# Properties

 Label 18.5.d.a.5.1 Level $18$ Weight $5$ Character 18.5 Analytic conductor $1.861$ Analytic rank $0$ Dimension $8$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$18 = 2 \cdot 3^{2}$$ Weight: $$k$$ $$=$$ $$5$$ Character orbit: $$[\chi]$$ $$=$$ 18.d (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$1.86065933551$$ Analytic rank: $$0$$ Dimension: $$8$$ Relative dimension: $$4$$ over $$\Q(\zeta_{6})$$ Coefficient field: 8.0.221456830464.4 Defining polynomial: $$x^{8} - 4x^{7} + 38x^{6} - 100x^{5} + 449x^{4} - 736x^{3} + 1900x^{2} - 1548x + 2307$$ x^8 - 4*x^7 + 38*x^6 - 100*x^5 + 449*x^4 - 736*x^3 + 1900*x^2 - 1548*x + 2307 Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$2^{4}\cdot 3^{4}$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## Embedding invariants

 Embedding label 5.1 Root $$0.500000 - 1.74753i$$ of defining polynomial Character $$\chi$$ $$=$$ 18.5 Dual form 18.5.d.a.11.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-2.44949 + 1.41421i) q^{2} +(-7.80760 - 4.47676i) q^{3} +(4.00000 - 6.92820i) q^{4} +(-32.5033 - 18.7658i) q^{5} +(25.4557 - 0.0758456i) q^{6} +(-1.35458 - 2.34620i) q^{7} +22.6274i q^{8} +(40.9173 + 69.9055i) q^{9} +O(q^{10})$$ $$q+(-2.44949 + 1.41421i) q^{2} +(-7.80760 - 4.47676i) q^{3} +(4.00000 - 6.92820i) q^{4} +(-32.5033 - 18.7658i) q^{5} +(25.4557 - 0.0758456i) q^{6} +(-1.35458 - 2.34620i) q^{7} +22.6274i q^{8} +(40.9173 + 69.9055i) q^{9} +106.155 q^{10} +(-91.4988 + 52.8268i) q^{11} +(-62.2463 + 36.1856i) q^{12} +(97.9281 - 169.616i) q^{13} +(6.63606 + 3.83133i) q^{14} +(169.763 + 292.025i) q^{15} +(-32.0000 - 55.4256i) q^{16} -448.150i q^{17} +(-199.088 - 113.367i) q^{18} -501.845 q^{19} +(-260.026 + 150.126i) q^{20} +(0.0726474 + 24.3823i) q^{21} +(149.417 - 258.798i) q^{22} +(343.254 + 198.178i) q^{23} +(101.297 - 176.666i) q^{24} +(391.808 + 678.631i) q^{25} +553.965i q^{26} +(-6.51608 - 728.971i) q^{27} -21.6733 q^{28} +(466.948 - 269.593i) q^{29} +(-828.817 - 475.231i) q^{30} +(-297.859 + 515.907i) q^{31} +(156.767 + 90.5097i) q^{32} +(950.879 - 2.83315i) q^{33} +(633.780 + 1097.74i) q^{34} +101.679i q^{35} +(647.988 - 3.86141i) q^{36} -1844.02 q^{37} +(1229.26 - 709.716i) q^{38} +(-1523.91 + 885.897i) q^{39} +(424.621 - 735.465i) q^{40} +(-145.474 - 83.9896i) q^{41} +(-34.6598 - 59.6215i) q^{42} +(-310.535 - 537.862i) q^{43} +845.229i q^{44} +(-18.1156 - 3040.00i) q^{45} -1121.06 q^{46} +(-651.961 + 376.410i) q^{47} +(1.71619 + 575.997i) q^{48} +(1196.83 - 2072.97i) q^{49} +(-1919.46 - 1108.20i) q^{50} +(-2006.26 + 3498.98i) q^{51} +(-783.425 - 1356.93i) q^{52} -913.826i q^{53} +(1046.88 + 1776.39i) q^{54} +3965.34 q^{55} +(53.0885 - 30.6506i) q^{56} +(3918.21 + 2246.64i) q^{57} +(-762.523 + 1320.73i) q^{58} +(1142.44 + 659.590i) q^{59} +(2702.26 - 8.05141i) q^{60} +(2064.42 + 3575.68i) q^{61} -1684.94i q^{62} +(108.587 - 190.693i) q^{63} -512.000 q^{64} +(-6365.96 + 3675.39i) q^{65} +(-2325.16 + 1351.69i) q^{66} +(3341.65 - 5787.91i) q^{67} +(-3104.88 - 1792.60i) q^{68} +(-1792.80 - 3083.96i) q^{69} +(-143.796 - 249.061i) q^{70} +2887.29i q^{71} +(-1581.78 + 925.853i) q^{72} +118.825 q^{73} +(4516.92 - 2607.84i) q^{74} +(-21.0130 - 7052.51i) q^{75} +(-2007.38 + 3476.88i) q^{76} +(247.885 + 143.116i) q^{77} +(2479.97 - 4325.14i) q^{78} +(-3918.75 - 6787.48i) q^{79} +2402.02i q^{80} +(-3212.55 + 5720.69i) q^{81} +475.117 q^{82} +(4404.19 - 2542.76i) q^{83} +(169.216 + 97.0260i) q^{84} +(-8409.88 + 14566.3i) q^{85} +(1521.30 + 878.325i) q^{86} +(-4852.65 + 14.4585i) q^{87} +(-1195.33 - 2070.38i) q^{88} -10285.1i q^{89} +(4343.58 + 7420.83i) q^{90} -530.605 q^{91} +(2746.03 - 1585.42i) q^{92} +(4635.15 - 2694.55i) q^{93} +(1064.65 - 1844.02i) q^{94} +(16311.6 + 9417.50i) q^{95} +(-818.787 - 1408.47i) q^{96} +(440.403 + 762.801i) q^{97} +6770.29i q^{98} +(-7436.77 - 4234.73i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$8 q + 6 q^{3} + 32 q^{4} + 18 q^{5} + 48 q^{6} - 26 q^{7} - 78 q^{9}+O(q^{10})$$ 8 * q + 6 * q^3 + 32 * q^4 + 18 * q^5 + 48 * q^6 - 26 * q^7 - 78 * q^9 $$8 q + 6 q^{3} + 32 q^{4} + 18 q^{5} + 48 q^{6} - 26 q^{7} - 78 q^{9} - 720 q^{11} - 144 q^{12} + 10 q^{13} + 288 q^{14} + 1134 q^{15} - 256 q^{16} - 384 q^{18} + 100 q^{19} + 144 q^{20} + 438 q^{21} + 336 q^{22} + 1278 q^{23} + 384 q^{24} + 794 q^{25} - 1296 q^{27} - 416 q^{28} - 1854 q^{29} - 3456 q^{30} - 1478 q^{31} - 3384 q^{33} - 96 q^{34} + 1056 q^{36} - 32 q^{37} + 6768 q^{38} + 5274 q^{39} - 36 q^{41} + 2592 q^{42} - 68 q^{43} + 3402 q^{45} + 2112 q^{46} + 2214 q^{47} - 1536 q^{48} + 2442 q^{49} - 15552 q^{50} - 12006 q^{51} - 80 q^{52} + 7056 q^{54} - 3996 q^{55} + 2304 q^{56} + 10902 q^{57} - 2400 q^{58} + 9108 q^{59} + 6480 q^{60} - 4478 q^{61} - 6654 q^{63} - 4096 q^{64} - 22554 q^{65} - 19872 q^{66} + 7504 q^{67} - 11088 q^{68} - 5994 q^{69} + 6048 q^{70} + 5376 q^{72} + 20716 q^{73} + 15264 q^{74} + 16590 q^{75} + 400 q^{76} + 34434 q^{77} + 24096 q^{78} - 6050 q^{79} - 21150 q^{81} + 1152 q^{82} - 3834 q^{83} - 9600 q^{84} - 16092 q^{85} - 12528 q^{86} + 10170 q^{87} - 2688 q^{88} + 2592 q^{90} - 45868 q^{91} + 10224 q^{92} - 10926 q^{93} + 672 q^{94} + 20880 q^{95} + 31336 q^{97} - 22338 q^{99}+O(q^{100})$$ 8 * q + 6 * q^3 + 32 * q^4 + 18 * q^5 + 48 * q^6 - 26 * q^7 - 78 * q^9 - 720 * q^11 - 144 * q^12 + 10 * q^13 + 288 * q^14 + 1134 * q^15 - 256 * q^16 - 384 * q^18 + 100 * q^19 + 144 * q^20 + 438 * q^21 + 336 * q^22 + 1278 * q^23 + 384 * q^24 + 794 * q^25 - 1296 * q^27 - 416 * q^28 - 1854 * q^29 - 3456 * q^30 - 1478 * q^31 - 3384 * q^33 - 96 * q^34 + 1056 * q^36 - 32 * q^37 + 6768 * q^38 + 5274 * q^39 - 36 * q^41 + 2592 * q^42 - 68 * q^43 + 3402 * q^45 + 2112 * q^46 + 2214 * q^47 - 1536 * q^48 + 2442 * q^49 - 15552 * q^50 - 12006 * q^51 - 80 * q^52 + 7056 * q^54 - 3996 * q^55 + 2304 * q^56 + 10902 * q^57 - 2400 * q^58 + 9108 * q^59 + 6480 * q^60 - 4478 * q^61 - 6654 * q^63 - 4096 * q^64 - 22554 * q^65 - 19872 * q^66 + 7504 * q^67 - 11088 * q^68 - 5994 * q^69 + 6048 * q^70 + 5376 * q^72 + 20716 * q^73 + 15264 * q^74 + 16590 * q^75 + 400 * q^76 + 34434 * q^77 + 24096 * q^78 - 6050 * q^79 - 21150 * q^81 + 1152 * q^82 - 3834 * q^83 - 9600 * q^84 - 16092 * q^85 - 12528 * q^86 + 10170 * q^87 - 2688 * q^88 + 2592 * q^90 - 45868 * q^91 + 10224 * q^92 - 10926 * q^93 + 672 * q^94 + 20880 * q^95 + 31336 * q^97 - 22338 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/18\mathbb{Z}\right)^\times$$.

