Properties

Label 18.6.a
Level $18$
Weight $6$
Character orbit 18.a
Rep. character $\chi_{18}(1,\cdot)$
Character field $\Q$
Dimension $3$
Newform subspaces $3$
Sturm bound $18$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 18 = 2 \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 18.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(18\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(18))\).

Total New Old
Modular forms 19 3 16
Cusp forms 11 3 8
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(4\)\(1\)\(3\)\(2\)\(1\)\(1\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(5\)\(1\)\(4\)\(3\)\(1\)\(2\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(5\)\(1\)\(4\)\(3\)\(1\)\(2\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(5\)\(0\)\(5\)\(3\)\(0\)\(3\)\(2\)\(0\)\(2\)
Plus space\(+\)\(9\)\(1\)\(8\)\(5\)\(1\)\(4\)\(4\)\(0\)\(4\)
Minus space\(-\)\(10\)\(2\)\(8\)\(6\)\(2\)\(4\)\(4\)\(0\)\(4\)

Trace form

\( 3 q - 4 q^{2} + 48 q^{4} + 66 q^{5} - 120 q^{7} - 64 q^{8} + 504 q^{10} + 60 q^{11} - 1326 q^{13} - 704 q^{14} + 768 q^{16} + 414 q^{17} - 372 q^{19} + 1056 q^{20} - 3312 q^{22} - 600 q^{23} + 13413 q^{25}+ \cdots - 56676 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(18))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3
18.6.a.a 18.a 1.a $1$ $2.887$ \(\Q\) None 18.6.a.a \(-4\) \(0\) \(-96\) \(-148\) $+$ $+$ $\mathrm{SU}(2)$ \(q-4q^{2}+2^{4}q^{4}-96q^{5}-148q^{7}+\cdots\)
18.6.a.b 18.a 1.a $1$ $2.887$ \(\Q\) None 6.6.a.a \(-4\) \(0\) \(66\) \(176\) $+$ $-$ $\mathrm{SU}(2)$ \(q-4q^{2}+2^{4}q^{4}+66q^{5}+176q^{7}+\cdots\)
18.6.a.c 18.a 1.a $1$ $2.887$ \(\Q\) None 18.6.a.a \(4\) \(0\) \(96\) \(-148\) $-$ $+$ $\mathrm{SU}(2)$ \(q+4q^{2}+2^{4}q^{4}+96q^{5}-148q^{7}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(18))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(18)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 2}\)