412639i
$$69$$ −28455.0 24327.6i −0.719509 0.615144i
$$70$$ 247.512 428.704i 0.00603742 0.0104571i
$$71$$ −63349.1 −1.49140 −0.745701 0.666281i $$-0.767885\pi$$
−0.745701 + 0.666281i $$0.767885\pi$$
$$72$$ −12096.0 + 9775.04i −0.274986 + 0.222222i
$$73$$ −12807.7 −0.281295 −0.140648 0.990060i $$-0.544919\pi$$
−0.140648 + 0.990060i $$0.544919\pi$$
$$74$$ −29075.3 + 50360.0i −0.617228 + 1.06907i
$$75$$ 8885.14 47805.9i 0.182394 0.981360i
$$76$$ −8019.36 13889.9i −0.159260 0.275846i
$$77$$ 17343.5 + 30039.8i 0.333357 + 0.577392i
$$78$$ 49789.6 17603.3i 0.926622 0.327610i
$$79$$ 1463.87 2535.49i 0.0263897 0.0457083i −0.852529 0.522680i $$-0.824932\pi$$
0.878919 + 0.476972i $$0.158266\pi$$
$$80$$ −612.832 −0.0107057
$$81$$ 12393.0 57733.9i 0.209877 0.977728i
$$82$$ 31531.0 0.517849
$$83$$ 23770.7 41172.1i 0.378745 0.656006i −0.612135 0.790753i $$-0.709689\pi$$
0.990880 + 0.134747i $$0.0430223\pi$$
$$84$$ −12156.6 + 4298.00i −0.187981 + 0.0664612i
$$85$$ −1359.14 2354.10i −0.0204040 0.0353408i
$$86$$ −40706.2 70505.1i −0.593491 1.02796i
$$87$$ −10737.1 + 57770.1i −0.152086 + 0.818286i
$$88$$ 21471.0 37188.8i 0.295560 0.511925i
$$89$$ 84795.6 1.13474 0.567372 0.823461i $$-0.307960\pi$$
0.567372 + 0.823461i $$0.307960\pi$$
$$90$$ 1809.77 1462.52i 0.0235514 0.0190324i
$$91$$ 43784.1 0.554260
$$92$$ −19212.6 + 33277.2i −0.236656 + 0.409900i
$$93$$ −47798.7 40865.5i −0.573072 0.489947i
$$94$$ −32273.1 55898.6i −0.376722 0.652501i
$$95$$ 1199.84 + 2078.18i 0.0136399 + 0.0236251i
$$96$$ 12132.8 + 10373.0i 0.134364 + 0.114875i
$$97$$ −55874.3 + 96777.2i −0.602952 + 1.04434i 0.389419 + 0.921061i $$0.372676\pi$$
−0.992371 + 0.123284i $$0.960658\pi$$
$$98$$ 56537.7 0.594666
$$99$$ 25344.1 + 161063.i 0.259890 + 1.65162i
$$100$$ −49908.3 −0.499083
$$101$$ 47291.0 81910.3i 0.461291 0.798979i −0.537735 0.843114i $$-0.680720\pi$$
0.999026 + 0.0441351i $$0.0140532\pi$$
$$102$$ −12937.9 + 69611.4i −0.123130 + 0.662491i
$$103$$ −19556.5 33872.9i −0.181635 0.314601i 0.760803 0.648983i $$-0.224806\pi$$
−0.942437 + 0.334383i $$0.891472\pi$$
$$104$$ −27102.0 46942.1i −0.245708 0.425578i
$$105$$ 1818.84 643.056i 0.0160998 0.00569214i
$$106$$ −11099.9 + 19225.6i −0.0959520 + 0.166194i
$$107$$ 6691.62 0.0565030 0.0282515 0.999601i $$-0.491006\pi$$
0.0282515 + 0.999601i $$0.491006\pi$$
$$108$$ −60584.7 1677.83i −0.499808 0.0138416i
$$109$$ −34661.9 −0.279438 −0.139719 0.990191i $$-0.544620\pi$$
−0.139719 + 0.990191i $$0.544620\pi$$
$$110$$ −3212.43 + 5564.09i −0.0253135 + 0.0438443i
$$111$$ −213659. + 75540.0i −1.64594 + 0.581928i
$$112$$ 6617.21 + 11461.3i 0.0498459 + 0.0863357i
$$113$$ 47363.9 + 82036.6i 0.348940 + 0.604382i 0.986061 0.166381i $$-0.0532083\pi$$
−0.637121 + 0.770764i $$0.719875\pi$$
$$114$$ 11421.5 61452.4i 0.0823113 0.442870i
$$115$$ 2874.54 4978.85i 0.0202686 0.0351062i
$$116$$ 60310.7 0.416150
$$117$$ 192062. + 73947.3i 1.29711 + 0.499410i
$$118$$ 25649.0 0.169576
$$119$$ −29351.3 + 50837.9i −0.190002 + 0.329094i
$$120$$ −1815.28 1551.97i −0.0115078 0.00983856i
$$121$$ −144574. 250409.i −0.897689 1.55484i
$$122$$ 17760.9 + 30762.7i 0.108035 + 0.187122i
$$123$$ 93398.6 + 79851.1i 0.556644 + 0.475903i
$$124$$ −32273.3 + 55899.1i −0.188491 + 0.326475i
$$125$$ 14948.0 0.0855674
$$126$$ −46893.8 18054.9i −0.263141 0.101314i
$$127$$ 156622. 0.861673 0.430837 0.902430i $$-0.358219\pi$$
0.430837 + 0.902430i $$0.358219\pi$$
$$128$$ 8192.00 14189.0i 0.0441942 0.0765466i
$$129$$ 57975.1 311931.i 0.306738 1.65038i
$$130$$ 4054.93 + 7023.35i 0.0210439 + 0.0364490i
$$131$$ −87709.2 151917.i −0.446547 0.773441i 0.551612 0.834101i $$-0.314013\pi$$
−0.998159 + 0.0606596i $$0.980680\pi$$
$$132$$ 157779. 55783.3i 0.788159 0.278656i
$$133$$ 25911.0 44879.2i 0.127015 0.219997i
$$134$$ 171750. 0.826296
$$135$$ 9064.52 + 251.032i 0.0428066 + 0.00118548i
$$136$$ 72672.8 0.336918
$$137$$ −35875.3 + 62137.9i −0.163303 + 0.282849i −0.936051 0.351863i $$-0.885548\pi$$
0.772748 + 0.634713i $$0.218882\pi$$
$$138$$ −141183. + 49915.8i −0.631082 + 0.223121i
$$139$$ −23800.6 41223.8i −0.104484 0.180972i 0.809043 0.587749i $$-0.199986\pi$$
−0.913527 + 0.406777i $$0.866653\pi$$
$$140$$ −990.049 1714.81i −0.00426910 0.00739430i
$$141$$ 45964.4 247309.i 0.194704 1.04759i
$$142$$ −126698. + 219448.i −0.527290 + 0.913293i
$$143$$ −568269. −2.32388
$$144$$ 9669.75 + 61451.9i 0.0388605 + 0.246961i
$$145$$ −9023.53 −0.0356415
$$146$$ −25615.3 + 44367.0i −0.0994530 + 0.172258i
$$147$$ 167471. + 143180.i 0.639215 + 0.546497i
$$148$$ 116301. + 201440.i 0.436446 + 0.755947i
$$149$$ 136540. + 236494.i 0.503840 + 0.872677i 0.999990 + 0.00444010i $$0.00141333\pi$$
−0.496150 + 0.868237i $$0.665253\pi$$
$$150$$ −147834. 126391.i −0.536472 0.458657i
$$151$$ 8638.27 14961.9i 0.0308308 0.0534005i −0.850198 0.526463i $$-0.823518\pi$$
0.881029 + 0.473062i $$0.156851\pi$$
$$152$$ −64154.9 −0.225227
$$153$$ −214612. + 173433.i −0.741182 + 0.598966i
$$154$$ 138748. 0.471439
$$155$$ 4828.65 8363.47i 0.0161435 0.0279613i