 $$n$$ $$11$$ $$\chi(n)$$ $$e\left(\frac{5}{6}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −2.44949 + 1.41421i −0.612372 + 0.353553i
$$3$$ −7.80760 4.47676i −0.867511 0.497417i
$$4$$ 4.00000 6.92820i 0.250000 0.433013i
$$5$$ −32.5033 18.7658i −1.30013 0.750630i −0.319704 0.947518i $$-0.603583\pi$$
−0.980426 + 0.196887i $$0.936917\pi$$
$$6$$ 25.4557 0.0758456i 0.707104 0.00210682i
$$7$$ −1.35458 2.34620i −0.0276445 0.0478816i 0.851872 0.523750i $$-0.175467\pi$$
−0.879517 + 0.475868i $$0.842134\pi$$
$$8$$ 22.6274i 0.353553i
$$9$$ 40.9173 + 69.9055i 0.505152 + 0.863031i
$$10$$ 106.155 1.06155
$$11$$ −91.4988 + 52.8268i −0.756188 + 0.436585i −0.827925 0.560838i $$-0.810479\pi$$
0.0717373 + 0.997424i $$0.477146\pi$$
$$12$$ −62.2463 + 36.1856i −0.432266 + 0.251289i
$$13$$ 97.9281 169.616i 0.579456 1.00365i −0.416086 0.909325i $$-0.636598\pi$$
0.995542 0.0943219i $$-0.0300683\pi$$
$$14$$ 6.63606 + 3.83133i 0.0338574 + 0.0195476i
$$15$$ 169.763 + 292.025i 0.754501 + 1.29789i
$$16$$ −32.0000 55.4256i −0.125000 0.216506i
$$17$$ 448.150i 1.55069i −0.631536 0.775347i $$-0.717575\pi$$
0.631536 0.775347i $$-0.282425\pi$$
$$18$$ −199.088 113.367i −0.614468 0.349898i
$$19$$ −501.845 −1.39015 −0.695076 0.718936i $$-0.744629\pi$$
−0.695076 + 0.718936i $$0.744629\pi$$
$$20$$ −260.026 + 150.126i −0.650065 + 0.375315i
$$21$$ 0.0726474 + 24.3823i 0.000164733 + 0.0552887i
$$22$$ 149.417 258.798i 0.308713 0.534706i
$$23$$ 343.254 + 198.178i 0.648874 + 0.374628i 0.788025 0.615644i $$-0.211104\pi$$
−0.139151 + 0.990271i $$0.544437\pi$$
$$24$$ 101.297 176.666i 0.175864 0.306712i
$$25$$ 391.808 + 678.631i 0.626892 + 1.08581i
$$26$$ 553.965i 0.819475i
$$27$$ −6.51608 728.971i −0.00893839 0.999960i
$$28$$ −21.6733 −0.0276445
$$29$$ 466.948 269.593i 0.555230 0.320562i −0.195999 0.980604i $$-0.562795\pi$$
0.751229 + 0.660042i $$0.229462\pi$$
$$30$$ −828.817 475.231i −0.920908 0.528034i
$$31$$ −297.859 + 515.907i −0.309947 + 0.536844i −0.978350 0.206955i $$-0.933645\pi$$
0.668404 + 0.743799i $$0.266978\pi$$
$$32$$ 156.767 + 90.5097i 0.153093 + 0.0883883i
$$33$$ 950.879 2.83315i 0.873167 0.00260161i
$$34$$ 633.780 + 1097.74i 0.548253 + 0.949602i
$$35$$ 101.679i 0.0830032i
$$36$$ 647.988 3.86141i 0.499991 0.00297948i
$$37$$ −1844.02 −1.34699 −0.673493 0.739194i $$-0.735207\pi$$
−0.673493 + 0.739194i $$0.735207\pi$$
$$38$$ 1229.26 709.716i 0.851291 0.491493i
$$39$$ −1523.91 + 885.897i −1.00192 + 0.582444i
$$40$$ 424.621 735.465i 0.265388 0.459665i
$$41$$ −145.474 83.9896i −0.0865403 0.0499641i 0.456105 0.889926i $$-0.349244\pi$$
−0.542646 + 0.839962i $$0.682577\pi$$
$$42$$ −34.6598 59.6215i −0.0196484 0.0337990i
$$43$$ −310.535 537.862i −0.167947 0.290893i 0.769751 0.638345i $$-0.220381\pi$$
−0.937698 + 0.347451i $$0.887047\pi$$
$$44$$ 845.229i 0.436585i
$$45$$ −18.1156 3040.00i −0.00894597 1.50123i
$$46$$ −1121.06 −0.529803
$$47$$ −651.961 + 376.410i −0.295138 + 0.170398i −0.640257 0.768161i $$-0.721172\pi$$
0.345118 + 0.938559i $$0.387839\pi$$
$$48$$ 1.71619 + 575.997i 0.000744874 + 0.249999i
$$49$$ 1196.83 2072.97i 0.498472 0.863378i
$$50$$ −1919.46 1108.20i −0.767783 0.443280i
$$51$$ −2006.26 + 3498.98i −0.771342 + 1.34524i
$$52$$ −783.425 1356.93i −0.289728 0.501824i
$$53$$ 913.826i 0.325321i −0.986682 0.162660i $$-0.947993\pi$$
0.986682 0.162660i $$-0.0520075\pi$$
$$54$$ 1046.88 + 1776.39i 0.359013 + 0.609188i
$$55$$ 3965.34 1.31086
$$56$$ 53.0885 30.6506i 0.0169287 0.00977380i
$$57$$ 3918.21 + 2246.64i 1.20597 + 0.691486i
$$58$$ −762.523 + 1320.73i −0.226672 + 0.392607i
$$59$$ 1142.44 + 659.590i 0.328194 + 0.189483i 0.655039 0.755595i $$-0.272652\pi$$
−0.326845 + 0.945078i $$0.605986\pi$$
$$60$$ 2702.26 8.05141i 0.750627 0.00223650i
$$61$$ 2064.42 + 3575.68i 0.554802 + 0.960946i 0.997919 + 0.0644817i $$0.0205394\pi$$
−0.443117 + 0.896464i $$0.646127\pi$$
$$62$$ 1684.94i 0.438331i
$$63$$ 108.587 190.693i 0.0273587 0.0480455i
$$64$$ −512.000 −0.125000
$$65$$ −6365.96 + 3675.39i −1.50674 + 0.869915i
$$66$$ −2325.16 + 1351.69i −0.533784 + 0.310304i
$$67$$ 3341.65 5787.91i 0.744408 1.28935i −0.206062 0.978539i $$-0.566065\pi$$
0.950471 0.310814i $$-0.100602\pi$$
$$68$$ −3104.88 1792.60i −0.671470 0.387673i
$$69$$ −1792.80 3083.96i −0.376559 0.647755i
$$70$$ −143.796 249.061i −0.0293460 0.0508288i
$$71$$ 2887.29i 0.572761i 0.958116 + 0.286380i $$0.0924521\pi$$
−0.958116 + 0.286380i $$0.907548\pi$$
$$72$$ −1581.78 + 925.853i −0.305127 + 0.178598i
$$73$$ 118.825 0.0222979 0.0111489 0.999938i $$-0.496451\pi$$
0.0111489 + 0.999938i $$0.496451\pi$$
$$74$$ 4516.92 2607.84i 0.824857 0.476231i
$$75$$ −21.0130 7052.51i −0.00373565 1.25378i
$$76$$ −2007.38 + 3476.88i −0.347538 + 0.601954i
$$77$$ 247.885 + 143.116i 0.0418089 + 0.0241384i
$$78$$ 2479.97 4325.14i 0.407621 0.710903i
$$79$$ −3918.75 6787.48i −0.627905 1.08756i −0.987971 0.154636i $$-0.950579\pi$$
0.360067 0.932927i $$-0.382754\pi$$
$$80$$ 2402.02i 0.375315i
$$81$$ −3212.55 + 5720.69i −0.489643 + 0.871923i
$$82$$ 475.117 0.0706599
$$83$$ 4404.19 2542.76i 0.639308 0.369105i −0.145040 0.989426i $$-0.546331\pi$$
0.784348 + 0.620321i $$0.212998\pi$$
$$84$$ 169.216 + 97.0260i 0.0239819 + 0.0137508i
$$85$$ −8409.88 + 14566.3i −1.16400 + 2.01610i
$$86$$ 1521.30 + 878.325i 0.205693 + 0.118757i
$$87$$ −4852.65 + 14.4585i −0.641121 + 0.00191023i
$$88$$ −1195.33 2070.38i −0.154356 0.267353i
$$89$$ 10285.1i 1.29846i −0.760594 0.649228i $$-0.775092\pi$$
0.760594 0.649228i $$-0.224908\pi$$
$$90$$ 4343.58 + 7420.83i 0.536245 + 0.916152i
$$91$$ −530.605 −0.0640750
$$92$$ 2746.03 1585.42i 0.324437 0.187314i
$$93$$ 4635.15 2694.55i 0.535918 0.311545i
$$94$$ 1064.65 1844.02i 0.120490 0.208694i
$$95$$ 16311.6 + 9417.50i 1.80738 + 1.04349i
$$96$$ −818.787 1408.47i −0.0888441 0.152829i
$$97$$ 440.403 + 762.801i 0.0468066 + 0.0810714i 0.888480 0.458916i $$-0.151762\pi$$
−0.841673 + 0.539988i $$0.818429\pi$$
$$98$$ 6770.29i 0.704945i
$$99$$ −7436.77 4234.73i −0.758776 0.432072i
$$100$$ 6268.92 0.626892
$$101$$ −3574.35 + 2063.65i −0.350393 + 0.202299i −0.664858 0.746970i $$-0.731508\pi$$
0.314466 + 0.949269i $$0.398175\pi$$
$$102$$ −33.9902 11408.0i −0.00326704 1.09650i
