Properties

Label 18.6
Level 18
Weight 6
Dimension 13
Nonzero newspaces 2
Newform subspaces 5
Sturm bound 108
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 18 = 2 \cdot 3^{2} \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 5 \)
Sturm bound: \(108\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(18))\).

Total New Old
Modular forms 53 13 40
Cusp forms 37 13 24
Eisenstein series 16 0 16

Trace form

\( 13 q - 8 q^{2} + 9 q^{3} - 32 q^{4} - 42 q^{5} - 84 q^{6} - 178 q^{7} + 64 q^{8} + 579 q^{9} + 504 q^{10} - 333 q^{11} - 384 q^{12} - 964 q^{13} - 1528 q^{14} + 2664 q^{15} - 512 q^{16} + 4296 q^{17} + 2568 q^{18}+ \cdots + 601794 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(18))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
18.6.a \(\chi_{18}(1, \cdot)\) 18.6.a.a 1 1
18.6.a.b 1
18.6.a.c 1
18.6.c \(\chi_{18}(7, \cdot)\) 18.6.c.a 4 2
18.6.c.b 6

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(18))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(18)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 2}\)