$$156$$ 38599.7 207683.i 0.126991 0.683265i
$$157$$ 194609. + 337073.i 0.630107 + 1.09138i 0.987529 + 0.157434i $$0.0503222\pi$$
−0.357423 + 0.933943i $$0.616344\pi$$
$$158$$ −5855.47 10142.0i −0.0186603 0.0323206i
$$159$$ −81567.2 + 28838.4i −0.255872 + 0.0904644i
$$160$$ −1225.66 + 2122.91i −0.00378505 + 0.00655590i
$$161$$ −124154. −0.377482
$$162$$ −175210. 158398.i −0.524531 0.474202i
$$163$$ 608055. 1.79256 0.896280 0.443489i $$-0.146260\pi$$
0.896280 + 0.443489i $$0.146260\pi$$
$$164$$ 63062.1 109227.i 0.183087 0.317117i
$$165$$ −23606.5 + 8346.14i −0.0675027 + 0.0238658i
$$166$$ −95082.9 164688.i −0.267813 0.463866i
$$167$$ −24979.3 43265.4i −0.0693089 0.120047i 0.829288 0.558821i $$-0.188746\pi$$
−0.898597 + 0.438774i $$0.855413\pi$$
$$168$$ −9424.46 + 50707.7i −0.0257622 + 0.138612i
$$169$$ −173006. + 299655.i −0.465956 + 0.807059i
$$170$$ −10873.1 −0.0288557
$$171$$ 189457. 153105.i 0.495475 0.400404i
$$172$$ −325649. −0.839323
$$173$$ −93398.2 + 161770.i −0.237259 + 0.410945i −0.959927 0.280251i $$-0.909582\pi$$
0.722668 + 0.691196i $$0.242916\pi$$
$$174$$ 178647. + 152735.i 0.447326 + 0.382441i
$$175$$ −80628.3 139652.i −0.199018 0.344709i
$$176$$ −85883.9 148755.i −0.208992 0.361985i
$$177$$ 75975.4 + 64955.1i 0.182280 + 0.155840i
$$178$$ 169591. 293740.i 0.401193 0.694886i
$$179$$ 364514. 0.850319 0.425159 0.905119i $$-0.360218\pi$$
0.425159 + 0.905119i $$0.360218\pi$$
$$180$$ −1446.76 9194.26i −0.00332825 0.0211512i
$$181$$ −679166. −1.54092 −0.770459 0.637489i $$-0.779973\pi$$
−0.770459 + 0.637489i $$0.779973\pi$$
$$182$$ 87568.3 151673.i 0.195960 0.339413i
$$183$$ −25295.6 + 136101.i −0.0558365 + 0.300424i
$$184$$ 76850.4 + 133109.i 0.167341 + 0.289843i
$$185$$ −17400.7 30138.9i −0.0373798 0.0647438i
$$186$$ −237160. + 83848.6i −0.502642 + 0.177711i
$$187$$ 380946. 659818.i 0.796636 1.37981i
$$188$$ −258185. −0.532765
$$189$$ −93181.5 172237.i −0.189747 0.350730i
$$190$$ 9598.68 0.0192898
$$191$$ 383947. 665015.i 0.761531 1.31901i −0.180531 0.983569i $$-0.557782\pi$$
0.942061 0.335440i $$-0.108885\pi$$
$$192$$ 60198.7 21283.4i 0.117851 0.0416667i
$$193$$ −23647.4 40958.4i −0.0456972 0.0791498i 0.842272 0.539053i $$-0.181218\pi$$
−0.887969 + 0.459903i $$0.847884\pi$$
$$194$$ 223497. + 387109.i 0.426352 + 0.738463i
$$195$$ −5775.18 + 31073.0i −0.0108762 + 0.0585189i
$$196$$ 113075. 195852.i 0.210246 0.364157i
$$197$$ 817588. 1.50096 0.750479 0.660894i $$-0.229823\pi$$
0.750479 + 0.660894i $$0.229823\pi$$
$$198$$ 608629. + 234332.i 1.10329 + 0.424785i
$$199$$ −965334. −1.72800 −0.864002 0.503488i $$-0.832050\pi$$
−0.864002 + 0.503488i $$0.832050\pi$$
$$200$$ −99816.6 + 172887.i −0.176453 + 0.305625i
$$201$$ 508745. + 434951.i 0.888198 + 0.759365i
$$202$$ −189164. 327641.i −0.326182 0.564963i
$$203$$ 97433.7 + 168760.i 0.165947 + 0.287429i
$$204$$ 215265. + 184041.i 0.362158 + 0.309627i
$$205$$ −9435.18 + 16342.2i −0.0156807 + 0.0271598i
$$206$$ −156452. −0.256870
$$207$$ −544611. 209685.i −0.883407 0.340127i
$$208$$ −216816. −0.347483
$$209$$ −336296. + 582482.i −0.532545 + 0.922395i
$$210$$ 1410.06 7586.74i 0.00220643 0.0118715i
$$211$$ 283585. + 491183.i 0.438507 + 0.759516i 0.997575 0.0696058i $$-0.0221741\pi$$
−0.559068 + 0.829122i $$0.688841\pi$$
$$212$$ 44399.6 + 76902.3i 0.0678483 + 0.117517i
$$213$$ −931038. + 329172.i −1.40611 + 0.497134i
$$214$$ 13383.2 23180.4i 0.0199768 0.0346009i
$$215$$ 48722.8 0.0718846
$$216$$ −126982. + 206516.i −0.185185 + 0.301175i
$$217$$ −208554. −0.300656
$$218$$ −69323.8 + 120072.i −0.0987964 + 0.171120i
$$219$$ −188233. + 66550.6i −0.265208 + 0.0937652i
$$220$$ 12849.7 + 22256.4i 0.0178993 + 0.0310026i
$$221$$ −480855. 832865.i −0.662267 1.14708i
$$222$$ −165640. + 891217.i −0.225571 + 1.21367i
$$223$$ −103151. + 178663.i −0.138903 + 0.240587i −0.927082 0.374860i $$-0.877691\pi$$
0.788179 + 0.615446i $$0.211024\pi$$
$$224$$ 52937.7 0.0704928
$$225$$ −117822. 748769.i −0.155157 0.986033i
$$226$$ 378911. 0.493476
$$227$$ 70617.9 122314.i 0.0909600 0.157547i −0.816955 0.576701i $$-0.804340\pi$$
0.907915 + 0.419154i $$0.137673\pi$$
$$228$$ −190034. 162470.i −0.242100 0.206983i
$$229$$ 147494. + 255467.i 0.185860 + 0.321919i 0.943866 0.330329i $$-0.107160\pi$$
−0.758006 + 0.652247i $$0.773826\pi$$
$$230$$ −11498.2 19915.4i −0.0143321 0.0248239i
$$231$$ 410988. + 351374.i 0.506756 + 0.433251i
$$232$$ 120621. 208922.i 0.147131 0.254839i
$$233$$ 1.13433e6 1.36883 0.684417 0.729091i $$-0.260057\pi$$
0.684417 + 0.729091i $$0.260057\pi$$
$$234$$ 640286. 517429.i 0.764424 0.617748i
$$235$$ 38628.9 0.0456292
$$236$$ 51298.0 88850.8i 0.0599543 0.103844i
$$237$$ 8339.56 44870.5i 0.00964434 0.0518907i
$$238$$ 117405. + 203351.i 0.134352 + 0.232705i
$$239$$ −272291. 471622.i −0.308347 0.534072i 0.669654 0.742673i $$-0.266442\pi$$
−0.978001 + 0.208601i $$0.933109\pi$$
$$240$$ −9006.76 + 3184.37i −0.0100935 + 0.00356858i
$$241$$ 182180. 315546.i 0.202050 0.349961i −0.747139 0.664668i $$-0.768573\pi$$