$$103$$ −3638.92 + 6302.79i −0.343003 + 0.594098i −0.984989 0.172618i $$-0.944777\pi$$
0.641986 + 0.766716i $$0.278111\pi$$
$$104$$ 3837.98 + 2215.86i 0.354843 + 0.204869i
$$105$$ 455.192 793.868i 0.0412872 0.0720062i
$$106$$ 1292.34 + 2238.41i 0.115018 + 0.199217i
$$107$$ 2345.46i 0.204861i −0.994740 0.102431i $$-0.967338\pi$$
0.994740 0.102431i $$-0.0326620\pi$$
$$108$$ −5076.52 2870.74i −0.435230 0.246120i
$$109$$ 5878.01 0.494740 0.247370 0.968921i $$-0.420434\pi$$
0.247370 + 0.968921i $$0.420434\pi$$
$$110$$ −9713.07 + 5607.84i −0.802733 + 0.463458i
$$111$$ 14397.4 + 8255.24i 1.16853 + 0.670014i
$$112$$ −86.6931 + 150.157i −0.00691112 + 0.0119704i
$$113$$ −12321.8 7113.99i −0.964977 0.557130i −0.0672755 0.997734i $$-0.521431\pi$$
−0.897701 + 0.440605i $$0.854764\pi$$
$$114$$ −12774.8 + 38.0627i −0.982982 + 0.00292880i
$$115$$ −7437.92 12882.9i −0.562414 0.974129i
$$116$$ 4313.48i 0.320562i
$$117$$ 15864.1 94.5351i 1.15889 0.00690592i
$$118$$ −3731.20 −0.267969
$$119$$ −1051.45 + 607.055i −0.0742497 + 0.0428681i
$$120$$ −6607.77 + 3841.29i −0.458873 + 0.266756i
$$121$$ −1739.15 + 3012.30i −0.118786 + 0.205744i
$$122$$ −10113.5 5839.06i −0.679491 0.392304i
$$123$$ 759.804 + 1307.01i 0.0502217 + 0.0863911i
$$124$$ 2382.87 + 4127.25i 0.154973 + 0.268422i
$$125$$ 5953.07i 0.380996i
$$126$$ 3.69858 + 620.664i 0.000232967 + 0.0390945i
$$127$$ 10022.6 0.621402 0.310701 0.950508i $$-0.399436\pi$$
0.310701 + 0.950508i $$0.399436\pi$$
$$128$$ 1254.14 724.077i 0.0765466 0.0441942i
$$129$$ 16.6543 + 5589.60i 0.00100080 + 0.335893i
$$130$$ 10395.6 18005.7i 0.615123 1.06542i
$$131$$ −19690.8 11368.5i −1.14742 0.662461i −0.199160 0.979967i $$-0.563821\pi$$
−0.948256 + 0.317506i $$0.897155\pi$$
$$132$$ 3783.89 6599.21i 0.217165 0.378743i
$$133$$ 679.789 + 1177.43i 0.0384300 + 0.0665628i
$$134$$ 18903.2i 1.05275i
$$135$$ −13467.9 + 23816.2i −0.738979 + 1.30679i
$$136$$ 10140.5 0.548253
$$137$$ 9464.53 5464.35i 0.504264 0.291137i −0.226209 0.974079i $$-0.572633\pi$$
0.730473 + 0.682942i $$0.239300\pi$$
$$138$$ 8752.82 + 5018.73i 0.459610 + 0.263533i
$$139$$ 11963.9 20722.1i 0.619217 1.07251i −0.370412 0.928868i $$-0.620784\pi$$
0.989629 0.143647i $$-0.0458831\pi$$
$$140$$ 704.452 + 406.715i 0.0359414 + 0.0207508i
$$141$$ 6775.35 20.1872i 0.340795 0.00101540i
$$142$$ −4083.24 7072.38i −0.202502 0.350743i
$$143$$ 20692.9i 1.01193i
$$144$$ 2565.20 4504.84i 0.123708 0.217247i
$$145$$ −20236.4 −0.962495
$$146$$ −291.061 + 168.044i −0.0136546 + 0.00788348i
$$147$$ −18624.6 + 10827.0i −0.861889 + 0.501042i
$$148$$ −7376.09 + 12775.8i −0.336746 + 0.583262i
$$149$$ 5527.74 + 3191.44i 0.248986 + 0.143752i 0.619300 0.785155i $$-0.287417\pi$$
−0.370314 + 0.928907i $$0.620750\pi$$
$$150$$ 10025.2 + 17245.3i 0.445565 + 0.766459i
$$151$$ 15708.6 + 27208.2i 0.688945 + 1.19329i 0.972180 + 0.234237i $$0.0752592\pi$$
−0.283235 + 0.959051i $$0.591408\pi$$
$$152$$ 11355.5i 0.491493i
$$153$$ 31328.2 18337.1i 1.33830 0.783335i
$$154$$ −809.588 −0.0341368
$$155$$ 19362.8 11179.1i 0.805942 0.465311i
$$156$$ 42.0158 + 14101.6i 0.00172649 + 0.579453i
$$157$$ 5772.07 9997.52i 0.234171 0.405595i −0.724861 0.688896i $$-0.758096\pi$$
0.959031 + 0.283300i $$0.0914292\pi$$
$$158$$ 19197.9 + 11083.9i 0.769023 + 0.443996i
$$159$$ −4090.98 + 7134.79i −0.161820 + 0.282219i
$$160$$ −3396.97 5883.72i −0.132694 0.229833i
$$161$$ 1073.79i 0.0414255i
$$162$$ −221.161 18556.0i −0.00842710 0.707057i
$$163$$ −42242.8 −1.58993 −0.794964 0.606657i $$-0.792510\pi$$
−0.794964 + 0.606657i $$0.792510\pi$$
$$164$$ −1163.79 + 671.917i −0.0432702 + 0.0249820i
$$165$$ −30959.8 17751.9i −1.13718 0.652043i
$$166$$ −7192.02 + 12456.9i −0.260996 + 0.452059i
$$167$$ −17363.1 10024.6i −0.622577 0.359445i 0.155294 0.987868i $$-0.450367\pi$$
−0.777872 + 0.628423i $$0.783701\pi$$
$$168$$ −551.709 + 1.64382i −0.0195475 + 5.82420e-5i
$$169$$ −4899.32 8485.86i −0.171539 0.297114i
$$170$$ 47573.5i 1.64614i
$$171$$ −20534.1 35081.7i −0.702238 1.19974i
$$172$$ −4968.55 −0.167947
$$173$$ −32954.3 + 19026.1i −1.10108 + 0.635709i −0.936505 0.350655i $$-0.885959\pi$$
−0.164576 + 0.986364i $$0.552626\pi$$
$$174$$ 11866.1 6898.10i 0.391930 0.227840i
$$175$$ 1061.47 1838.52i 0.0346602 0.0600333i
$$176$$ 5855.92 + 3380.92i 0.189047 + 0.109146i
$$177$$ −5966.92 10264.3i −0.190460 0.327628i
$$178$$ 14545.3 + 25193.2i 0.459073 + 0.795138i
$$179$$ 33794.9i 1.05474i 0.849636 + 0.527370i $$0.176822\pi$$
−0.849636 + 0.527370i $$0.823178\pi$$
$$180$$ −21134.2 12034.5i −0.652290 0.371435i
$$181$$ 44812.8 1.36787 0.683935 0.729543i $$-0.260267\pi$$
0.683935 + 0.729543i $$0.260267\pi$$
$$182$$ 1299.71 750.389i 0.0392378 0.0226540i
$$183$$ −110.717 37159.4i −0.00330606 1.10960i
$$184$$ −4484.26 + 7766.96i −0.132451 + 0.229412i
$$185$$ 59936.7 + 34604.5i 1.75126 + 1.01109i
$$186$$ −7543.09 + 13155.4i −0.218034 + 0.380257i
$$187$$ 23674.4 + 41005.2i 0.677010 + 1.17262i
$$188$$ 6022.56i 0.170398i
$$189$$ −1701.49 + 1002.74i −0.0476326 + 0.0280714i
$$190$$ −53273.4 −1.47572
$$191$$ 11359.5 6558.40i 0.311381 0.179776i −0.336163 0.941804i $$-0.609129\pi$$
0.647544 + 0.762028i $$0.275796\pi$$
$$192$$ 3997.49 + 2292.10i 0.108439 + 0.0621772i
$$193$$ −1155.92 + 2002.11i −0.0310322 + 0.0537493i −0.881124 0.472885i $$-0.843213\pi$$
0.850092 + 0.526634i $$0.176546\pi$$
$$194$$ −2157.53 1245.65i −0.0573262 0.0330973i
$$195$$ 66156.7 197.115i 1.73982 0.00518382i
$$196$$ −9574.64 16583.8i −0.249236 0.431689i
$$197$$ 13110.0i 0.337808i −0.985632 0.168904i $$-0.945977\pi$$
0.985632 0.168904i $$-0.0540228\pi$$
$$198$$ 24205.1 144.240i 0.617414 0.00367922i
$$199$$ −10592.0 −0.267467 −0.133733 0.991017i $$-0.542697\pi$$
−0.133733 + 0.991017i $$0.542697\pi$$
$$200$$ −15355.7 + 8865.59i −0.383891 + 0.221640i
$$201$$ −52001.3 + 30229.9i −1.28713 + 0.748247i
$$202$$ 5836.90 10109.8i 0.143047 0.247765i
$$203$$ −1265.04 730.370i −0.0306981 0.0177235i
$$204$$ 16216.6 + 27895.7i 0.389672 + 0.670312i
$$205$$ 3152.26 + 5459.87i 0.0750091 + 0.129920i
$$206$$ 20584.8i 0.485079i
$$207$$ 191.312 + 32104.3i 0.00446479 + 0.749242i
$$208$$ −12534.8 −0.289728
$$209$$ 45918.2 26510.9i 1.05122 0.606920i
$$210$$ 7.71190 + 2588.31i 0.000174873 + 0.0586918i
