# Properties

 Label 18.4.c.b.7.1 Level $18$ Weight $4$ Character 18.7 Analytic conductor $1.062$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$18 = 2 \cdot 3^{2}$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 18.c (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$1.06203438010$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(\zeta_{3})$$ Coefficient field: $$\Q(\sqrt{-3}, \sqrt{-35})$$ Defining polynomial: $$x^{4} - x^{3} - 8x^{2} - 9x + 81$$ x^4 - x^3 - 8*x^2 - 9*x + 81 Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$3$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## Embedding invariants

 Embedding label 7.1 Root $$2.81174 + 1.04601i$$ of defining polynomial Character $$\chi$$ $$=$$ 18.7 Dual form 18.4.c.b.13.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(1.00000 - 1.73205i) q^{2} +(-1.81174 - 4.87007i) q^{3} +(-2.00000 - 3.46410i) q^{4} +(9.93521 + 17.2083i) q^{5} +(-10.2470 - 1.73205i) q^{6} +(2.93521 - 5.08394i) q^{7} -8.00000 q^{8} +(-20.4352 + 17.6466i) q^{9} +O(q^{10})$$ $$q+(1.00000 - 1.73205i) q^{2} +(-1.81174 - 4.87007i) q^{3} +(-2.00000 - 3.46410i) q^{4} +(9.93521 + 17.2083i) q^{5} +(-10.2470 - 1.73205i) q^{6} +(2.93521 - 5.08394i) q^{7} -8.00000 q^{8} +(-20.4352 + 17.6466i) q^{9} +39.7409 q^{10} +(-9.37043 + 16.2301i) q^{11} +(-13.2470 + 16.0162i) q^{12} +(-22.9352 - 39.7250i) q^{13} +(-5.87043 - 10.1679i) q^{14} +(65.8056 - 79.5621i) q^{15} +(-8.00000 + 13.8564i) q^{16} +16.8704 q^{17} +(10.1296 + 53.0414i) q^{18} -10.3521 q^{19} +(39.7409 - 68.8332i) q^{20} +(-30.0770 - 5.08394i) q^{21} +(18.7409 + 32.4601i) q^{22} +(-24.9352 - 43.1891i) q^{23} +(14.4939 + 38.9606i) q^{24} +(-134.917 + 233.683i) q^{25} -91.7409 q^{26} +(122.963 + 67.5500i) q^{27} -23.4817 q^{28} +(-5.45351 + 9.44575i) q^{29} +(-72.0000 - 193.541i) q^{30} +(-75.8056 - 131.299i) q^{31} +(16.0000 + 27.7128i) q^{32} +(96.0183 + 16.2301i) q^{33} +(16.8704 - 29.2204i) q^{34} +116.648 q^{35} +(102.000 + 35.4965i) q^{36} +346.186 q^{37} +(-10.3521 + 17.9304i) q^{38} +(-151.911 + 183.667i) q^{39} +(-79.4817 - 137.666i) q^{40} +(-132.370 - 229.272i) q^{41} +(-38.8826 + 47.0109i) q^{42} +(205.945 - 356.707i) q^{43} +74.9634 q^{44} +(-506.696 - 176.333i) q^{45} -99.7409 q^{46} +(-236.028 + 408.813i) q^{47} +(81.9756 + 13.8564i) q^{48} +(154.269 + 267.202i) q^{49} +(269.834 + 467.366i) q^{50} +(-30.5648 - 82.1602i) q^{51} +(-91.7409 + 158.900i) q^{52} +290.186 q^{53} +(239.963 - 145.429i) q^{54} -372.389 q^{55} +(-23.4817 + 40.6715i) q^{56} +(18.7553 + 50.4156i) q^{57} +(10.9070 + 18.8915i) q^{58} +(-26.6296 - 46.1238i) q^{59} +(-407.223 - 68.8332i) q^{60} +(146.972 - 254.563i) q^{61} -303.223 q^{62} +(29.7325 + 155.688i) q^{63} +64.0000 q^{64} +(455.732 - 789.352i) q^{65} +(124.130 - 150.079i) q^{66} +(199.277 + 345.159i) q^{67} +(-33.7409 - 58.4409i) q^{68} +(-165.158 + 199.684i) q^{69} +(116.648 - 202.040i) q^{70} -647.854 q^{71} +(163.482 - 141.173i) q^{72} -478.279 q^{73} +(346.186 - 599.612i) q^{74} +(1382.49 + 233.683i) q^{75} +(20.7043 + 35.8608i) q^{76} +(55.0084 + 95.2773i) q^{77} +(166.210 + 446.785i) q^{78} +(-187.158 + 324.167i) q^{79} -317.927 q^{80} +(106.196 - 721.224i) q^{81} -529.482 q^{82} +(-466.639 + 808.243i) q^{83} +(42.5427 + 114.358i) q^{84} +(167.611 + 290.311i) q^{85} +(-411.890 - 713.415i) q^{86} +(55.8818 + 9.44575i) q^{87} +(74.9634 - 129.840i) q^{88} +368.817 q^{89} +(-812.113 + 701.290i) q^{90} -269.279 q^{91} +(-99.7409 + 172.756i) q^{92} +(-502.097 + 607.059i) q^{93} +(472.056 + 817.626i) q^{94} +(-102.851 - 178.143i) q^{95} +(105.976 - 128.130i) q^{96} +(-137.075 + 237.420i) q^{97} +617.076 q^{98} +(-94.9184 - 497.021i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q + 4 q^{2} + 3 q^{3} - 8 q^{4} + 9 q^{5} - 19 q^{7} - 32 q^{8} - 51 q^{9}+O(q^{10})$$ 4 * q + 4 * q^2 + 3 * q^3 - 8 * q^4 + 9 * q^5 - 19 * q^7 - 32 * q^8 - 51 * q^9 $$4 q + 4 q^{2} + 3 q^{3} - 8 q^{4} + 9 q^{5} - 19 q^{7} - 32 q^{8} - 51 q^{9} + 36 q^{10} + 24 q^{11} - 12 q^{12} - 61 q^{13} + 38 q^{14} + 171 q^{15} - 32 q^{16} + 6 q^{17} + 102 q^{18} + 266 q^{19} + 36 q^{20} - 315 q^{21} - 48 q^{22} - 69 q^{23} - 24 q^{24} - 263 q^{25} - 244 q^{26} + 152 q^{28} - 237 q^{29} - 288 q^{30} - 211 q^{31} + 64 q^{32} + 630 q^{33} + 6 q^{34} + 774 q^{35} + 408 q^{36} + 524 q^{37} + 266 q^{38} - 249 q^{39} - 72 q^{40} - 468 q^{41} - 258 q^{42} + 86 q^{43} - 192 q^{44} - 459 q^{45} - 276 q^{46} - 483 q^{47} + 33 q^{49} + 526 q^{50} - 153 q^{51} - 244 q^{52} + 300 q^{53} + 468 q^{54} - 1674 q^{55} + 152 q^{56} + 987 q^{57} + 474 q^{58} - 168 q^{59} - 1260 q^{60} + 1049 q^{61} - 844 q^{62} - 957 q^{63} + 256 q^{64} + 747 q^{65} + 558 q^{66} + 1166 q^{67} - 12 q^{68} - 261 q^{69} + 774 q^{70} - 624 q^{71} + 408 q^{72} - 622 q^{73} + 524 q^{74} + 2835 q^{75} - 532 q^{76} + 1173 q^{77} + 132 q^{78} - 349 q^{79} - 288 q^{80} - 1143 q^{81} - 1872 q^{82} - 1221 q^{83} + 744 q^{84} + 486 q^{85} - 172 q^{86} - 2205 q^{87} - 192 q^{88} - 984 q^{89} - 1404 q^{90} + 214 q^{91} - 276 q^{92} - 789 q^{93} + 966 q^{94} - 1764 q^{95} + 96 q^{96} + 128 q^{97} + 132 q^{98} + 1557 q^{99}+O(q^{100})$$ 4 * q + 4 * q^2 + 3 * q^3 - 8 * q^4 + 9 * q^5 - 19 * q^7 - 32 * q^8 - 51 * q^9 + 36 * q^10 + 24 * q^11 - 12 * q^12 - 61 * q^13 + 38 * q^14 + 171 * q^15 - 32 * q^16 + 6 * q^17 + 102 * q^18 + 266 * q^19 + 36 * q^20 - 315 * q^21 - 48 * q^22 - 69 * q^23 - 24 * q^24 - 263 * q^25 - 244 * q^26 + 152 * q^28 - 237 * q^29 - 288 * q^30 - 211 * q^31 + 64 * q^32 + 630 * q^33 + 6 * q^34 + 774 * q^35 + 408 * q^36 + 524 * q^37 + 266 * q^38 - 249 * q^39 - 72 * q^40 - 468 * q^41 - 258 * q^42 + 86 * q^43 - 192 * q^44 - 459 * q^45 - 276 * q^46 - 483 * q^47 + 33 * q^49 + 526 * q^50 - 153 * q^51 - 244 * q^52 + 300 * q^53 + 468 * q^54 - 1674 * q^55 + 152 * q^56 + 987 * q^57 + 474 * q^58 - 168 * q^59 - 1260 * q^60 + 1049 * q^61 - 844 * q^62 - 957 * q^63 + 256 * q^64 + 747 * q^65 + 558 * q^66 + 1166 * q^67 - 12 * q^68 - 261 * q^69 + 774 * q^70 - 624 * q^71 + 408 * q^72 - 622 * q^73 + 524 * q^74 + 2835 * q^75 - 532 * q^76 + 1173 * q^77 + 132 * q^78 - 349 * q^79 - 288 * q^80 - 1143 * q^81 - 1872 * q^82 - 1221 * q^83 + 744 * q^84 + 486 * q^85 - 172 * q^86 - 2205 * q^87 - 192 * q^88 - 984 * q^89 - 1404 * q^90 + 214 * q^91 - 276 * q^92 - 789 * q^93 + 966 * q^94 - 1764 * q^95 + 96 * q^96 + 128 * q^97 + 132 * q^98 + 1557 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/18\mathbb{Z}\right)^\times$$.

 $$n$$ $$11$$ $$\chi(n)$$ $$e\left(\frac{2}{3}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 1.00000 1.73205i 0.353553 0.612372i
$$3$$ −1.81174 4.87007i −0.348669 0.937246i
$$4$$ −2.00000 3.46410i −0.250000 0.433013i
$$5$$ 9.93521 + 17.2083i 0.888632 + 1.53916i 0.841493 + 0.540268i $$0.181677\pi$$
0.0471396 + 0.998888i $$0.484989\pi$$
$$6$$ −10.2470 1.73205i −0.697217 0.117851i
$$7$$ 2.93521 5.08394i 0.158487 0.274507i −0.775837 0.630934i $$-0.782672\pi$$
0.934323 + 0.356427i $$0.116005\pi$$
$$8$$ −8.00000 −0.353553
$$9$$ −20.4352 + 17.6466i −0.756860 + 0.653577i
$$10$$ 39.7409 1.25672
$$11$$ −9.37043 + 16.2301i −0.256845 + 0.444868i −0.965395 0.260792i $$-0.916016\pi$$
0.708550 + 0.705660i $$0.249349\pi$$
$$12$$ −13.2470 + 16.0162i −0.318672 + 0.385290i
$$13$$ −22.9352 39.7250i −0.489314 0.847517i 0.510610 0.859812i $$-0.329420\pi$$
−0.999924 + 0.0122953i $$0.996086\pi$$
$$14$$ −5.87043 10.1679i −0.112067 0.194106i
$$15$$ 65.8056 79.5621i 1.13273 1.36952i
$$16$$ −8.00000 + 13.8564i −0.125000 + 0.216506i
$$17$$ 16.8704 0.240687 0.120344 0.992732i $$-0.461600\pi$$
0.120344 + 0.992732i $$0.461600\pi$$
$$18$$ 10.1296 + 53.0414i 0.132642 + 0.694555i
$$19$$ −10.3521 −0.124997 −0.0624985 0.998045i $$-0.519907\pi$$
−0.0624985 + 0.998045i $$0.519907\pi$$
$$20$$ 39.7409 68.8332i 0.444316 0.769578i
$$21$$ −30.0770 5.08394i −0.312540 0.0528289i
$$22$$ 18.7409 + 32.4601i 0.181617 + 0.314569i
$$23$$ −24.9352 43.1891i −0.226059 0.391545i 0.730578 0.682829i $$-0.239251\pi$$
−0.956637 + 0.291284i $$0.905917\pi$$
$$24$$ 14.4939 + 38.9606i 0.123273 + 0.331366i
$$25$$ −134.917 + 233.683i −1.07934 + 1.86946i
$$26$$ −91.7409 −0.691995
$$27$$ 122.963 + 67.5500i 0.876456 + 0.481481i
$$28$$ −23.4817 −0.158487