0.949189 + 0.314707i $$0.101906\pi$$
$$242$$ −1.15659e6 −1.26952
$$243$$ −117855. 912907.i −0.128036 0.991770i
$$244$$ 142087. 0.152785
$$245$$ −16918.0 + 29302.9i −0.0180067 + 0.0311886i
$$246$$ 463410. 163840.i 0.488233 0.172616i
$$247$$ 424494. + 735246.i 0.442720 + 0.766814i
$$248$$ 129093. + 223596.i 0.133283 + 0.230853i
$$249$$ 135420. 728620.i 0.138416 0.744737i
$$250$$ 29896.0 51781.4i 0.0302526 0.0523991i
$$251$$ −371240. −0.371938 −0.185969 0.982556i $$-0.559542\pi$$
−0.185969 + 0.982556i $$0.559542\pi$$
$$252$$ −156332. + 126335.i −0.155076 + 0.125321i
$$253$$ 1.61138e6 1.58269
$$254$$ 313243. 542553.i 0.304647 0.527665i
$$255$$ −32207.4 27535.7i −0.0310174 0.0265183i
$$256$$ −32768.0 56755.8i −0.0312500 0.0541266i
$$257$$ −132228. 229025.i −0.124879 0.216297i 0.796807 0.604234i $$-0.206521\pi$$
−0.921686 + 0.387938i $$0.873188\pi$$
$$258$$ −964611. 824694.i −0.902201 0.771336i
$$259$$ −375777. + 650864.i −0.348081 + 0.602894i
$$260$$ 32439.5 0.0297605
$$261$$ 142380. + 904836.i 0.129374 + 0.822183i
$$262$$ −701673. −0.631512
$$263$$ −973703. + 1.68650e6i −0.868035 + 1.50348i −0.00403330 + 0.999992i $$0.501284\pi$$
−0.864002 + 0.503489i $$0.832049\pi$$
$$264$$ 122319. 658129.i 0.108015 0.581167i
$$265$$ −6642.94 11505.9i −0.00581093 0.0100648i
$$266$$ −103644. 179517.i −0.0898133 0.155561i
$$267$$ 1.24624e6 440611.i 1.06985 0.378248i
$$268$$ 343501. 594961.i 0.292140 0.506001i
$$269$$ −1.60697e6 −1.35402 −0.677012 0.735972i $$-0.736726\pi$$
−0.677012 + 0.735972i $$0.736726\pi$$
$$270$$ 18998.6 30898.4i 0.0158604 0.0257944i
$$271$$ −201653. −0.166795 −0.0833974 0.996516i $$-0.526577\pi$$
−0.0833974 + 0.996516i $$0.526577\pi$$
$$272$$ 145346. 251746.i 0.119119 0.206319i
$$273$$ 643493. 227509.i 0.522561 0.184753i
$$274$$ 143501. + 248552.i 0.115473 + 0.200005i
$$275$$ 1.04647e6 + 1.81253e6i 0.834436 + 1.44529i
$$276$$ −109453. + 588905.i −0.0864879 + 0.465342i
$$277$$ 110903. 192089.i 0.0868445 0.150419i −0.819331 0.573321i $$-0.805655\pi$$
0.906176 + 0.422901i $$0.138988\pi$$
$$278$$ −190405. −0.147763
$$279$$ −914838. 352228.i −0.703613 0.270903i
$$280$$ −7920.39 −0.00603742
$$281$$ −557032. + 964807.i −0.420837 + 0.728911i −0.996022 0.0891126i $$-0.971597\pi$$
0.575185 + 0.818024i $$0.304930\pi$$
$$282$$ −764773. 653843.i −0.572677 0.489610i
$$283$$ −521931. 904011.i −0.387389 0.670977i 0.604709 0.796447i $$-0.293290\pi$$
−0.992097 + 0.125470i $$0.959956\pi$$
$$284$$ 506793. + 877791.i 0.372850 + 0.645796i
$$285$$ 28432.4 + 24308.3i 0.0207349 + 0.0177273i
$$286$$ −1.13654e6 + 1.96854e6i −0.821616 + 1.42308i
$$287$$ 407514. 0.292037
$$288$$ 232215. + 89406.7i 0.164972 + 0.0635169i
$$289$$ −130469. −0.0918888
$$290$$ −18047.1 + 31258.4i −0.0126012 + 0.0218259i
$$291$$ −318313. + 1.71266e6i −0.220354 + 1.18560i
$$292$$ 102461. + 177468.i 0.0703239 + 0.121805i
$$293$$ −1.28339e6 2.22290e6i −0.873352 1.51269i −0.858508 0.512801i $$-0.828608\pi$$
−0.0148448 0.999890i $$-0.504725\pi$$
$$294$$ 830931. 293779.i 0.560656 0.198222i
$$295$$ −7675.07 + 13293.6i −0.00513485 + 0.00889381i
$$296$$ 930411. 0.617228
$$297$$ 1.20939e6 + 2.23545e6i 0.795565 + 1.47053i
$$298$$ 1.09232e6 0.712538
$$299$$ 1.01699e6 1.76149e6i 0.657871 1.13947i
$$300$$ −733499. + 259331.i −0.470540 + 0.166361i
$$301$$ −526096. 911225.i −0.334695 0.579708i
$$302$$ −34553.1 59847.7i −0.0218007 0.0377598i
$$303$$ 269414. 1.44956e6i 0.168583 0.907048i
$$304$$ −128310. + 222239.i −0.0796298 + 0.137923i
$$305$$ −21258.7 −0.0130854
$$306$$ 171564. + 1.09030e6i 0.104743 + 0.665646i
$$307$$ −1.45132e6 −0.878857 −0.439428 0.898278i $$-0.644819\pi$$
−0.439428 + 0.898278i $$0.644819\pi$$
$$308$$ 277496. 480637.i 0.166679 0.288696i
$$309$$ −463430. 396210.i −0.276114 0.236064i
$$310$$ −19314.6 33453.9i −0.0114151 0.0197716i
$$311$$ 866527. + 1.50087e6i 0.508020 + 0.879917i 0.999957 + 0.00928608i $$0.00295589\pi$$
−0.491936 + 0.870631i $$0.663711\pi$$
$$312$$ −642235. 549079.i −0.373515 0.319336i
$$313$$ 1.24020e6 2.14810e6i 0.715538 1.23935i −0.247214 0.968961i $$-0.579515\pi$$
0.962752 0.270386i $$-0.0871515\pi$$
$$314$$ 1.55687e6 0.891105
$$315$$ 23389.9 18901.9i 0.0132817 0.0107332i
$$316$$ −46843.8 −0.0263897
$$317$$ 1.06813e6 1.85006e6i 0.597002 1.03404i −0.396259 0.918139i $$-0.629692\pi$$
0.993261 0.115899i $$-0.0369750\pi$$
$$318$$ −63235.4 + 340234.i −0.0350665 + 0.188673i
$$319$$ −1.26458e6 2.19032e6i −0.695777 1.20512i
$$320$$ 4902.66 + 8491.66i 0.00267644 + 0.00463572i
$$321$$ 98346.3 34770.7i 0.0532716 0.0188343i
$$322$$ −248308. + 430083.i −0.133460 + 0.231160i
$$323$$ −1.13826e6 −0.607065
$$324$$ −899128. + 290148.i −0.475838 + 0.153553i
$$325$$ 2.64183e6 1.38738
$$326$$ 1.21611e6 2.10636e6i 0.633765 1.09771i
$$327$$ −509424. + 180109.i −0.263457 + 0.0931461i
$$328$$ −252248. 436907.i −0.129462 0.224235i
$$329$$ −417105. 722447.i −0.212449 0.367973i
$$330$$ −18301.0 + 98467.4i −0.00925104 + 0.0497746i