$$211$$ 6692.11 11591.1i 0.150314 0.260351i −0.781029 0.624495i $$-0.785305\pi$$
0.931343 + 0.364144i $$0.118638\pi$$
$$212$$ −6331.17 3655.30i −0.140868 0.0813302i
$$213$$ 12925.7 22542.8i 0.284901 0.496876i
$$214$$ 3316.98 + 5745.18i 0.0724295 + 0.125451i
$$215$$ 23309.7i 0.504266i
$$216$$ 16494.7 147.442i 0.353539 0.00316020i
$$217$$ 1613.89 0.0342733
$$218$$ −14398.1 + 8312.75i −0.302965 + 0.174917i
$$219$$ −927.741 531.952i −0.0193436 0.0110913i
$$220$$ 15861.4 27472.7i 0.327714 0.567618i
$$221$$ −76013.6 43886.5i −1.55635 0.898558i
$$222$$ −46941.0 + 139.861i −0.952458 + 0.00283786i
$$223$$ −28939.5 50124.7i −0.581944 1.00796i −0.995249 0.0973637i $$-0.968959\pi$$
0.413305 0.910593i $$-0.364374\pi$$
$$224$$ 490.410i 0.00977380i
$$225$$ −31408.3 + 55157.2i −0.620411 + 1.08953i
$$226$$ 40242.8 0.787900
$$227$$ −24205.4 + 13975.0i −0.469742 + 0.271206i −0.716132 0.697965i $$-0.754089\pi$$
0.246389 + 0.969171i $$0.420756\pi$$
$$228$$ 31238.0 18159.6i 0.600916 0.349330i
$$229$$ 29733.6 51500.1i 0.566991 0.982058i −0.429870 0.902891i $$-0.641441\pi$$
0.996861 0.0791669i $$-0.0252260\pi$$
$$230$$ 36438.2 + 21037.6i 0.688813 + 0.397687i
$$231$$ −1294.69 2227.11i −0.0242628 0.0417368i
$$232$$ 6100.19 + 10565.8i 0.113336 + 0.196303i
$$233$$ 17091.6i 0.314826i 0.987533 + 0.157413i $$0.0503154\pi$$
−0.987533 + 0.157413i $$0.949685\pi$$
$$234$$ −38725.2 + 22666.7i −0.707232 + 0.413959i
$$235$$ 28254.5 0.511624
$$236$$ 9139.55 5276.72i 0.164097 0.0947415i
$$237$$ 210.166 + 70537.2i 0.00374168 + 1.25580i
$$238$$ 1717.01 2973.95i 0.0303123 0.0525025i
$$239$$ −76828.5 44356.9i −1.34501 0.776543i −0.357474 0.933923i $$-0.616362\pi$$
−0.987538 + 0.157380i $$0.949695\pi$$
$$240$$ 10753.2 18754.0i 0.186688 0.325590i
$$241$$ −27553.4 47723.9i −0.474396 0.821678i 0.525174 0.850995i $$-0.324000\pi$$
−0.999570 + 0.0293170i $$0.990667\pi$$
$$242$$ 9838.12i 0.167989i
$$243$$ 50692.4 30283.0i 0.858481 0.512846i
$$244$$ 33030.7 0.554802
$$245$$ −77801.7 + 44918.9i −1.29616 + 0.748336i
$$246$$ −3709.53 2126.98i −0.0612983 0.0351475i
$$247$$ −49144.7 + 85121.1i −0.805532 + 1.39522i
$$248$$ −11673.6 6739.78i −0.189803 0.109583i
$$249$$ −45769.5 + 136.371i −0.738206 + 0.00219949i
$$250$$ 8418.91 + 14582.0i 0.134703 + 0.233312i
$$251$$ 99498.8i 1.57932i −0.613544 0.789661i $$-0.710257\pi$$
0.613544 0.789661i $$-0.289743\pi$$
$$252$$ −886.812 1515.08i −0.0139647 0.0238580i
$$253$$ −41876.5 −0.654228
$$254$$ −24550.2 + 14174.1i −0.380529 + 0.219699i
$$255$$ 130871. 76079.2i 2.01263 1.17000i
$$256$$ −2048.00 + 3547.24i −0.0312500 + 0.0541266i
$$257$$ 105289. + 60788.7i 1.59411 + 0.920357i 0.992592 + 0.121495i $$0.0387689\pi$$
0.601514 + 0.798862i $$0.294564\pi$$
$$258$$ −7945.68 13668.1i −0.119369 0.205338i
$$259$$ 2497.88 + 4326.45i 0.0372367 + 0.0644959i
$$260$$ 58806.2i 0.869915i
$$261$$ 37952.3 + 21611.2i 0.557130 + 0.317248i
$$262$$ 64309.9 0.936862
$$263$$ 104388. 60268.5i 1.50917 0.871322i 0.509231 0.860630i $$-0.329930\pi$$
0.999943 0.0106920i $$-0.00340345\pi$$
$$264$$ 64.1069 + 21515.9i 0.000919808 + 0.308711i
$$265$$ −17148.6 + 29702.3i −0.244196 + 0.422959i
$$266$$ −3330.27 1922.73i −0.0470670 0.0271741i
$$267$$ −46043.7 + 80301.7i −0.645874 + 1.12642i
$$268$$ −26733.2 46303.2i −0.372204 0.644677i
$$269$$ 66714.5i 0.921968i 0.887408 + 0.460984i $$0.152504\pi$$
−0.887408 + 0.460984i $$0.847496\pi$$
$$270$$ −691.716 77384.0i −0.00948856 1.06151i
$$271$$ 110531. 1.50503 0.752517 0.658573i $$-0.228839\pi$$
0.752517 + 0.658573i $$0.228839\pi$$
$$272$$ −24839.0 + 14340.8i −0.335735 + 0.193837i
$$273$$ 4142.76 + 2375.39i 0.0555858 + 0.0318720i
$$274$$ −15455.5 + 26769.7i −0.205865 + 0.356568i
$$275$$ −71699.8 41395.9i −0.948097 0.547384i
$$276$$ −28537.5 + 85.0278i −0.374626 + 0.00111620i
$$277$$ 38191.1 + 66148.9i 0.497740 + 0.862110i 0.999997 0.00260812i $$-0.000830190\pi$$
−0.502257 + 0.864718i $$0.667497\pi$$
$$278$$ 67678.0i 0.875705i
$$279$$ −48252.3 + 287.539i −0.619883 + 0.00369393i
$$280$$ −2300.73 −0.0293460
$$281$$ 28868.9 16667.5i 0.365610 0.211085i −0.305929 0.952054i $$-0.598967\pi$$
0.671539 + 0.740970i $$0.265634\pi$$
$$282$$ −16567.6 + 9631.23i −0.208334 + 0.121111i
$$283$$ −43833.2 + 75921.3i −0.547306 + 0.947962i 0.451152 + 0.892447i $$0.351013\pi$$
−0.998458 + 0.0555146i $$0.982320\pi$$
$$284$$ 20003.7 + 11549.1i 0.248013 + 0.143190i
$$285$$ −85194.6 146551.i −1.04887 1.80426i
$$286$$ −29264.2 50687.1i −0.357771 0.619677i
$$287$$ 455.083i 0.00552493i
$$288$$ 87.3738 + 14662.3i 0.00105341 + 0.176774i
$$289$$ −117318. −1.40465
$$290$$ 49569.0 28618.7i 0.589405 0.340293i
$$291$$ −23.6193 7927.23i −0.000278920 0.0936128i
$$292$$ 475.301 823.246i 0.00557447 0.00965526i
$$293$$ 141866. + 81906.4i 1.65251 + 0.954076i 0.976037 + 0.217606i $$0.0698249\pi$$
0.676471 + 0.736469i $$0.263508\pi$$
$$294$$ 30309.0 52859.8i 0.350652 0.611548i
$$295$$ −24755.4 42877.6i −0.284463 0.492705i
$$296$$ 41725.5i 0.476231i
$$297$$ 39105.4 + 66355.7i 0.443327 + 0.752256i
$$298$$ −18053.5 −0.203296
$$299$$ 67228.5 38814.4i 0.751988 0.434160i
$$300$$ −48945.2 28064.4i −0.543836 0.311827i
$$301$$ −841.288 + 1457.15i −0.00928564 + 0.0160832i
$$302$$ −76956.3 44430.7i −0.843782 0.487158i
$$303$$ 37145.6 110.676i 0.404597 0.00120550i
$$304$$ 16059.0 + 27815.1i 0.173769 + 0.300977i
$$305$$ 154962.i 1.66581i
$$306$$ −50805.4 + 89221.2i −0.542584 + 0.952852i
$$307$$ −50704.2 −0.537981 −0.268991 0.963143i $$-0.586690\pi$$
−0.268991 + 0.963143i $$0.586690\pi$$
$$308$$ 1983.08 1144.93i 0.0209044 0.0120692i
$$309$$ 56627.3 32919.1i 0.593074 0.344771i
$$310$$ −31619.3 + 54766.2i −0.329025 + 0.569887i
$$311$$ −32107.8 18537.4i −0.331963 0.191659i 0.324749 0.945800i $$-0.394720\pi$$
−0.656712 + 0.754141i $$0.728053\pi$$
$$312$$ −20045.6 34482.3i −0.205925 0.354231i
$$313$$ −88549.2 153372.i −0.903849 1.56551i −0.822454 0.568831i $$-0.807396\pi$$
−0.0813950 0.996682i $$-0.525938\pi$$
$$314$$ 32651.8i 0.331167i
$$315$$ −7107.91 + 4160.42i −0.0716343 + 0.0419292i
$$316$$ −62700.1 −0.627905
$$317$$ −24457.9 + 14120.8i −0.243389 + 0.140521i −0.616733 0.787172i $$-0.711544\pi$$
0.373344 + 0.927693i $$0.378211\pi$$