$$29$$ −5.45351 + 9.44575i −0.0349204 + 0.0604839i −0.882957 0.469453i $$-0.844451\pi$$
0.848037 + 0.529937i $$0.177784\pi$$
$$30$$ −72.0000 193.541i −0.438178 1.17785i
$$31$$ −75.8056 131.299i −0.439197 0.760711i 0.558431 0.829551i $$-0.311404\pi$$
−0.997628 + 0.0688401i $$0.978070\pi$$
$$32$$ 16.0000 + 27.7128i 0.0883883 + 0.153093i
$$33$$ 96.0183 + 16.2301i 0.506504 + 0.0856148i
$$34$$ 16.8704 29.2204i 0.0850957 0.147390i
$$35$$ 116.648 0.563345
$$36$$ 102.000 + 35.4965i 0.472222 + 0.164336i
$$37$$ 346.186 1.53818 0.769089 0.639141i $$-0.220710\pi$$
0.769089 + 0.639141i $$0.220710\pi$$
$$38$$ −10.3521 + 17.9304i −0.0441931 + 0.0765447i
$$39$$ −151.911 + 183.667i −0.623723 + 0.754111i
$$40$$ −79.4817 137.666i −0.314179 0.544174i
$$41$$ −132.370 229.272i −0.504214 0.873325i −0.999988 0.00487314i $$-0.998449\pi$$
0.495774 0.868452i $$-0.334885\pi$$
$$42$$ −38.8826 + 47.0109i −0.142850 + 0.172713i
$$43$$ 205.945 356.707i 0.730380 1.26506i −0.226341 0.974048i $$-0.572676\pi$$
0.956721 0.291007i $$-0.0939903\pi$$
$$44$$ 74.9634 0.256845
$$45$$ −506.696 176.333i −1.67853 0.584136i
$$46$$ −99.7409 −0.319695
$$47$$ −236.028 + 408.813i −0.732516 + 1.26875i 0.223289 + 0.974752i $$0.428321\pi$$
−0.955805 + 0.294003i $$0.905013\pi$$
$$48$$ 81.9756 + 13.8564i 0.246503 + 0.0416667i
$$49$$ 154.269 + 267.202i 0.449764 + 0.779014i
$$50$$ 269.834 + 467.366i 0.763205 + 1.32191i
$$51$$ −30.5648 82.1602i −0.0839201 0.225583i
$$52$$ −91.7409 + 158.900i −0.244657 + 0.423758i
$$53$$ 290.186 0.752078 0.376039 0.926604i $$-0.377286\pi$$
0.376039 + 0.926604i $$0.377286\pi$$
$$54$$ 239.963 145.429i 0.604720 0.366488i
$$55$$ −372.389 −0.912962
$$56$$ −23.4817 + 40.6715i −0.0560335 + 0.0970528i
$$57$$ 18.7553 + 50.4156i 0.0435826 + 0.117153i
$$58$$ 10.9070 + 18.8915i 0.0246924 + 0.0427686i
$$59$$ −26.6296 46.1238i −0.0587606 0.101776i 0.835149 0.550024i $$-0.185382\pi$$
−0.893909 + 0.448248i $$0.852048\pi$$
$$60$$ −407.223 68.8332i −0.876203 0.148105i
$$61$$ 146.972 254.563i 0.308489 0.534318i −0.669543 0.742773i $$-0.733510\pi$$
0.978032 + 0.208455i $$0.0668435\pi$$
$$62$$ −303.223 −0.621118
$$63$$ 29.7325 + 155.688i 0.0594593 + 0.311346i
$$64$$ 64.0000 0.125000
$$65$$ 455.732 789.352i 0.869641 1.50626i
$$66$$ 124.130 150.079i 0.231504 0.279900i
$$67$$ 199.277 + 345.159i 0.363367 + 0.629371i 0.988513 0.151138i $$-0.0482936\pi$$
−0.625145 + 0.780508i $$0.714960\pi$$
$$68$$ −33.7409 58.4409i −0.0601718 0.104221i
$$69$$ −165.158 + 199.684i −0.288154 + 0.348392i
$$70$$ 116.648 202.040i 0.199173 0.344977i
$$71$$ −647.854 −1.08290 −0.541451 0.840732i $$-0.682125\pi$$
−0.541451 + 0.840732i $$0.682125\pi$$
$$72$$ 163.482 141.173i 0.267590 0.231074i
$$73$$ −478.279 −0.766826 −0.383413 0.923577i $$-0.625251\pi$$