$$331$$ −1.69411e6 + 2.93428e6i −0.849906 + 1.47208i 0.0313853 + 0.999507i $$0.490008\pi$$
−0.881291 + 0.472573i $$0.843325\pi$$
$$332$$ −760663. −0.378745
$$333$$ −2.74762e6 + 2.22041e6i −1.35783 + 1.09729i
$$334$$ −199834. −0.0980176
$$335$$ −51393.6 + 89016.4i −0.0250206 + 0.0433369i
$$336$$ 156808. + 134063.i 0.0757738 + 0.0647828i
$$337$$ −953269. 1.65111e6i −0.457237 0.791957i 0.541577 0.840651i $$-0.317827\pi$$
−0.998814 + 0.0486941i $$0.984494\pi$$
$$338$$ 692025. + 1.19862e6i 0.329481 + 0.570677i
$$339$$ 1.12238e6 + 959577.i 0.530445 + 0.453504i
$$340$$ −21746.2 + 37665.5i −0.0102020 + 0.0176704i
$$341$$ 2.70680e6 1.26058
$$342$$ −151455. 962509.i −0.0700196 0.444979i
$$343$$ 1.59958e6 0.734125
$$344$$ −651299. + 1.12808e6i −0.296745 + 0.513978i
$$345$$ 16376.1 88110.4i 0.00740734 0.0398547i
$$346$$ 373593. + 647081.i 0.167768 + 0.290582i
$$347$$ −13788.8 23882.9i −0.00614757 0.0106479i 0.862935 0.505315i $$-0.168624\pi$$
−0.869083 + 0.494667i $$0.835290\pi$$
$$348$$ 886383. 313384.i 0.392350 0.138717i
$$349$$ −533175. + 923486.i −0.234318 + 0.405851i −0.959074 0.283154i $$-0.908619\pi$$
0.724756 + 0.689005i $$0.241952\pi$$
$$350$$ −645027. −0.281454
$$351$$ 3.20697e6 + 88813.5i 1.38940 + 0.0384779i
$$352$$ −687072. −0.295560
$$353$$ −1.32674e6 + 2.29799e6i −0.566696 + 0.981546i 0.430194 + 0.902737i $$0.358445\pi$$
−0.996890 + 0.0788097i $$0.974888\pi$$
$$354$$ 376962. 133276.i 0.159878 0.0565255i
$$355$$ −75825.0 131333.i −0.0319331 0.0553098i
$$356$$ −678365. 1.17496e6i −0.283686 0.491359i
$$357$$ −167212. + 899674.i −0.0694381 + 0.373607i
$$358$$ 729028. 1.26271e6i 0.300633 0.520712i
$$359$$ 386007. 0.158073 0.0790367 0.996872i $$-0.474816\pi$$
0.0790367 + 0.996872i $$0.474816\pi$$
$$360$$ −34743.4 13376.8i −0.0141291 0.00543996i
$$361$$ −1.47125e6 −0.594182
$$362$$ −1.35833e6 + 2.35270e6i −0.544797 + 0.943616i
$$363$$ −3.42596e6 2.92902e6i −1.36463 1.16669i
$$364$$ −350273. 606691.i −0.138565 0.240002i
$$365$$ −15330.0 26552.3i −0.00602295 0.0104321i
$$366$$ 420878. + 359830.i 0.164230 + 0.140409i
$$367$$ −673892. + 1.16721e6i −0.261171 + 0.452361i −0.966553 0.256466i $$-0.917442\pi$$
0.705382 + 0.708827i $$0.250775\pi$$
$$368$$ 614804. 0.236656
$$369$$ 1.78759e6 + 688254.i 0.683443 + 0.263137i
$$370$$ −139206. −0.0528631
$$371$$ −143458. + 248476.i −0.0541114 + 0.0937237i
$$372$$ −183859. + 989242.i −0.0688856 + 0.370634i
$$373$$ 2.04617e6 + 3.54407e6i 0.761500 + 1.31896i 0.942077 + 0.335396i $$0.108870\pi$$
−0.180578 + 0.983561i $$0.557797\pi$$
$$374$$ −1.52379e6 2.63927e6i −0.563307 0.975676i
$$375$$ 219690. 77672.2i 0.0806737 0.0285225i
$$376$$ −516369. + 894378.i −0.188361 + 0.326251i
$$377$$ −3.19247e6 −1.15684
$$378$$ −783011. 21684.6i −0.281863 0.00780589i
$$379$$ −683876. −0.244557 −0.122278 0.992496i $$-0.539020\pi$$
−0.122278 + 0.992496i $$0.539020\pi$$
$$380$$ 19197.4 33250.8i 0.00681997 0.0118125i
$$381$$ 2.30186e6 813830.i 0.812393 0.287224i
$$382$$ −1.53579e6 2.66006e6i −0.538483 0.932681i
$$383$$ 2.12093e6 + 3.67355e6i 0.738803 + 1.27964i 0.953035 + 0.302861i $$0.0979418\pi$$
−0.214232 + 0.976783i $$0.568725\pi$$
$$384$$ 46669.3 251101.i 0.0161511 0.0869002i
$$385$$ −41518.2 + 71911.7i −0.0142754 + 0.0247256i
$$386$$ −189179. −0.0646256
$$387$$ −768786. 4.88568e6i −0.260932 1.65824i
$$388$$ 1.78798e6 0.602952
$$389$$ −1.01046e6 + 1.75017e6i −0.338567 + 0.586415i −0.984163 0.177264i $$-0.943275\pi$$
0.645596 + 0.763679i $$0.276609\pi$$
$$390$$ 96089.5 + 82151.7i 0.0319900 + 0.0273499i
$$391$$ 1.36351e6 + 2.36167e6i 0.451041 + 0.781227i
$$392$$ −452302. 783409.i −0.148666 0.257498i
$$393$$ −2.07844e6 1.77696e6i −0.678822 0.580359i
$$394$$ 1.63518e6 2.83221e6i 0.530669 0.919146i
$$395$$ 7008.64 0.00226017
$$396$$ 2.02901e6 1.63969e6i 0.650198 0.525440i
$$397$$ 2.77276e6 0.882951 0.441475 0.897273i $$-0.354455\pi$$
0.441475 + 0.897273i $$0.354455\pi$$
$$398$$ −1.93067e6 + 3.34401e6i −0.610942 + 1.05818i
$$399$$ 147614. 794225.i 0.0464188 0.249753i
$$400$$ 399266. + 691550.i 0.124771 + 0.216109i
$$401$$ −1.47738e6 2.55889e6i −0.458808 0.794678i 0.540090 0.841607i $$-0.318390\pi$$
−0.998898 + 0.0469286i $$0.985057\pi$$
$$402$$ 2.52420e6 892441.i 0.779039 0.275432i
$$403$$ 1.70835e6 2.95894e6i 0.523978 0.907557i
$$404$$ −1.51331e6 −0.461291
$$405$$ 134525. 43411.2i 0.0407536 0.0131512i
$$406$$ 779470. 0.234684
$$407$$ 4.87716e6 8.44749e6i 1.45942 2.52779i
$$408$$ 1.06807e6 377619.i 0.317650 0.112306i
$$409$$ 1.30179e6 + 2.25476e6i 0.384797 + 0.666488i 0.991741 0.128256i $$-0.0409380\pi$$
−0.606944 + 0.794745i $$0.707605\pi$$
$$410$$ 37740.7 + 65368.8i 0.0110879 + 0.0192049i
$$411$$ −204380. + 1.09965e6i −0.0596806 + 0.321107i
$$412$$ −312905. + 541967.i −0.0908174 + 0.157300i
$$413$$ 331494. 0.0956313
$$414$$ −1.81559e6 + 1.46722e6i −0.520616 + 0.420721i
$$415$$ 113808. 0.0324380
$$416$$ −433633. + 751074.i −0.122854 + 0.212789i
$$417$$ −564001. 482193.i −0.158833 0.135794i
$$418$$ 1.34518e6 + 2.32993e6i 0.376566 + 0.652232i
