Defining parameters
| Level: | \( N \) | \(=\) | \( 18 = 2 \cdot 3^{2} \) |
| Weight: | \( k \) | \(=\) | \( 6 \) |
| Character orbit: | \([\chi]\) | \(=\) | 18.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 3 \) | ||
| Sturm bound: | \(18\) | ||
| Trace bound: | \(5\) | ||
| Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(18))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 19 | 3 | 16 |
| Cusp forms | 11 | 3 | 8 |
| Eisenstein series | 8 | 0 | 8 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(4\) | \(1\) | \(3\) | \(2\) | \(1\) | \(1\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(-\) | \(5\) | \(1\) | \(4\) | \(3\) | \(1\) | \(2\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(-\) | \(5\) | \(1\) | \(4\) | \(3\) | \(1\) | \(2\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(+\) | \(5\) | \(0\) | \(5\) | \(3\) | \(0\) | \(3\) | \(2\) | \(0\) | \(2\) | |||
| Plus space | \(+\) | \(9\) | \(1\) | \(8\) | \(5\) | \(1\) | \(4\) | \(4\) | \(0\) | \(4\) | ||||
| Minus space | \(-\) | \(10\) | \(2\) | \(8\) | \(6\) | \(2\) | \(4\) | \(4\) | \(0\) | \(4\) | ||||
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(18))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | |||||||
| 18.6.a.a | $1$ | $2.887$ | \(\Q\) | None | \(-4\) | \(0\) | \(-96\) | \(-148\) | $+$ | $+$ | \(q-4q^{2}+2^{4}q^{4}-96q^{5}-148q^{7}+\cdots\) | |
| 18.6.a.b | $1$ | $2.887$ | \(\Q\) | None | \(-4\) | \(0\) | \(66\) | \(176\) | $+$ | $-$ | \(q-4q^{2}+2^{4}q^{4}+66q^{5}+176q^{7}+\cdots\) | |
| 18.6.a.c | $1$ | $2.887$ | \(\Q\) | None | \(4\) | \(0\) | \(96\) | \(-148\) | $-$ | $+$ | \(q+4q^{2}+2^{4}q^{4}+96q^{5}-148q^{7}+\cdots\) | |
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(18))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(18)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 2}\)