−0.383413 + 0.923577i $$0.625251\pi$$
$$74$$ 346.186 599.612i 0.543828 0.941938i
$$75$$ 1382.49 + 233.683i 2.12848 + 0.359778i
$$76$$ 20.7043 + 35.8608i 0.0312492 + 0.0541253i
$$77$$ 55.0084 + 95.2773i 0.0814128 + 0.141011i
$$78$$ 166.210 + 446.785i 0.241277 + 0.648569i
$$79$$ −187.158 + 324.167i −0.266543 + 0.461666i −0.967967 0.251079i $$-0.919215\pi$$
0.701424 + 0.712744i $$0.252548\pi$$
$$80$$ −317.927 −0.444316
$$81$$ 106.196 721.224i 0.145673 0.989333i
$$82$$ −529.482 −0.713067
$$83$$ −466.639 + 808.243i −0.617112 + 1.06887i 0.372897 + 0.927873i $$0.378364\pi$$
−0.990010 + 0.140998i $$0.954969\pi$$
$$84$$ 42.5427 + 114.358i 0.0552594 + 0.148541i
$$85$$ 167.611 + 290.311i 0.213882 + 0.370455i
$$86$$ −411.890 713.415i −0.516457 0.894529i
$$87$$ 55.8818 + 9.44575i 0.0688639 + 0.0116401i
$$88$$ 74.9634 129.840i 0.0908083 0.157285i
$$89$$ 368.817 0.439264 0.219632 0.975583i $$-0.429514\pi$$
0.219632 + 0.975583i $$0.429514\pi$$
$$90$$ −812.113 + 701.290i −0.951158 + 0.821361i
$$91$$ −269.279 −0.310199
$$92$$ −99.7409 + 172.756i −0.113029 + 0.195773i
$$93$$ −502.097 + 607.059i −0.559839 + 0.676872i
$$94$$ 472.056 + 817.626i 0.517967 + 0.897145i
$$95$$ −102.851 178.143i −0.111076 0.192390i
$$96$$ 105.976 128.130i 0.112668 0.136220i
$$97$$ −137.075 + 237.420i −0.143483 + 0.248519i −0.928806 0.370567i $$-0.879163\pi$$
0.785323 + 0.619086i $$0.212497\pi$$
$$98$$ 617.076 0.636062
$$99$$ −94.9184 497.021i −0.0963602 0.504570i
$$100$$ 1079.34 1.07934
$$101$$ 4.78584 8.28931i 0.00471494 0.00816651i −0.863658 0.504078i $$-0.831833\pi$$
0.868373 + 0.495911i $$0.165166\pi$$
$$102$$ −172.870 29.2204i −0.167811 0.0283652i
$$103$$ −985.752 1707.37i −0.943001 1.63332i −0.759706 0.650267i $$-0.774657\pi$$
−0.183295 0.983058i $$-0.558676\pi$$
$$104$$ 183.482 + 317.800i 0.172999 + 0.299642i
$$105$$ −211.335 568.084i −0.196421 0.527993i
$$106$$ 290.186 502.617i 0.265900 0.460552i
$$107$$ 1441.13 1.30205 0.651025 0.759057i $$-0.274339\pi$$
0.651025 + 0.759057i $$0.274339\pi$$
$$108$$ −11.9268 561.058i −0.0106265 0.499887i
$$109$$ −90.3323 −0.0793786 −0.0396893 0.999212i $$-0.512637\pi$$
−0.0396893 + 0.999212i $$0.512637\pi$$
$$110$$ −372.389 + 644.996i −0.322781 + 0.559072i
$$111$$ −627.198 1685.95i −0.536315 1.44165i
$$112$$ 46.9634 + 81.3430i 0.0396217 + 0.0686267i
$$113$$ 825.364 + 1429.57i 0.687112 + 1.19011i 0.972768 + 0.231781i $$0.0744552\pi$$
−0.285656 + 0.958332i $$0.592211\pi$$
$$114$$ 106.078 + 17.9304i 0.0871499 + 0.0147310i
$$115$$ 495.473 858.185i 0.401766 0.695880i
$$116$$ 43.6281 0.0349204
$$117$$ 1169.70 + 407.060i 0.924260 + 0.321647i
$$118$$ −106.518 −0.0831000
$$119$$ 49.5183 85.7682i 0.0381457 0.0660702i
$$120$$ −526.445 + 636.497i −0.400480 + 0.484200i