$$419$$ 310777. + 538281.i 0.0864796 + 0.149787i 0.906021 0.423233i $$-0.139105\pi$$
−0.819541 + 0.573020i $$0.805772\pi$$
$$420$$ −23461.1 20058.1i −0.00648972 0.00554838i
$$421$$ −1.28480e6 + 2.22533e6i −0.353288 + 0.611913i −0.986823 0.161801i $$-0.948270\pi$$
0.633535 + 0.773714i $$0.281603\pi$$
$$422$$ 2.26868e6 0.620142
$$423$$ −609516. 3.87352e6i −0.165628 1.05258i
$$424$$ 355196. 0.0959520
$$425$$ −1.77098e6 + 3.06743e6i −0.475601 + 0.823764i
$$426$$ −721792. + 3.88355e6i −0.192703 + 1.03682i
$$427$$ 229546. + 397585.i 0.0609255 + 0.105526i
$$428$$ −53532.9 92721.8i −0.0141258 0.0244665i
$$429$$ −8.35182e6 + 2.95281e6i −2.19098 + 0.774627i
$$430$$ 97445.5 168781.i 0.0254150 0.0440201i
$$431$$ −1.69346e6 −0.439118 −0.219559 0.975599i $$-0.570462\pi$$
−0.219559 + 0.975599i $$0.570462\pi$$
$$432$$ 461429. + 852909.i 0.118958 + 0.219884i
$$433$$ −6.01185e6 −1.54095 −0.770475 0.637471i $$-0.779981\pi$$
−0.770475 + 0.637471i $$0.779981\pi$$
$$434$$ −417108. + 722453.i −0.106298 + 0.184113i
$$435$$ −132618. + 46887.6i −0.0336032 + 0.0118805i
$$436$$ 277295. + 480289.i 0.0698596 + 0.121000i
$$437$$ −1.20369e6 2.08486e6i −0.301518 0.522244i
$$438$$ −145929. + 785161.i −0.0363460 + 0.195557i
$$439$$ 1.64565e6 2.85034e6i 0.407545 0.705888i −0.587069 0.809537i $$-0.699718\pi$$
0.994614 + 0.103648i $$0.0330517\pi$$
$$440$$ 102798. 0.0253135
$$441$$ 3.20530e6 + 1.23409e6i 0.784824 + 0.302170i
$$442$$ −3.84684e6 −0.936587
$$443$$ −1.34712e6 + 2.33328e6i −0.326135 + 0.564882i −0.981741 0.190221i $$-0.939080\pi$$
0.655607 + 0.755102i $$0.272413\pi$$
$$444$$ 2.75599e6 + 2.35623e6i 0.663467 + 0.567231i
$$445$$ 101495. + 175795.i 0.0242966 + 0.0420829i
$$446$$ 412603. + 714650.i 0.0982190 + 0.170120i
$$447$$ 3.23557e6 + 2.76625e6i 0.765918 + 0.654821i
$$448$$ 105875. 183381.i 0.0249230 0.0431678i
$$449$$ 5.22213e6 1.22245 0.611226 0.791456i $$-0.290677\pi$$
0.611226 + 0.791456i $$0.290677\pi$$
$$450$$ −2.82946e6 1.08939e6i −0.658676 0.253602i
$$451$$ −5.28908e6 −1.22444
$$452$$ 757822. 1.31259e6i 0.174470 0.302191i
$$453$$ 49211.7 264780.i 0.0112674 0.0606234i
$$454$$ −282472. 489255.i −0.0643184 0.111403i
$$455$$ 52406.9 + 90771.5i 0.0118675 + 0.0205552i
$$456$$ −942881. + 333359.i −0.212346 + 0.0750757i
$$457$$ −62165.7 + 107674.i −0.0139239 + 0.0241169i −0.872903 0.487893i $$-0.837766\pi$$
0.858980 + 0.512010i $$0.171099\pi$$
$$458$$ 1.17995e6 0.262845
$$459$$ −2.25295e6 + 3.66408e6i −0.499138 + 0.811771i
$$460$$ −91985.3 −0.0202686
$$461$$ 4.40216e6 7.62476e6i 0.964747 1.67099i 0.254453 0.967085i $$-0.418105\pi$$
0.710294 0.703905i $$-0.248562\pi$$
$$462$$ 2.03917e6 720956.i 0.444476 0.157146i
$$463$$ 893603. + 1.54777e6i 0.193728 + 0.335547i 0.946483 0.322754i $$-0.104609\pi$$
−0.752755 + 0.658301i $$0.771275\pi$$
$$464$$ −482486. 835690.i −0.104037 0.180198i
$$465$$ 27508.5 148008.i 0.00589977 0.0317433i
$$466$$ 2.26867e6 3.92944e6i 0.483956 0.838236i
$$467$$ −4.70809e6 −0.998970 −0.499485 0.866323i $$-0.666477\pi$$
−0.499485 + 0.866323i $$0.666477\pi$$
$$468$$ −511855. 3.25287e6i −0.108027 0.686519i
$$469$$ 2.21974e6 0.465983
$$470$$ 77257.8 133814.i 0.0161323 0.0279420i
$$471$$ 4.61164e6 + 3.94272e6i 0.957863 + 0.818924i
$$472$$ −205192. 355403.i −0.0423941 0.0734288i
$$473$$ 6.82814e6 + 1.18267e7i 1.40330 + 2.43058i
$$474$$ −138757. 118630.i −0.0283667 0.0242521i
$$475$$ 1.56341e6 2.70790e6i 0.317935 0.550680i
$$476$$ 939240. 0.190002
$$477$$ −1.04894e6 + 847671.i −0.211084 + 0.170581i
$$478$$ −2.17833e6 −0.436068
$$479$$ 786587. 1.36241e6i 0.156642 0.271312i −0.777014 0.629484i $$-0.783266\pi$$
0.933656 + 0.358172i $$0.116600\pi$$
$$480$$ −6982.54 + 37569.1i −0.00138328 + 0.00744265i
$$481$$ −6.15626e6 1.06630e7i −1.21326 2.10143i
$$482$$ −728722. 1.26218e6i −0.142871 0.247460i
$$483$$ −1.82469e6 + 645124.i −0.355894 + 0.125827i
$$484$$ −2.31318e6 + 4.00655e6i −0.448845 + 0.777422i
$$485$$ −267513. −0.0516404
$$486$$ −3.39811e6 1.41755e6i −0.652600 0.272238i
$$487$$ −2.08272e6 −0.397932 −0.198966 0.980006i $$-0.563758\pi$$
−0.198966 + 0.980006i $$0.563758\pi$$
$$488$$ 284174. 492204.i 0.0540175 0.0935611i
$$489$$ 8.93654e6 3.15954e6i 1.69004 0.597520i
$$490$$ 67672.2 + 117212.i 0.0127327 + 0.0220536i
$$491$$ 120692. + 209045.i 0.0225931 + 0.0391324i 0.877101 0.480306i $$-0.159474\pi$$
−0.854508 + 0.519439i $$0.826141\pi$$
$$492$$ 359261. 1.93298e6i 0.0669109 0.360010i
$$493$$ 2.14011e6 3.70678e6i 0.396569 0.686878i
$$494$$ 3.39595e6 0.626101
$$495$$ −303575. + 245325.i −0.0556869 + 0.0450018i
$$496$$ 1.03275e6 0.188491
$$497$$ −1.63748e6 + 2.83619e6i −0.297361 + 0.515045i
$$498$$ −2.25317e6 1.92635e6i −0.407119 0.348066i
$$499$$ 346655. + 600424.i 0.0623227 + 0.107946i 0.895503 0.445055i $$-0.146816\pi$$
−0.833181 + 0.553001i $$0.813483\pi$$
$$500$$ −119584. 207126.i −0.0213919 0.0370518i
$$501$$ −591933. 506073.i −0.105361 0.0900780i
$$502$$ −742480. + 1.28601e6i −0.131500 + 0.227765i
$$503$$ −1.94784e6 −0.343268 −0.171634 0.985161i $$-0.554905\pi$$