$$318$$ −69.3097 23262.1i −0.000685393 0.230035i
$$319$$ −28483.5 + 49334.8i −0.279905 + 0.484810i
$$320$$ 16641.7 + 9608.07i 0.162516 + 0.0938288i
$$321$$ −10500.0 + 18312.4i −0.101902 + 0.177720i
$$322$$ 1518.57 + 2630.24i 0.0146461 + 0.0253679i
$$323$$ 224902.i 2.15570i
$$324$$ 26783.9 + 45139.9i 0.255143 + 0.430003i
$$325$$ 153476. 1.45303
$$326$$ 103473. 59740.3i 0.973628 0.562124i
$$327$$ −45893.1 26314.4i −0.429192 0.246092i
$$328$$ 1900.47 3291.71i 0.0176650 0.0305966i
$$329$$ 1766.27 + 1019.75i 0.0163179 + 0.00942114i
$$330$$ 100941. 300.754i 0.926912 0.00276174i
$$331$$ 81696.9 + 141503.i 0.745675 + 1.29155i 0.949879 + 0.312618i $$0.101206\pi$$
−0.204204 + 0.978928i $$0.565461\pi$$
$$332$$ 40684.2i 0.369105i
$$333$$ −75452.4 128907.i −0.680432 1.16249i
$$334$$ 56707.5 0.508332
$$335$$ −217229. + 125417.i −1.93566 + 1.11755i
$$336$$ 1349.08 784.261i 0.0119498 0.00694676i
$$337$$ 99115.2 171673.i 0.872731 1.51161i 0.0135713 0.999908i $$-0.495680\pi$$
0.859160 0.511707i $$-0.170987\pi$$
$$338$$ 24001.6 + 13857.4i 0.210091 + 0.121296i
$$339$$ 64356.0 + 110705.i 0.560002 + 0.963312i
$$340$$ 67279.1 + 116531.i 0.581999 + 1.00805i
$$341$$ 62939.8i 0.541273i
$$342$$ 99911.2 + 56892.6i 0.854205 + 0.486412i
$$343$$ −12989.5 −0.110409
$$344$$ 12170.4 7026.60i 0.102846 0.0593784i
$$345$$ 398.903 + 133882.i 0.00335142 + 1.12482i
$$346$$ 53814.1 93208.7i 0.449514 0.778582i
$$347$$ 28124.2 + 16237.5i 0.233572 + 0.134853i 0.612219 0.790688i $$-0.290277\pi$$
−0.378647 + 0.925541i $$0.623610\pi$$
$$348$$ −19310.4 + 33678.0i −0.159453 + 0.278091i
$$349$$ 73033.8 + 126498.i 0.599616 + 1.03856i 0.992878 + 0.119138i $$0.0380132\pi$$
−0.393262 + 0.919426i $$0.628653\pi$$
$$350$$ 6004.58i 0.0490169i
$$351$$ −124284. 70281.5i −1.00879 0.570462i
$$352$$ −19125.4 −0.154356
$$353$$ −151652. + 87556.5i −1.21703 + 0.702650i −0.964280 0.264883i $$-0.914667\pi$$
−0.252745 + 0.967533i $$0.581333\pi$$
$$354$$ 29131.8 + 16703.7i 0.232466 + 0.133293i
$$355$$ 54182.1 93846.2i 0.429932 0.744663i
$$356$$ −71257.0 41140.3i −0.562248 0.324614i
$$357$$ 10926.9 32.5569i 0.0857358 0.000255451i
$$358$$ −47793.3 82780.4i −0.372907 0.645894i
$$359$$ 217198.i 1.68526i −0.538492 0.842631i $$-0.681006\pi$$
0.538492 0.842631i $$-0.318994\pi$$
$$360$$ 68787.3 409.909i 0.530766 0.00316288i
$$361$$ 121527. 0.932524
$$362$$ −109768. + 63374.9i −0.837646 + 0.483615i
$$363$$ 27063.9 15733.1i 0.205389 0.119399i
$$364$$ −2122.42 + 3676.14i −0.0160188 + 0.0277453i
$$365$$ −3862.21 2229.85i −0.0289901 0.0167375i
$$366$$ 52822.5 + 90864.9i 0.394327 + 0.678319i
$$367$$ −92816.7 160763.i −0.689119 1.19359i −0.972123 0.234470i $$-0.924664\pi$$
0.283004 0.959119i $$-0.408669\pi$$
$$368$$ 25366.8i 0.187314i
$$369$$ −81.0796 13606.1i −0.000595469 0.0999264i
$$370$$ −195753. −1.42989
$$371$$ −2144.02 + 1237.85i −0.0155769 + 0.00899332i
$$372$$ −127.796 42891.5i −0.000923486 0.309945i
$$373$$ −39939.9 + 69178.0i −0.287071 + 0.497222i −0.973109 0.230344i $$-0.926015\pi$$
0.686038 + 0.727565i $$0.259348\pi$$
$$374$$ −115980. 66961.2i −0.829165 0.478718i
$$375$$ −26650.4 + 46479.2i −0.189514 + 0.330519i
$$376$$ −8517.18 14752.2i −0.0602449 0.104347i
$$377$$ 105603.i 0.743007i
$$378$$ 2749.69 4862.46i 0.0192442 0.0340308i
$$379$$ −56872.1 −0.395932 −0.197966 0.980209i $$-0.563434\pi$$
−0.197966 + 0.980209i $$0.563434\pi$$
$$380$$ 130493. 75340.0i 0.903690 0.521745i
$$381$$ −78252.4 44868.7i −0.539073 0.309096i
$$382$$ −18550.0 + 32129.5i −0.127121 + 0.220180i
$$383$$ 84583.3 + 48834.2i 0.576617 + 0.332910i 0.759788 0.650171i $$-0.225303\pi$$
−0.183171 + 0.983081i $$0.558636\pi$$
$$384$$ −13033.3 + 38.8330i −0.0883880 + 0.000263353i
$$385$$ −5371.37 9303.49i −0.0362380 0.0627660i
$$386$$ 6538.86i 0.0438862i
$$387$$ 24893.2 43715.9i 0.166211 0.291889i
$$388$$ 7046.45 0.0468066
$$389$$ −74946.6 + 43270.4i −0.495282 + 0.285951i −0.726763 0.686888i $$-0.758976\pi$$
0.231481 + 0.972839i $$0.425643\pi$$
$$390$$ −161771. + 94042.6i −1.06359 + 0.618294i
$$391$$ 88813.5 153830.i 0.580932 1.00620i
$$392$$ 46906.0 + 27081.2i 0.305250 + 0.176236i
$$393$$ 102844. + 176912.i 0.665877 + 1.14544i
$$394$$ 18540.3 + 32112.8i 0.119433 + 0.206864i
$$395$$ 294154.i 1.88530i
$$396$$ −59086.2 + 34584.5i −0.376787 + 0.220542i
$$397$$ −13531.3 −0.0858537 −0.0429268 0.999078i $$-0.513668\pi$$
−0.0429268 + 0.999078i $$0.513668\pi$$
$$398$$ 25944.9 14979.3i 0.163789 0.0945638i
$$399$$ −36.4577 12236.1i −0.000229004 0.0768597i
$$400$$ 25075.7 43432.4i 0.156723 0.271452i
$$401$$ 22448.2 + 12960.5i 0.139603 + 0.0805996i 0.568175 0.822908i $$-0.307650\pi$$
−0.428572 + 0.903508i $$0.640983\pi$$
$$402$$ 84625.1 147589.i 0.523657 0.913275i
$$403$$ 58337.5 + 101044.i 0.359201 + 0.622155i
$$404$$ 33018.5i 0.202299i
$$405$$ 211771. 125655.i 1.29109 0.766072i
$$406$$ 4131.59 0.0250649
$$407$$ 168726. 97413.9i 1.01857 0.588074i
$$408$$ −79172.9 45396.5i −0.475616 0.272711i
$$409$$ 20360.8 35266.0i 0.121716 0.210819i −0.798728 0.601692i $$-0.794493\pi$$
0.920445 + 0.390873i $$0.127827\pi$$
$$410$$ −15442.9 8915.94i −0.0918671 0.0530395i
$$411$$ −98357.8 + 293.058i −0.582271 + 0.00173488i
$$412$$ 29111.3 + 50422.3i 0.171501 + 0.297049i
$$413$$ 3573.87i 0.0209526i
$$414$$ −45870.9 78368.5i −0.267631 0.457237i
$$415$$ −190867. −1.10824
$$416$$ 30703.8 17726.9i 0.177421 0.102434i
$$417$$ −186177. + 108230.i −1.07067 + 0.622410i
$$418$$ −74984.1 + 129876.i −0.429157 + 0.743323i
$$419$$ 44556.0 + 25724.4i 0.253792 + 0.146527i 0.621499 0.783415i $$-0.286524\pi$$
−0.367707 + 0.929942i $$0.619857\pi$$
$$420$$ −3679.31 6329.13i −0.0208578 0.0358794i
$$421$$ 91333.7 + 158195.i 0.515308 + 0.892540i 0.999842 + 0.0177674i $$0.00565585\pi$$
−0.484534 + 0.874772i $$0.661011\pi$$
$$422$$ 37856.3i 0.212576i
$$423$$ −52989.6 30174.0i −0.296149 0.168637i
$$424$$ 20677.5 0.115018
$$425$$ 304129. 175589.i 1.68376 0.972117i
$$426$$ 218.988 + 73498.0i 0.00120671 + 0.405001i
$$427$$ 5592.84 9687.08i 0.0306744 0.0531297i
$$428$$ −16249.8 9381.83i −0.0887076 0.0512154i
$$429$$ 92637.2 161562.i 0.503351 0.877859i
$$430$$ −32964.9 57096.8i −0.178285 0.308798i
$$431$$ 78404.3i 0.422071i 0.977478 + 0.211035i $$0.0676835\pi$$