$$121$$ 489.890 + 848.515i 0.368062 + 0.637502i
$$122$$ −293.944 509.125i −0.218134 0.377820i
$$123$$ −876.752 + 1060.03i −0.642716 + 0.777074i
$$124$$ −303.223 + 525.197i −0.219598 + 0.380355i
$$125$$ −2877.91 −2.05926
$$126$$ 299.392 + 104.190i 0.211682 + 0.0736663i
$$127$$ 1997.45 1.39563 0.697814 0.716279i $$-0.254156\pi$$
0.697814 + 0.716279i $$0.254156\pi$$
$$128$$ 64.0000 110.851i 0.0441942 0.0765466i
$$129$$ −2110.31 356.707i −1.44033 0.243460i
$$130$$ −911.465 1578.70i −0.614929 1.06509i
$$131$$ 61.8224 + 107.080i 0.0412324 + 0.0714167i 0.885905 0.463866i $$-0.153538\pi$$
−0.844673 + 0.535283i $$0.820205\pi$$
$$132$$ −135.814 365.077i −0.0895537 0.240726i
$$133$$ −30.3857 + 52.6296i −0.0198103 + 0.0343125i
$$134$$ 797.110 0.513879
$$135$$ 59.2477 + 2787.11i 0.0377721 + 1.77686i
$$136$$ −134.963 −0.0850957
$$137$$ −56.7028 + 98.2121i −0.0353609 + 0.0612469i −0.883164 0.469064i $$-0.844591\pi$$
0.847803 + 0.530311i $$0.177925\pi$$
$$138$$ 180.704 + 485.745i 0.111468 + 0.299633i
$$139$$ 196.799 + 340.865i 0.120088 + 0.207999i 0.919802 0.392382i $$-0.128349\pi$$
−0.799714 + 0.600381i $$0.795016\pi$$
$$140$$ −233.296 404.080i −0.140836 0.243936i
$$141$$ 2418.57 + 408.813i 1.44454 + 0.244172i
$$142$$ −647.854 + 1122.12i −0.382864 + 0.663140i
$$143$$ 859.651 0.502711
$$144$$ −81.0366 424.331i −0.0468962 0.245562i
$$145$$ −216.727 −0.124126
$$146$$ −478.279 + 828.403i −0.271114 + 0.469583i
$$147$$ 1021.80 1235.40i 0.573309 0.693158i
$$148$$ −692.372 1199.22i −0.384545 0.666051i
$$149$$ −753.606 1305.28i −0.414348 0.717671i 0.581012 0.813895i $$-0.302657\pi$$
−0.995360 + 0.0962237i $$0.969324\pi$$
$$150$$ 1787.24 2160.85i 0.972849 1.17622i
$$151$$ −1580.70 + 2737.85i −0.851890 + 1.47552i 0.0276097 + 0.999619i $$0.491210\pi$$
−0.879500 + 0.475899i $$0.842123\pi$$
$$152$$ 82.8170 0.0441931
$$153$$ −344.751 + 297.705i −0.182166 + 0.157308i
$$154$$ 220.034 0.115135
$$155$$ 1506.29 2608.97i 0.780569 1.35198i
$$156$$ 940.064 + 158.900i 0.482470 + 0.0815524i
$$157$$ −687.806 1191.31i −0.349636 0.605587i 0.636549 0.771237i $$-0.280361\pi$$
−0.986185 + 0.165649i $$0.947028\pi$$
$$158$$ 374.316 + 648.334i 0.188474 + 0.326447i
$$159$$ −525.741 1413.23i −0.262226 0.704882i
$$160$$ −317.927 + 550.665i −0.157090 + 0.272087i
$$161$$ −292.761 −0.143309
$$162$$ −1143.00 905.160i −0.554337 0.438988i
$$163$$ 542.073 0.260481 0.130241 0.991482i $$-0.458425\pi$$
0.130241 + 0.991482i $$0.458425\pi$$
$$164$$ −529.482 + 917.089i −0.252107 + 0.436662i
$$165$$ 674.671 + 1813.56i 0.318321 + 0.855669i
$$166$$ 933.279 + 1616.49i 0.436364 + 0.755805i
$$167$$ −1564.81 2710.33i −0.725081 1.25588i −0.958941 0.283607i $$-0.908469\pi$$
0.233860 0.972270i $$-0.424864\pi$$
$$168$$ 240.616 + 40.6715i 0.110500 + 0.0186778i