−0.171634 + 0.985161i $$0.554905\pi$$
$$504$$ 124974. + 794218.i 0.0219151 + 0.139272i
$$505$$ 226417. 0.0395077
$$506$$ 3.22276e6 5.58199e6i 0.559567 0.969199i
$$507$$ −985605. + 5.30298e6i −0.170288 + 0.916221i
$$508$$ −1.25297e6 2.17021e6i −0.215418 0.373115i
$$509$$ −5.46581e6 9.46706e6i −0.935104 1.61965i −0.774449 0.632637i $$-0.781973\pi$$
−0.160655 0.987011i $$-0.551361\pi$$
$$510$$ −159801. + 56498.3i −0.0272054 + 0.00961856i
$$511$$ −331058. + 573410.i −0.0560857 + 0.0971434i
$$512$$ −262144. −0.0441942
$$513$$ 1.98889e6 3.23462e6i 0.333670 0.542663i
$$514$$ −1.05782e6 −0.176606
$$515$$ 46816.0 81087.6i 0.00777814 0.0134721i
$$516$$ −4.78605e6 + 1.69212e6i −0.791321 + 0.279774i
$$517$$ 5.41355e6 + 9.37655e6i 0.890750 + 1.54282i
$$518$$ 1.50311e6 + 2.60346e6i 0.246130 + 0.426310i
$$519$$ −532084. + 2.86284e6i −0.0867085 + 0.466529i
$$520$$ 64878.9 112374.i 0.0105219 0.0182245i
$$521$$ −1.76332e6 −0.284602 −0.142301 0.989823i $$-0.545450\pi$$
−0.142301 + 0.989823i $$0.545450\pi$$
$$522$$ 3.41920e6 + 1.31645e6i 0.549223 + 0.211460i
$$523$$ 7.05362e6 1.12761 0.563804 0.825909i $$-0.309337\pi$$
0.563804 + 0.825909i $$0.309337\pi$$
$$524$$ −1.40335e6 + 2.43067e6i −0.223273 + 0.386721i
$$525$$ −1.91064e6 1.63351e6i −0.302539 0.258656i
$$526$$ 3.89481e6 + 6.74601e6i 0.613793 + 1.06312i
$$527$$ 2.29042e6 + 3.96713e6i 0.359244 + 0.622229i
$$528$$ −2.03519e6 1.73998e6i −0.317702 0.271619i
$$529$$ 334387. 579175.i 0.0519529 0.0899850i
$$530$$ −53143.5 −0.00821790
$$531$$ 1.45412e6 + 559862.i 0.223802 + 0.0861677i
$$532$$ −829153. −0.127015
$$533$$ −3.33811e6 + 5.78177e6i −0.508958 + 0.881542i
$$534$$ 966150. 5.19831e6i 0.146619 0.788876i
$$535$$ 8009.45 + 13872.8i 0.00120981 + 0.00209546i
$$536$$ −1.37400e6 2.37984e6i −0.206574 0.357797i
$$537$$ 5.35724e6 1.89407e6i 0.801688 0.283440i
$$538$$ −3.21394e6 + 5.56670e6i −0.478720 + 0.829167i
$$539$$ −9.48375e6 −1.40607
$$540$$ −69037.7 127610.i −0.0101883 0.0188322i
$$541$$ −7.53297e6 −1.10655 −0.553277 0.832997i $$-0.686623\pi$$
−0.553277 + 0.832997i $$0.686623\pi$$
$$542$$ −403307. + 698548.i −0.0589708 + 0.102140i
$$543$$ −9.98166e6 + 3.52905e6i −1.45279 + 0.513639i
$$544$$ −581382. 1.00698e6i −0.0842296 0.145890i
$$545$$ −41488.2 71859.6i −0.00598319 0.0103632i
$$546$$ 498871. 2.68414e6i 0.0716155 0.385322i
$$547$$ −2.32849e6 + 4.03306e6i −0.332740 + 0.576323i −0.983048 0.183348i $$-0.941307\pi$$
0.650308 + 0.759671i $$0.274640\pi$$
$$548$$ 1.14801e6 0.163303
$$549$$ 335436. + 2.13172e6i 0.0474983 + 0.301855i
$$550$$ 8.37172e6 1.18007
$$551$$ −1.88927e6 + 3.27231e6i −0.265104 + 0.459173i
$$552$$ 1.82112e6 + 1.55697e6i 0.254385 + 0.217486i
$$553$$ −75677.5 131077.i −0.0105233 0.0182270i
$$554$$ −443611. 768356.i −0.0614084 0.106362i
$$555$$ −412343. 352533.i −0.0568233 0.0485811i
$$556$$ −380810. + 659582.i −0.0522421 + 0.0904860i
$$557$$ 8.59105e6 1.17330 0.586649 0.809842i $$-0.300447\pi$$
0.586649 + 0.809842i $$0.300447\pi$$
$$558$$ −3.04983e6 + 2.46464e6i −0.414658 + 0.335094i
$$559$$ 1.72378e7 2.33320
$$560$$ −15840.8 + 27437.0i −0.00213455 + 0.00369715i
$$561$$ 2.17023e6 1.16768e7i 0.291138 1.56645i
$$562$$ 2.22813e6 + 3.85923e6i 0.297577 + 0.515418i
$$563$$ −5.45579e6 9.44970e6i −0.725415 1.25646i −0.958803 0.284072i $$-0.908315\pi$$
0.233388 0.972384i $$-0.425019\pi$$
$$564$$ −3.79452e6 + 1.34157e6i −0.502296 + 0.177588i
$$565$$ −113383. + 196386.i −0.0149427 + 0.0258814i
$$566$$ −4.17545e6 −0.547850
$$567$$ −2.26445e6 2.04718e6i −0.295805 0.267422i
$$568$$ 4.05434e6 0.527290
$$569$$ −2.29345e6 + 3.97238e6i −0.296968 + 0.514363i −0.975441 0.220262i $$-0.929309\pi$$
0.678473 + 0.734625i $$0.262642\pi$$
$$570$$ 141071. 49876.2i 0.0181866 0.00642993i
$$571$$ −3.02168e6 5.23371e6i −0.387846 0.671768i 0.604314 0.796746i $$-0.293447\pi$$
−0.992160 + 0.124978i $$0.960114\pi$$
$$572$$ 4.54615e6 + 7.87417e6i 0.580970 + 1.00627i
$$573$$ 2.18732e6 1.17687e7i 0.278308 1.49742i
$$574$$ 815029. 1.41167e6i 0.103251 0.178836i
$$575$$ −7.49116e6 −0.944887
$$576$$ 774144. 625603.i 0.0972222 0.0785674i
$$577$$ −3.84995e6 −0.481411 −0.240705 0.970598i $$-0.577379\pi$$
−0.240705 + 0.970598i $$0.577379\pi$$
$$578$$ −260938. + 451958.i −0.0324876 + 0.0562702i
$$579$$ −560370. 479088.i −0.0694670 0.0593908i
$$580$$ 72188.2 + 125034.i 0.00891038 + 0.0154332i
$$581$$ −1.22887e6 2.12847e6i −0.151031 0.261594i
$$582$$ 5.29620e6 + 4.52799e6i 0.648123 + 0.554112i
$$583$$ 1.86192e6 3.22494e6i 0.226876 0.392961i
$$584$$ 819690. 0.0994530
$$585$$ 76582.4 + 486686.i 0.00925208 + 0.0587976i
$$586$$ −1.02671e7 −1.23511
$$587$$ 256984. 445109.i 0.0307830 0.0533177i −0.850223 0.526422i $$-0.823533\pi$$
0.881006 + 0.473104i $$0.156867\pi$$
$$588$$ 644184. 3.46599e6i 0.0768363 0.413413i
$$589$$ −2.02197e6 3.50215e6i −0.240152 0.415955i
$$590$$ 30700.3 + 53174.5i 0.00363088 + 0.00628888i
$$591$$ 1.20160e7 4.24831e6i 1.41512 0.500320i
$$592$$ 1.86082e6 3.22304e6i 0.218223 0.377973i
$$593$$ 6.84103e6 0.798886 0.399443 0.916758i $$-0.369204\pi$$