−0.977478 + 0.211035i $$0.932316\pi$$
$$432$$ −40195.2 + 23688.2i −0.215380 + 0.126930i
$$433$$ −330583. −1.76321 −0.881606 0.471986i $$-0.843537\pi$$
−0.881606 + 0.471986i $$0.843537\pi$$
$$434$$ −3953.22 + 2282.39i −0.0209880 + 0.0121174i
$$435$$ 157998. + 90593.7i 0.834975 + 0.478762i
$$436$$ 23512.0 40724.0i 0.123685 0.214229i
$$437$$ −172260. 99454.6i −0.902034 0.520789i
$$438$$ 3024.78 9.01238i 0.0157669 4.69776e-5i
$$439$$ 123906. + 214611.i 0.642927 + 1.11358i 0.984776 + 0.173828i $$0.0556136\pi$$
−0.341849 + 0.939755i $$0.611053\pi$$
$$440$$ 89725.5i 0.463458i
$$441$$ 193883. 1155.36i 0.996925 0.00594075i
$$442$$ 248260. 1.27075
$$443$$ 136274. 78678.0i 0.694395 0.400909i −0.110862 0.993836i $$-0.535361\pi$$
0.805256 + 0.592927i $$0.202028\pi$$
$$444$$ 114784. 66727.1i 0.582256 0.338483i
$$445$$ −193007. + 334298.i −0.974660 + 1.68816i
$$446$$ 141774. + 81853.2i 0.712733 + 0.411496i
$$447$$ −28871.1 49663.8i −0.144493 0.248557i
$$448$$ 693.545 + 1201.25i 0.00345556 + 0.00598521i
$$449$$ 27735.6i 0.137577i −0.997631 0.0687883i $$-0.978087\pi$$
0.997631 0.0687883i $$-0.0219133\pi$$
$$450$$ −1069.80 179525.i −0.00528298 0.886544i
$$451$$ 17747.6 0.0872544
$$452$$ −98574.3 + 56911.9i −0.482488 + 0.278565i
$$453$$ −842.469 282754.i −0.00410542 1.37788i
$$454$$ 39527.2 68463.1i 0.191772 0.332158i
$$455$$ 17246.4 + 9957.22i 0.0833059 + 0.0480967i
$$456$$ −50835.6 + 88658.9i −0.244477 + 0.426376i
$$457$$ −6958.48 12052.4i −0.0333182 0.0577089i 0.848885 0.528577i $$-0.177274\pi$$
−0.882204 + 0.470868i $$0.843941\pi$$
$$458$$ 168199.i 0.801847i
$$459$$ −326689. + 2920.18i −1.55063 + 0.0138607i
$$460$$ −119007. −0.562414
$$461$$ −351627. + 203012.i −1.65455 + 0.955256i −0.679386 + 0.733781i $$0.737754\pi$$
−0.975166 + 0.221475i $$0.928913\pi$$
$$462$$ 6320.94 + 3624.33i 0.0296141 + 0.0169802i
$$463$$ 137743. 238578.i 0.642550 1.11293i −0.342311 0.939587i $$-0.611210\pi$$
0.984862 0.173343i $$-0.0554569\pi$$
$$464$$ −29884.7 17253.9i −0.138807 0.0801405i
$$465$$ −201223. + 599.546i −0.930618 + 0.00277279i
$$466$$ −24171.2 41865.7i −0.111308 0.192791i
$$467$$ 327264.i 1.50060i −0.661098 0.750300i $$-0.729909\pi$$
0.661098 0.750300i $$-0.270091\pi$$
$$468$$ 62801.3 110288.i 0.286733 0.503541i
$$469$$ −18106.1 −0.0823151
$$470$$ −69209.0 + 39957.8i −0.313305 + 0.180887i
$$471$$ −89822.5 + 52216.5i −0.404896 + 0.235378i
$$472$$ −14924.8 + 25850.5i −0.0669923 + 0.116034i
$$473$$ 56827.1 + 32809.1i 0.254000 + 0.146647i
$$474$$ −100270. 172483.i −0.446285 0.767697i
$$475$$ −196627. 340567.i −0.871476 1.50944i
$$476$$ 9712.88i 0.0428681i
$$477$$ 63881.4 37391.3i 0.280762 0.164336i
$$478$$ 250921. 1.09820
$$479$$ 5079.20 2932.48i 0.0221373 0.0127810i −0.488891 0.872345i $$-0.662598\pi$$
0.511028 + 0.859564i $$0.329265\pi$$
$$480$$ 182.182 + 61145.1i 0.000790723 + 0.265387i
$$481$$ −180582. + 312777.i −0.780519 + 1.35190i
$$482$$ 134983. + 77932.7i 0.581014 + 0.335449i
$$483$$ −4807.10 + 8383.74i −0.0206058 + 0.0359371i
$$484$$ 13913.2 + 24098.4i 0.0593932 + 0.102872i
$$485$$ 33058.0i 0.140538i
$$486$$ −81343.9 + 145868.i −0.344392 + 0.617571i
$$487$$ 119183. 0.502524 0.251262 0.967919i $$-0.419154\pi$$
0.251262 + 0.967919i $$0.419154\pi$$
$$488$$ −80908.4 + 46712.5i −0.339746 + 0.196152i
$$489$$ 329815. + 189111.i 1.37928 + 0.790858i
$$490$$ 127050. 220057.i 0.529153 0.916521i
$$491$$ −134236. 77501.3i −0.556810 0.321474i 0.195054 0.980792i $$-0.437512\pi$$
−0.751864 + 0.659318i $$0.770845\pi$$
$$492$$ 12094.5 36.0356i 0.0499639 0.000148868i
$$493$$ −120818. 209263.i −0.497093 0.860991i
$$494$$ 278005.i 1.13919i
$$495$$ 162251. + 277199.i 0.662182 + 1.13131i
$$496$$ 38125.9 0.154973
$$497$$ 6774.15 3911.06i 0.0274247 0.0158337i
$$498$$ 111919. 65061.9i 0.451279 0.262342i
$$499$$ 51906.9 89905.4i 0.208461 0.361065i −0.742769 0.669548i $$-0.766488\pi$$
0.951230 + 0.308483i $$0.0998213\pi$$
$$500$$ −41244.1 23812.3i −0.164976 0.0952491i
$$501$$ 90686.3 + 155998.i 0.361299 + 0.621504i
$$502$$ 140713. + 243721.i 0.558374 + 0.967133i
$$503$$ 48040.5i 0.189876i 0.995483 + 0.0949382i $$0.0302654\pi$$
−0.995483 + 0.0949382i $$0.969735\pi$$
$$504$$ 4314.88 + 2457.03i 0.0169867 + 0.00967275i
$$505$$ 154904. 0.607408
$$506$$ 102576. 59222.3i 0.400631 0.231304i
$$507$$ 262.755 + 88187.3i 0.00102220 + 0.343076i
$$508$$ 40090.4 69438.6i 0.155350 0.269075i
$$509$$ −245324. 141638.i −0.946902 0.546694i −0.0547847 0.998498i $$-0.517447\pi$$
−0.892117 + 0.451804i $$0.850781\pi$$
$$510$$ −212975. + 371435.i −0.818819 + 1.42805i
$$511$$ −160.958 278.788i −0.000616413 0.00106766i
$$512$$ 11585.2i 0.0441942i
$$513$$ 3270.06 + 365830.i 0.0124257 + 1.39010i
$$514$$ −343873. −1.30158
$$515$$ 236553. 136574.i 0.891896 0.514937i
$$516$$ 38792.5 + 22243.0i 0.145696 + 0.0835399i
$$517$$ 39769.1 68882.1i 0.148787 0.257706i
$$518$$ −12237.0 7065.06i −0.0456055 0.0263303i
$$519$$ 342469. 1020.39i 1.27141 0.00378819i
$$520$$ −83164.6 144045.i −0.307561 0.532712i
$$521$$ 253304.i 0.933183i 0.884473 + 0.466591i $$0.154518\pi$$
−0.884473 + 0.466591i $$0.845482\pi$$
$$522$$ −123527. + 736.104i −0.453335 + 0.00270146i
$$523$$ 418405. 1.52966 0.764828 0.644234i $$-0.222824\pi$$
0.764828 + 0.644234i $$0.222824\pi$$
$$524$$ −157527. + 90948.0i −0.573708 + 0.331231i
$$525$$ −16518.1 + 9602.48i −0.0599297 + 0.0348389i
$$526$$ −170465. + 295254.i −0.616118 + 1.06715i
$$527$$ 231204. + 133486.i 0.832480 + 0.480632i
$$528$$ −30585.2 52612.4i −0.109709 0.188721i
$$529$$ −61371.5 106299.i −0.219308 0.379853i
$$530$$ 97007.3i 0.345345i
$$531$$ 636.737 + 106852.i 0.00225825 + 0.378959i
$$532$$ 10876.6 0.0384300
$$533$$ −28492.0 + 16449.9i −0.100293 + 0.0579040i
$$534$$ −780.077 261814.i −0.00273561 0.918142i
$$535$$ −44014.3 + 76235.0i −0.153775 + 0.266347i
$$536$$ 130965. + 75612.9i 0.455855 + 0.263188i
$$537$$ 151292. 263857.i 0.524646 0.914999i
$$538$$ −94348.6 163417.i −0.325965 0.564588i
$$539$$ 252899.i 0.870502i
$$540$$ 111132. + 188573.i 0.381111 + 0.646684i
$$541$$ 496984. 1.69804 0.849020 0.528360i $$-0.177193\pi$$
0.849020 + 0.528360i $$0.177193\pi$$
$$542$$ −270745. + 156315.i −0.921642 + 0.532110i
$$543$$ −349880. 200616.i −1.18664 0.680402i
