Newspace parameters
Level: | \( N \) | \(=\) | \( 18 = 2 \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 18.c (of order \(3\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.88690875663\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{3})\) |
Coefficient field: | \(\Q(\sqrt{-2}, \sqrt{-3})\) |
Defining polynomial: |
\( x^{4} - 2x^{2} + 4 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 2^{2}\cdot 3^{3} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} - 2x^{2} + 4 \)
:
\(\beta_{1}\) | \(=\) |
\( ( \nu^{2} ) / 2 \)
|
\(\beta_{2}\) | \(=\) |
\( 3\nu^{3} + 6\nu \)
|
\(\beta_{3}\) | \(=\) |
\( -3\nu^{3} + 12\nu \)
|
\(\nu\) | \(=\) |
\( ( \beta_{3} + \beta_{2} ) / 18 \)
|
\(\nu^{2}\) | \(=\) |
\( 2\beta_1 \)
|
\(\nu^{3}\) | \(=\) |
\( ( -\beta_{3} + 2\beta_{2} ) / 9 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/18\mathbb{Z}\right)^\times\).
\(n\) | \(11\) |
\(\chi(n)\) | \(-1 + \beta_{1}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.1 |
|
2.00000 | − | 3.46410i | −14.6969 | − | 5.19615i | −8.00000 | − | 13.8564i | −28.1969 | − | 48.8385i | −47.3939 | + | 40.5194i | 11.1515 | − | 19.3150i | −64.0000 | 189.000 | + | 152.735i | −225.576 | ||||||||||||||||
7.2 | 2.00000 | − | 3.46410i | 14.6969 | − | 5.19615i | −8.00000 | − | 13.8564i | 1.19694 | + | 2.07316i | 11.3939 | − | 61.3040i | 25.8485 | − | 44.7709i | −64.0000 | 189.000 | − | 152.735i | 9.57551 | |||||||||||||||||
13.1 | 2.00000 | + | 3.46410i | −14.6969 | + | 5.19615i | −8.00000 | + | 13.8564i | −28.1969 | + | 48.8385i | −47.3939 | − | 40.5194i | 11.1515 | + | 19.3150i | −64.0000 | 189.000 | − | 152.735i | −225.576 | |||||||||||||||||
13.2 | 2.00000 | + | 3.46410i | 14.6969 | + | 5.19615i | −8.00000 | + | 13.8564i | 1.19694 | − | 2.07316i | 11.3939 | + | 61.3040i | 25.8485 | + | 44.7709i | −64.0000 | 189.000 | + | 152.735i | 9.57551 | |||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 18.6.c.a | ✓ | 4 |
3.b | odd | 2 | 1 | 54.6.c.a | 4 | ||
4.b | odd | 2 | 1 | 144.6.i.a | 4 | ||
9.c | even | 3 | 1 | inner | 18.6.c.a | ✓ | 4 |
9.c | even | 3 | 1 | 162.6.a.e | 2 | ||
9.d | odd | 6 | 1 | 54.6.c.a | 4 | ||
9.d | odd | 6 | 1 | 162.6.a.f | 2 | ||
12.b | even | 2 | 1 | 432.6.i.a | 4 | ||
36.f | odd | 6 | 1 | 144.6.i.a | 4 | ||
36.h | even | 6 | 1 | 432.6.i.a | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
18.6.c.a | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
18.6.c.a | ✓ | 4 | 9.c | even | 3 | 1 | inner |
54.6.c.a | 4 | 3.b | odd | 2 | 1 | ||
54.6.c.a | 4 | 9.d | odd | 6 | 1 | ||
144.6.i.a | 4 | 4.b | odd | 2 | 1 | ||
144.6.i.a | 4 | 36.f | odd | 6 | 1 | ||
162.6.a.e | 2 | 9.c | even | 3 | 1 | ||
162.6.a.f | 2 | 9.d | odd | 6 | 1 | ||
432.6.i.a | 4 | 12.b | even | 2 | 1 | ||
432.6.i.a | 4 | 36.h | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{4} + 54T_{5}^{3} + 3051T_{5}^{2} - 7290T_{5} + 18225 \)
acting on \(S_{6}^{\mathrm{new}}(18, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{2} - 4 T + 16)^{2} \)
$3$
\( T^{4} - 378 T^{2} + 59049 \)
$5$
\( T^{4} + 54 T^{3} + 3051 T^{2} + \cdots + 18225 \)
$7$
\( T^{4} - 74 T^{3} + 4323 T^{2} + \cdots + 1329409 \)
$11$
\( T^{4} + 78 T^{3} + \cdots + 158294966769 \)
$13$
\( T^{4} - 1106 T^{3} + \cdots + 48140309281 \)
$17$
\( (T^{2} - 492 T - 1848060)^{2} \)
$19$
\( (T^{2} + 1640 T - 2648816)^{2} \)
$23$
\( T^{4} + 5538 T^{3} + \cdots + 56736462234321 \)
$29$
\( T^{4} + 3894 T^{3} + \cdots + 220517585649 \)
$31$
\( T^{4} - 4718 T^{3} + \cdots + 12\!\cdots\!61 \)
$37$
\( (T^{2} + 4796 T - 141621212)^{2} \)
$41$
\( T^{4} - 15354 T^{3} + \cdots + 34\!\cdots\!49 \)
$43$
\( T^{4} - 32858 T^{3} + \cdots + 64\!\cdots\!89 \)
$47$
\( T^{4} - 24954 T^{3} + \cdots + 20\!\cdots\!69 \)
$53$
\( (T^{2} + 16332 T + 59839812)^{2} \)
$59$
\( T^{4} - 21966 T^{3} + \cdots + 99\!\cdots\!09 \)
$61$
\( T^{4} - 3050 T^{3} + \cdots + 11\!\cdots\!01 \)
$67$
\( T^{4} - 36758 T^{3} + \cdots + 70\!\cdots\!25 \)
$71$
\( (T^{2} + 73848 T + 665096112)^{2} \)
$73$
\( (T^{2} + 51188 T + 491562436)^{2} \)
$79$
\( T^{4} + 14926 T^{3} + \cdots + 27\!\cdots\!25 \)
$83$
\( T^{4} - 90762 T^{3} + \cdots + 42\!\cdots\!89 \)
$89$
\( (T^{2} + 9300 T - 7978887036)^{2} \)
$97$
\( T^{4} + 30262 T^{3} + \cdots + 82\!\cdots\!25 \)
show more
show less