0.399443 + 0.916758i $$0.369204\pi$$
$$594$$ 1.01626e7 + 281442.i 1.18179 + 0.0327283i
$$595$$ −140527. −0.0162729
$$596$$ 2.18463e6 3.78390e6i 0.251920 0.436339i
$$597$$ −1.41874e7 + 5.01602e6i −1.62918 + 0.576001i
$$598$$ −4.06798e6 7.04594e6i −0.465185 0.805724i
$$599$$ −544385. 942903.i −0.0619925 0.107374i 0.833363 0.552725i $$-0.186412\pi$$
−0.895356 + 0.445351i $$0.853079\pi$$
$$600$$ −568649. + 3.05958e6i −0.0644861 + 0.346963i
$$601$$ −5.05171e6 + 8.74982e6i −0.570495 + 0.988127i 0.426020 + 0.904714i $$0.359915\pi$$
−0.996515 + 0.0834130i $$0.973418\pi$$
$$602$$ −4.20877e6 −0.473330
$$603$$ 9.73706e6 + 3.74893e6i 1.09052 + 0.419870i
$$604$$ −276425. −0.0308308
$$605$$ 346092. 599449.i 0.0384417 0.0665830i
$$606$$ −4.48260e6 3.83240e6i −0.495848 0.423925i
$$607$$ −1.79621e6 3.11112e6i −0.197872 0.342725i 0.749966 0.661476i $$-0.230070\pi$$
−0.947838 + 0.318752i $$0.896736\pi$$
$$608$$ 513239. + 888956.i 0.0563068 + 0.0975262i
$$609$$ 2.30888e6 + 1.97398e6i 0.252266 + 0.215675i
$$610$$ −42517.3 + 73642.2i −0.00462638 + 0.00801313i
$$611$$ 1.36667e7 1.48101
$$612$$ 4.12005e6 + 1.58629e6i 0.444655 + 0.171200i
$$613$$ 8.58164e6 0.922400 0.461200 0.887296i $$-0.347419\pi$$
0.461200 + 0.887296i $$0.347419\pi$$
$$614$$ −2.90265e6 + 5.02753e6i −0.310723 + 0.538188i
$$615$$ −53751.6 + 289207.i −0.00573065 + 0.0308334i
$$616$$ −1.10998e6 1.92255e6i −0.117860 0.204139i
$$617$$ 2.65301e6 + 4.59515e6i 0.280560 + 0.485944i 0.971523 0.236946i $$-0.0761465\pi$$
−0.690963 + 0.722890i $$0.742813\pi$$
$$618$$ −2.29937e6 + 812951.i −0.242180 + 0.0856235i
$$619$$ −4.28264e6 + 7.41775e6i −0.449247 + 0.778119i −0.998337 0.0576445i $$-0.981641\pi$$
0.549090 + 0.835763i $$0.314974\pi$$
$$620$$ −154517. −0.0161435
$$621$$ −9.09367e6 251839.i −0.946260 0.0262056i
$$622$$ 6.93222e6 0.718449
$$623$$ 2.19184e6 3.79637e6i 0.226250 0.391876i
$$624$$ −3.18654e6 + 1.12661e6i −0.327610 + 0.115828i
$$625$$ −4.85597e6 8.41078e6i −0.497251 0.861264i
$$626$$ −4.96082e6 8.59239e6i −0.505961 0.876351i
$$627$$ −1.91586e6 + 1.03081e7i −0.194623 + 1.04716i
$$628$$ 3.11375e6 5.39317e6i 0.315053 0.545688i
$$629$$ 1.65077e7 1.66364
$$630$$ −18698.3 118829.i −0.00187694 0.0119281i
$$631$$ −8.97840e6 −0.897688 −0.448844 0.893610i $$-0.648164\pi$$
−0.448844 + 0.893610i $$0.648164\pi$$
$$632$$ −93687.5 + 162272.i −0.00933016 + 0.0161603i
$$633$$ 6.72009e6 + 5.74534e6i 0.666600 + 0.569910i
$$634$$ −4.27252e6 7.40022e6i −0.422144 0.731176i
$$635$$ 187467. + 324702.i 0.0184497 + 0.0319558i
$$636$$ 1.05213e6 + 899521.i 0.103140 + 0.0881797i
$$637$$ −5.98550e6 + 1.03672e7i −0.584456 + 1.01231i
$$638$$ −1.01166e7 −0.983977
$$639$$ −1.19730e7 + 9.67563e6i −1.15998 + 0.937404i
$$640$$ 39221.3 0.00378505
$$641$$ −4.13865e6 + 7.16835e6i −0.397844 + 0.689087i −0.993460 0.114183i $$-0.963575\pi$$
0.595615 + 0.803270i $$0.296908\pi$$
$$642$$ 76243.5 410223.i 0.00730071 0.0392810i
$$643$$ 2.09217e6 + 3.62374e6i 0.199558 + 0.345644i 0.948385 0.317121i $$-0.102716\pi$$
−0.748827 + 0.662765i $$0.769383\pi$$
$$644$$ 993233. + 1.72033e6i 0.0943706 + 0.163455i
$$645$$ 716076. 253171.i 0.0677735 0.0239615i
$$646$$ −2.27652e6 + 3.94305e6i −0.214630 + 0.371750i
$$647$$ −2.56671e6 −0.241055 −0.120527 0.992710i $$-0.538459\pi$$
−0.120527 + 0.992710i $$0.538459\pi$$
$$648$$ −793152. + 3.69497e6i −0.0742026 + 0.345679i
$$649$$ −4.30242e6 −0.400960
$$650$$ 5.28366e6 9.15157e6i 0.490514 0.849595i
$$651$$ −3.06511e6 + 1.08368e6i −0.283461 + 0.100219i
$$652$$ −4.86444e6 8.42545e6i −0.448140 0.776201i
$$653$$ 983421. + 1.70333e6i 0.0902519 + 0.156321i 0.907617 0.419799i $$-0.137899\pi$$
−0.817365 + 0.576120i $$0.804566\pi$$
$$654$$ −394933. + 2.12491e6i −0.0361060 + 0.194266i
$$655$$ 209965. 363670.i 0.0191224 0.0331211i
$$656$$ −2.01799e6 −0.183087
$$657$$ −2.42065e6 + 1.95618e6i −0.218785 + 0.176805i
$$658$$ −3.33684e6 −0.300449
$$659$$ 3.66017e6 6.33961e6i 0.328313 0.568655i −0.653864 0.756612i $$-0.726853\pi$$
0.982177 + 0.187957i $$0.0601866\pi$$
$$660$$ 304499. + 260331.i 0.0272099 + 0.0232631i
$$661$$ 4.17464e6 + 7.23068e6i 0.371634 + 0.643688i 0.989817 0.142346i $$-0.0454645\pi$$
−0.618183 + 0.786034i $$0.712131\pi$$
$$662$$ 6.77643e6 + 1.17371e7i 0.600974 + 1.04092i
$$663$$ −1.13948e7 9.74197e6i −1.00675 0.860722i
$$664$$ −1.52133e6 + 2.63501e6i −0.133907 + 0.231933i
$$665$$ 124056. 0.0108783
$$666$$ 2.19649e6 + 1.39589e7i 0.191886 + 1.21945i
$$667$$ 9.05255e6 0.787873
$$668$$ −399669. + 692247.i −0.0346545 + 0.0600233i
$$669$$ −587644. + 3.16178e6i −0.0507632 + 0.273128i
$$670$$ 205575. + 356066.i 0.0176922 + 0.0306438i
$$671$$ −2.97924e6 5.16020e6i −0.255446 0.442446i
$$672$$ 778022. 275072.i 0.0664612 0.0234976i
$$673$$ 777542. 1.34674e6i 0.0661738 0.114616i −0.831040 0.556212i $$-0.812254\pi$$
0.897214 + 0.441596i $$0.145587\pi$$
$$674$$ −7.62616e6 −0.646630
$$675$$ −5.62235e6 1.03924e7i −0.474961 0.877922i
$$676$$ 5.53620e6 0.465956
$$677$$ 8.74320e6 1.51437e7i 0.733160 1.26987i −0.222366 0.974963i $$-0.571378\pi$$