$$544$$ 40561.9 70255.3i 0.137063 0.237400i
$$545$$ −191054. 110305.i −0.643226 0.371367i
$$546$$ −13507.0 + 40.2441i −0.0453077 + 0.000134995i
$$547$$ −214561. 371631.i −0.717094 1.24204i −0.962146 0.272534i $$-0.912138\pi$$
0.245052 0.969510i $$-0.421195\pi$$
$$548$$ 87429.6i 0.291137i
$$549$$ −165489. + 290621.i −0.549066 + 0.964235i
$$550$$ 234171. 0.774118
$$551$$ −234336. + 135294.i −0.771854 + 0.445630i
$$552$$ 69782.1 40566.4i 0.229016 0.133134i
$$553$$ −10616.5 + 18388.4i −0.0347162 + 0.0601302i
$$554$$ −187097. 108021.i −0.609604 0.351955i
$$555$$ −313046. 538500.i −1.01630 1.74824i
$$556$$ −95711.1 165776.i −0.309608 0.536257i
$$557$$ 208947.i 0.673482i −0.941597 0.336741i $$-0.890675\pi$$
0.941597 0.336741i $$-0.109325\pi$$
$$558$$ 117787. 68943.4i 0.378293 0.221424i
$$559$$ −121640. −0.389272
$$560$$ 5635.61 3253.72i 0.0179707 0.0103754i
$$561$$ −1269.68 426137.i −0.00403430 1.35401i
$$562$$ −47142.7 + 81653.6i −0.149259 + 0.258525i
$$563$$ −73412.4 42384.6i −0.231607 0.133719i 0.379706 0.925107i $$-0.376025\pi$$
−0.611313 + 0.791389i $$0.709358\pi$$
$$564$$ 26961.5 47021.7i 0.0847591 0.147822i
$$565$$ 266999. + 462455.i 0.836397 + 1.44868i
$$566$$ 247958.i 0.774008i
$$567$$ 17773.5 211.835i 0.0552850 0.000658919i
$$568$$ −65331.8 −0.202502
$$569$$ 283998. 163966.i 0.877185 0.506443i 0.00745565 0.999972i $$-0.497627\pi$$
0.869729 + 0.493529i $$0.164293\pi$$
$$570$$ 415938. + 238492.i 1.28020 + 0.734048i
$$571$$ −196916. + 341069.i −0.603962 + 1.04609i 0.388252 + 0.921553i $$0.373079\pi$$
−0.992215 + 0.124540i $$0.960254\pi$$
$$572$$ 143365. + 82771.7i 0.438178 + 0.252982i
$$573$$ −118051. + 351.733i −0.359550 + 0.00107128i
$$574$$ −643.584 1114.72i −0.00195336 0.00338331i
$$575$$ 310591.i 0.939404i
$$576$$ −20949.7 35791.6i −0.0631440 0.107879i
$$577$$ −405942. −1.21931 −0.609653 0.792669i $$-0.708691\pi$$
−0.609653 + 0.792669i $$0.708691\pi$$
$$578$$ 287368. 165912.i 0.860168 0.496618i
$$579$$ 17987.9 10456.9i 0.0536566 0.0311922i
$$580$$ −80945.8 + 140202.i −0.240624 + 0.416772i
$$581$$ −11931.7 6888.75i −0.0353467 0.0204074i
$$582$$ 11268.6 + 19384.3i 0.0332679 + 0.0572273i
$$583$$ 48274.5 + 83613.9i 0.142030 + 0.246004i
$$584$$ 2688.71i 0.00788348i
$$585$$ −517408. 294629.i −1.51189 0.860921i
$$586$$ −463333. −1.34927
$$587$$ −251224. + 145044.i −0.729096 + 0.420944i −0.818091 0.575088i $$-0.804968\pi$$
0.0889955 + 0.996032i $$0.471634\pi$$
$$588$$ 513.497 + 172343.i 0.00148519 + 0.498469i
$$589$$ 149479. 258905.i 0.430873 0.746295i
$$590$$ 121276. + 70018.9i 0.348395 + 0.201146i
$$591$$ −58690.3 + 102358.i −0.168032 + 0.293052i
$$592$$ 59008.7 + 102206.i 0.168373 + 0.291631i
$$593$$ 217450.i 0.618372i −0.951002 0.309186i $$-0.899943\pi$$
0.951002 0.309186i $$-0.100057\pi$$
$$594$$ −189630. 107234.i −0.537444 0.303921i
$$595$$ 45567.4 0.128712
$$596$$ 44221.9 25531.5i 0.124493 0.0718761i
$$597$$ 82697.7 + 47417.6i 0.232030 + 0.133043i
$$598$$ −109784. + 190151.i −0.306998 + 0.531736i
$$599$$ 414884. + 239534.i 1.15631 + 0.667595i 0.950416 0.310980i $$-0.100657\pi$$
0.205892 + 0.978575i $$0.433991\pi$$
$$600$$ 159580. 475.470i 0.443278 0.00132075i
$$601$$ 93655.9 + 162217.i 0.259290 + 0.449104i 0.966052 0.258348i $$-0.0831780\pi$$
−0.706762 + 0.707452i $$0.749845\pi$$
$$602$$ 4759.04i 0.0131319i
$$603$$ 541338. 3225.87i 1.48879 0.00887181i
$$604$$ 251338. 0.688945
$$605$$ 113056. 65273.0i 0.308875 0.178329i
$$606$$ −90831.3 + 52802.9i −0.247338 + 0.143785i
$$607$$ −13139.1 + 22757.6i −0.0356606 + 0.0617661i −0.883305 0.468799i $$-0.844687\pi$$
0.847644 + 0.530565i $$0.178020\pi$$
$$608$$ −78672.9 45421.8i −0.212823 0.122873i
$$609$$ 6607.22 + 11365.7i 0.0178149 + 0.0306451i
$$610$$ 219149. + 379577.i 0.588951 + 1.02009i
$$611$$ 147444.i 0.394953i
$$612$$ −1730.49 290396.i −0.00462027 0.775333i
$$613$$ 144548. 0.384672 0.192336 0.981329i $$-0.438394\pi$$
0.192336 + 0.981329i $$0.438394\pi$$
$$614$$ 124199. 71706.6i 0.329445 0.190205i
$$615$$ −169.059 56740.4i −0.000446979 0.150018i
$$616$$ −3238.35 + 5608.99i −0.00853420 + 0.0147817i
$$617$$ 398472. + 230058.i 1.04671 + 0.604319i 0.921727 0.387839i $$-0.126778\pi$$
0.124985 + 0.992159i $$0.460112\pi$$
$$618$$ −92153.2 + 160718.i −0.241287 + 0.420812i
$$619$$ −53625.4 92881.9i −0.139955 0.242410i 0.787524 0.616284i $$-0.211363\pi$$
−0.927479 + 0.373874i $$0.878029\pi$$
$$620$$ 178866.i 0.465311i
$$621$$ 142229. 251514.i 0.368813 0.652197i
$$622$$ 104864. 0.271047
$$623$$ −24130.8 + 13931.9i −0.0621722 + 0.0358951i
$$624$$ 97866.7 + 56115.2i 0.251342 + 0.144116i
$$625$$ 133166. 230650.i 0.340905 0.590464i
$$626$$ 433801. + 250455.i 1.10698 + 0.639118i
$$627$$ −477194. + 1421.80i −1.21384 + 0.00361663i
$$628$$ −46176.6 79980.2i −0.117085 0.202798i
$$629$$ 826399.i 2.08876i
$$630$$ 11527.0 20243.0i 0.0290426 0.0510028i
$$631$$ −585714. −1.47105 −0.735524 0.677498i $$-0.763064\pi$$
−0.735524 + 0.677498i $$0.763064\pi$$
$$632$$ 153583. 88671.3i 0.384512 0.221998i
$$633$$ −104140. + 60539.6i −0.259902 + 0.151089i
$$634$$ 39939.7 69177.5i 0.0993632 0.172102i
$$635$$ −325767. 188082.i −0.807903 0.466443i
$$636$$ 33067.4 + 56882.3i 0.0817495 + 0.140625i
$$637$$ −234407. 406004.i −0.577685 1.00058i
$$638$$ 161127.i 0.395846i
$$639$$ −201837. + 118140.i −0.494310 + 0.289331i
$$640$$ −54351.4 −0.132694
$$641$$ 269007. 155311.i 0.654707 0.377995i −0.135550 0.990770i $$-0.543280\pi$$
0.790257 + 0.612775i $$0.209947\pi$$
$$642$$ −177.893 59705.4i −0.000431607 0.144858i
$$643$$ −217352. + 376464.i −0.525704 + 0.910546i 0.473848 + 0.880607i $$0.342865\pi$$
−0.999552 + 0.0299390i $$0.990469\pi$$
$$644$$ −7439.45 4295.17i −0.0179378 0.0103564i
$$645$$ 104352. 181993.i 0.250831 0.437456i
$$646$$ −318059. 550895.i −0.762155 1.32009i
$$647$$ 491590.i 1.17434i −0.809463 0.587171i $$-0.800242\pi$$
0.809463 0.587171i $$-0.199758\pi$$
$$648$$ −129444. 72691.7i −0.308271 0.173115i
$$649$$ −139376. −0.330902
$$650$$ −375938. + 217048.i −0.889793 + 0.513722i
$$651$$ −12600.6 7225.01i −0.0297325 0.0170481i
$$652$$ −168971. + 292667.i −0.397482 + 0.688459i
$$653$$ −394771. 227921.i −0.925805 0.534514i −0.0403223 0.999187i $$-0.512838\pi$$