0.955526 0.294907i $$-0.0952888\pi$$
$$678$$ 5.56883e6 1.96888e6i 0.465254 0.164492i
$$679$$ 2.88853e6 + 5.00308e6i 0.240438 + 0.416451i
$$680$$ 86984.8 + 150662.i 0.00721392 + 0.0124949i
$$681$$ 402306. 2.16458e6i 0.0332421 0.178857i
$$682$$ 5.41360e6 9.37663e6i 0.445682 0.771944i
$$683$$ 1.78944e7 1.46779 0.733897 0.679260i $$-0.237699\pi$$
0.733897 + 0.679260i $$0.237699\pi$$
$$684$$ −3.63714e6 1.40036e6i −0.297249 0.114446i
$$685$$ −171762. −0.0139863
$$686$$ 3.19915e6 5.54110e6i 0.259552 0.449558i
$$687$$ 3.49516e6 + 2.98818e6i 0.282537 + 0.241555i
$$688$$ 2.60519e6 + 4.51233e6i 0.209831 + 0.363437i
$$689$$ −2.35023e6 4.07072e6i −0.188609 0.326681i
$$690$$ −272471. 232949.i −0.0217870 0.0186268i
$$691$$ 1.08189e7 1.87389e7i 0.861960 1.49296i −0.00807386 0.999967i $$-0.502570\pi$$
0.870034 0.492992i $$-0.164097\pi$$
$$692$$ 2.98874e6 0.237259
$$693$$ 7.86606e6 + 3.02857e6i 0.622191 + 0.239554i
$$694$$ −110311. −0.00869397
$$695$$ 56975.7 98684.8i 0.00447433 0.00774976i
$$696$$ 687173. 3.69729e6i 0.0537704 0.289308i
$$697$$ −4.47548e6 7.75176e6i −0.348946 0.604392i
$$698$$ 2.13270e6 + 3.69394e6i 0.165688 + 0.286980i
$$699$$ 1.66712e7 5.89417e6i 1.29055 0.456278i
$$700$$ −1.29005e6 + 2.23444e6i −0.0995091 + 0.172355i
$$701$$ −1.77842e7 −1.36691 −0.683455 0.729993i $$-0.739523\pi$$
−0.683455 + 0.729993i $$0.739523\pi$$
$$702$$ 6.72160e6 1.09316e7i 0.514790 0.837226i
$$703$$ −1.45729e7 −1.11213
$$704$$ −1.37414e6 + 2.38009e6i −0.104496 + 0.180993i
$$705$$ 567726. 200722.i 0.0430196 0.0152097i
$$706$$ 5.30697e6 + 9.19195e6i 0.400715 + 0.694058i
$$707$$ −2.44480e6 4.23451e6i −0.183948 0.318607i
$$708$$ 292242. 1.57239e6i 0.0219108 0.117890i
$$709$$ −3.47018e6 + 6.01052e6i −0.259260 + 0.449052i −0.966044 0.258378i $$-0.916812\pi$$
0.706784 + 0.707430i $$0.250145\pi$$
$$710$$ −606600. −0.0451603
$$711$$ −110588. 702792.i −0.00820414 0.0521378i
$$712$$ −5.42692e6 −0.401193
$$713$$ −4.84418e6 + 8.39037e6i −0.356859 + 0.618098i
$$714$$ 2.78214e6 + 2.37859e6i 0.204236 + 0.174612i
$$715$$ −680183. 1.17811e6i −0.0497578 0.0861830i
$$716$$ −2.91611e6 5.05085e6i −0.212580 0.368199i
$$717$$ −6.45247e6 5.51654e6i −0.468736 0.400746i
$$718$$ 772013. 1.33717e6i 0.0558874 0.0967998i
$$719$$ −5.54667e6 −0.400138 −0.200069 0.979782i $$-0.564117\pi$$
−0.200069 + 0.979782i $$0.564117\pi$$
$$720$$ −115825. + 93601.0i −0.00832669 + 0.00672898i
$$721$$ −2.02203e6 −0.144860
$$722$$ −2.94250e6 + 5.09657e6i −0.210075 + 0.363860i
$$723$$ 1.03787e6 5.58420e6i 0.0738410 0.397297i
$$724$$ 5.43333e6 + 9.41080e6i 0.385230 + 0.667237i
$$725$$ 5.87892e6 + 1.01826e7i 0.415387 + 0.719471i
$$726$$ −1.69983e7 + 6.00982e6i −1.19692 + 0.423175i
$$727$$ 2.49481e6 4.32114e6i 0.175066 0.303223i −0.765118 0.643890i $$-0.777320\pi$$
0.940184 + 0.340667i $$0.110653\pi$$
$$728$$ −2.80219e6 −0.195960
$$729$$ −6.47571e6 1.28045e7i −0.451303 0.892371i
$$730$$ −122640. −0.00851774
$$731$$ −1.15556e7 + 2.00149e7i −0.799832 + 1.38535i
$$732$$ 2.08824e6 738305.i 0.144047 0.0509282i
$$733$$ 1.12432e7 + 1.94739e7i 0.772914 + 1.33873i 0.935959 + 0.352108i $$0.114535\pi$$
−0.163045 + 0.986619i $$0.552132\pi$$
$$734$$ 2.69557e6 + 4.66886e6i 0.184676 + 0.319868i
$$735$$ −96381.0 + 518572.i −0.00658072 + 0.0354071i
$$736$$ 1.22961e6 2.12974e6i 0.0836704 0.144921i
$$737$$ −2.88098e7 −1.95376
$$738$$ 5.95936e6 4.81589e6i 0.402772 0.325489i
$$739$$ 9.61700e6 0.647781 0.323891 0.946095i $$-0.395009\pi$$
0.323891 + 0.946095i $$0.395009\pi$$
$$740$$ −278411. + 482222.i −0.0186899 + 0.0323719i
$$741$$ 1.00592e7 + 8.60012e6i 0.673006 + 0.575386i
$$742$$ 573830. + 993903.i 0.0382625 + 0.0662727i
$$743$$ −4.41865e6 7.65333e6i −0.293642 0.508602i 0.681026 0.732259i $$-0.261534\pi$$
−0.974668 + 0.223657i $$0.928201\pi$$
$$744$$ 3.05912e6 + 2.61539e6i 0.202611 + 0.173223i
$$745$$ −326859. + 566136.i −0.0215759 + 0.0373706i
$$746$$ 1.63694e7 1.07692
$$747$$ −1.79576e6 1.14122e7i −0.117746 0.748283i
$$748$$ −1.21903e7 −0.796636
$$749$$ 172968. 299589.i 0.0112658 0.0195129i
$$750$$ 170316. 916373.i 0.0110561 0.0594866i
$$751$$ −2.29253e6 3.97078e6i −0.148325 0.256907i 0.782283 0.622923i $$-0.214055\pi$$
−0.930609 + 0.366016i $$0.880722\pi$$
$$752$$ 2.06548e6 + 3.57751e6i 0.133191 + 0.230694i
$$753$$ −5.45609e6 + 1.92902e6i −0.350666 + 0.123979i
$$754$$ −6.38494e6 + 1.10590e7i −0.409005 + 0.708417i
$$755$$ 41357.9 0.00264053
$$756$$ −1.64114e6 + 2.66906e6i −0.104434 + 0.169845i
$$757$$ 6.18063e6 0.392006 0.196003 0.980603i $$-0.437204\pi$$
0.196003 + 0.980603i $$0.437204\pi$$
$$758$$ −1.36775e6 + 2.36902e6i −0.0864638 + 0.149760i
$$759$$ 2.36824e7 8.37299e6i 1.49218 0.527565i
$$760$$ −76789.5 133003.i −0.00482245 0.00835273i
$$761$$ 9.54035e6 + 1.65244e7i 0.597177 + 1.03434i 0.993236 + 0.116115i $$0.0370442\pi$$
−0.396059 + 0.918225i $$0.629622\pi$$
$$762$$ 1.78453e6 9.60153e6i 0.111336 0.599036i
$$763$$ −895957. + 1.55184e6i −0.0557155 + 0.0965020i
$$764$$ −1.22863e7 −0.761531