−0.885482 + 0.464673i $$0.846172\pi$$
$$654$$ 149629. 445.821i 0.349832 0.00104233i
$$655$$ 426677. + 739026.i 0.994527 + 1.72257i
$$656$$ 10750.7i 0.0249820i
$$657$$ 4862.01 + 8306.54i 0.0112638 + 0.0192437i
$$658$$ −5768.60 −0.0133235
$$659$$ 241349. 139343.i 0.555744 0.320859i −0.195692 0.980665i $$-0.562695\pi$$
0.751435 + 0.659807i $$0.229362\pi$$
$$660$$ −246828. + 143488.i −0.566639 + 0.329404i
$$661$$ 422668. 732082.i 0.967378 1.67555i 0.264291 0.964443i $$-0.414862\pi$$
0.703087 0.711104i $$-0.251805\pi$$
$$662$$ −400231. 231074.i −0.913261 0.527272i
$$663$$ 397015. + 682943.i 0.903192 + 1.55366i
$$664$$ 57536.1 + 99655.5i 0.130498 + 0.226030i
$$665$$ 51027.0i 0.115387i
$$666$$ 367122. + 209051.i 0.827680 + 0.471308i
$$667$$ 213709. 0.480366
$$668$$ −138904. + 80196.5i −0.311289 + 0.179723i
$$669$$ 1552.05 + 520908.i 0.00346780 + 1.16388i
$$670$$ 354733. 614416.i 0.790228 1.36872i
$$671$$ −377784. 218113.i −0.839070 0.484437i
$$672$$ −2195.45 + 3828.93i −0.00486166 + 0.00847888i
$$673$$ −48001.2 83140.5i −0.105980 0.183562i 0.808158 0.588965i $$-0.200464\pi$$
−0.914138 + 0.405403i $$0.867131\pi$$
$$674$$ 560680.i 1.23423i
$$675$$ 492149. 290038.i 1.08016 0.636572i
$$676$$ −78389.0 −0.171539
$$677$$ 389771. 225034.i 0.850416 0.490988i −0.0103749 0.999946i $$-0.503302\pi$$
0.860791 + 0.508958i $$0.169969\pi$$
$$678$$ −314200. 180157.i −0.683512 0.391915i
$$679$$ 1193.12 2066.55i 0.00258789 0.00448236i
$$680$$ −329599. 190294.i −0.712800 0.411535i
$$681$$ 251548. 749.491i 0.542409 0.00161611i
$$682$$ 89010.3 + 154170.i 0.191369 + 0.331461i
$$683$$ 429135.i 0.919926i −0.887938 0.459963i $$-0.847863\pi$$
0.887938 0.459963i $$-0.152137\pi$$
$$684$$ −325190. + 1937.83i −0.695064 + 0.00414194i
$$685$$ −410171. −0.874145
$$686$$ 31817.6 18369.9i 0.0676114 0.0390354i
$$687$$ −462701. + 268982.i −0.980364 + 0.569915i
$$688$$ −19874.2 + 34423.2i −0.0419868 + 0.0727233i
$$689$$ −155000. 89489.2i −0.326507 0.188509i
$$690$$ −190315. 327378.i −0.399737 0.687625i
$$691$$ 24875.5 + 43085.6i 0.0520973 + 0.0902352i 0.890898 0.454203i $$-0.150076\pi$$
−0.838801 + 0.544439i $$0.816743\pi$$
$$692$$ 304418.i 0.635709i
$$693$$ 138.158 + 23184.4i 0.000287679 + 0.0482759i
$$694$$ −91853.2 −0.190711
$$695$$ −777731. + 449023.i −1.61012 + 0.929606i
$$696$$ −327.159 109803.i −0.000675367 0.226671i
$$697$$ −37640.0 + 65194.4i −0.0774790 + 0.134198i
$$698$$ −357791. 206571.i −0.734376 0.423992i
$$699$$ 76514.9 133444.i 0.156600 0.273115i
$$700$$ −8491.75 14708.1i −0.0173301 0.0300166i
$$701$$ 291866.i 0.593946i 0.954886 + 0.296973i $$0.0959771\pi$$
−0.954886 + 0.296973i $$0.904023\pi$$
$$702$$ 403824. 3609.68i 0.819442 0.00732478i
$$703$$ 925414. 1.87252
$$704$$ 46847.4 27047.3i 0.0945235 0.0545732i
$$705$$ −220600. 126488.i −0.443840 0.254491i
$$706$$ 247647. 428937.i 0.496848 0.860567i
$$707$$ 9683.50 + 5590.77i 0.0193728 + 0.0111849i
$$708$$ −94980.5 + 282.996i −0.189482 + 0.000564564i
$$709$$ 103058. + 178501.i 0.205016 + 0.355099i 0.950138 0.311830i $$-0.100942\pi$$
−0.745122 + 0.666929i $$0.767609\pi$$
$$710$$ 306500.i 0.608015i
$$711$$ 314137. 551668.i 0.621413 1.09129i
$$712$$ 232724. 0.459073
$$713$$ −204483. + 118058.i −0.402233 + 0.232229i
$$714$$ −26719.4 + 15532.8i −0.0524119 + 0.0304686i
$$715$$ 388318. 672587.i 0.759584 1.31564i
$$716$$ 234138. + 135180.i 0.456716 + 0.263685i
$$717$$ 401271. + 690264.i 0.780547 + 1.34269i
$$718$$ 307165. + 532025.i 0.595830 + 1.03201i
$$719$$ 736226.i 1.42414i −0.702108 0.712071i $$-0.747757\pi$$
0.702108 0.712071i $$-0.252243\pi$$
$$720$$ −167914. + 98284.0i −0.323909 + 0.189591i
$$721$$ 19716.8 0.0379285
$$722$$ −297680. + 171866.i −0.571052 + 0.329697i
$$723$$ 1477.71 + 495959.i 0.00282692 + 0.948787i
$$724$$ 179251. 310472.i 0.341967 0.592305i
$$725$$ 365908. + 211257.i 0.696138 + 0.401916i
$$726$$ −44042.9 + 76812.1i −0.0835608 + 0.145733i
$$727$$ −68590.3 118802.i −0.129776 0.224778i 0.793814 0.608161i $$-0.208092\pi$$
−0.923590 + 0.383382i $$0.874759\pi$$
$$728$$ 12006.2i 0.0226540i
$$729$$ −531356. + 9500.07i −0.999840 + 0.0178761i
$$730$$ 12613.9 0.0236703
$$731$$ −241043. + 139166.i −0.451086 + 0.260435i
$$732$$ −257891. 147870.i −0.481297 0.275968i
$$733$$ −419306. + 726258.i −0.780410 + 1.35171i 0.151294 + 0.988489i $$0.451656\pi$$
−0.931703 + 0.363220i $$0.881677\pi$$
$$734$$ 454707. + 262525.i 0.843995 + 0.487281i
$$735$$ 808536. 2409.04i 1.49667 0.00445933i
$$736$$ 35874.0 + 62135.7i 0.0662254 + 0.114706i
$$737$$ 706115.i 1.29999i
$$738$$ 19440.5 + 33213.3i 0.0356940 + 0.0609817i
$$739$$ −1.05122e6 −1.92488 −0.962442 0.271488i $$-0.912484\pi$$
−0.962442 + 0.271488i $$0.912484\pi$$
$$740$$ 479494. 276836.i 0.875628 0.505544i
$$741$$ 764769. 444583.i 1.39282 0.809686i
$$742$$ 3501.17 6064.20i 0.00635924 0.0110145i
$$743$$ 191179. + 110377.i 0.346308 + 0.199941i 0.663058 0.748568i $$-0.269258\pi$$
−0.316750 + 0.948509i $$0.602592\pi$$
$$744$$ 60970.8 + 104882.i 0.110148 + 0.189476i
$$745$$ −119780. 207464.i −0.215809 0.373793i
$$746$$ 225934.i 0.405980i
$$747$$ 357961. + 203834.i 0.641496 + 0.365289i
$$748$$ 378790. 0.677010
$$749$$ −5502.92 + 3177.11i −0.00980910 + 0.00566329i
$$750$$ −451.514 151540.i −0.000802692 0.269404i
$$751$$ −218252. + 378023.i −0.386970 + 0.670252i −0.992040 0.125920i $$-0.959812\pi$$
0.605070 + 0.796172i $$0.293145\pi$$
$$752$$ 41725.5 + 24090.2i 0.0737846 + 0.0425996i
$$753$$ −445432. + 776847.i −0.785582 + 1.37008i
$$754$$ 149345. + 258673.i 0.262692 + 0.454997i
$$755$$ 1.17914e6i 2.06857i
$$756$$ 141.225 + 15799.2i 0.000247097 + 0.0276434i
$$757$$ −689032. −1.20240 −0.601198 0.799100i $$-0.705310\pi$$
−0.601198 + 0.799100i $$0.705310\pi$$
$$758$$ 139308. 80429.3i 0.242458 0.139983i
$$759$$ 326955. + 187471.i 0.567550 + 0.325424i
$$760$$ −213094. + 369089.i −0.368930 + 0.639005i
$$761$$ 367695. + 212289.i 0.634920 + 0.366571i 0.782655 0.622456i $$-0.213865\pi$$
−0.147735 + 0.989027i $$0.547198\pi$$
$$762$$ 255132. 760.170i 0.439396 0.00130918i
$$763$$ −7962.23 13791.0i −0.0136768 0.0236890i
$$764$$ 104934.i 0.179776i
$$765$$ −1.36238e6 + 8118.50i −2.32795 + 0.0138724i
$$766$$ −276248. −0.470806
$$767$$ 223755. 129185.i 0.380348