$$169$$ 46.4520 80.4572i 0.0211434 0.0366214i
$$170$$ 670.445 0.302475
$$171$$ 211.548 182.680i 0.0946051 0.0816952i
$$172$$ −1647.56 −0.730380
$$173$$ 1259.14 2180.89i 0.553355 0.958440i −0.444674 0.895692i $$-0.646680\pi$$
0.998029 0.0627472i $$-0.0199862\pi$$
$$174$$ 72.2424 87.3444i 0.0314752 0.0380550i
$$175$$ 792.020 + 1371.82i 0.342120 + 0.592570i
$$176$$ −149.927 259.681i −0.0642111 0.111217i
$$177$$ −176.380 + 213.252i −0.0749015 + 0.0905594i
$$178$$ 368.817 638.810i 0.155303 0.268993i
$$179$$ −2331.26 −0.973443 −0.486721 0.873557i $$-0.661807\pi$$
−0.486721 + 0.873557i $$0.661807\pi$$
$$180$$ 402.558 + 2107.91i 0.166694 + 0.872858i
$$181$$ 734.969 0.301822 0.150911 0.988547i $$-0.451779\pi$$
0.150911 + 0.988547i $$0.451779\pi$$
$$182$$ −269.279 + 466.405i −0.109672 + 0.189957i
$$183$$ −1506.01 254.563i −0.608348 0.102830i
$$184$$ 199.482 + 345.512i 0.0799238 + 0.138432i
$$185$$ 3439.43 + 5957.27i 1.36688 + 2.36750i
$$186$$ 549.360 + 1476.72i 0.216565 + 0.582140i
$$187$$ −158.083 + 273.808i −0.0618191 + 0.107074i
$$188$$ 1888.23 0.732516
$$189$$ 704.344 426.865i 0.271077 0.164285i
$$190$$ −411.402 −0.157086
$$191$$ −1808.88 + 3133.07i −0.685266 + 1.18692i 0.288087 + 0.957604i $$0.406981\pi$$
−0.973353 + 0.229312i $$0.926352\pi$$
$$192$$ −115.951 311.685i −0.0435836 0.117156i
$$193$$ −2170.56 3759.52i −0.809536 1.40216i −0.913186 0.407544i $$-0.866385\pi$$
0.103649 0.994614i $$-0.466948\pi$$
$$194$$ 274.149 + 474.841i 0.101458 + 0.175730i
$$195$$ −4669.87 789.352i −1.71495 0.289880i
$$196$$ 617.076 1068.81i 0.224882 0.389507i
$$197$$ −3286.20 −1.18849 −0.594243 0.804285i $$-0.702548\pi$$
−0.594243 + 0.804285i $$0.702548\pi$$
$$198$$ −955.783 332.617i −0.343053 0.119384i
$$199$$ 332.265 0.118360 0.0591800 0.998247i $$-0.481151\pi$$
0.0591800 + 0.998247i $$0.481151\pi$$
$$200$$ 1079.34 1869.46i 0.381603 0.660955i
$$201$$ 1319.91 1595.83i 0.463180 0.560007i
$$202$$ −9.57168 16.5786i −0.00333396 0.00577460i
$$203$$ 32.0144 + 55.4506i 0.0110688 + 0.0191718i
$$204$$ −223.482 + 270.200i −0.0767002 + 0.0927342i
$$205$$ 2630.26 4555.74i 0.896122 1.55213i
$$206$$ −3943.01 −1.33360
$$207$$ 1271.70 + 442.556i 0.427000 + 0.148598i
$$208$$ 733.927 0.244657
$$209$$ 97.0039 168.016i 0.0321048 0.0556071i
$$210$$ −1195.28 202.040i −0.392774 0.0663909i
$$211$$ 2871.24 + 4973.13i 0.936797 + 1.62258i 0.771398 + 0.636353i $$0.219558\pi$$
0.165398 + 0.986227i $$0.447109\pi$$
$$212$$ −580.372 1005.23i −0.188019 0.325659i
$$213$$ 1173.74 + 3155.09i 0.377575 + 1.01495i
$$214$$ 1441.13 2496.11i 0.460344 0.797339i
$$215$$ 8184.43 2.59616
$$216$$ −983.707 540.400i −0.309874 0.170229i
$$217$$ −890.023 −0.278427
$$218$$ −90.3323 + 156.460i −0.0280646 + 0.0486093i
$$219$$ 866.516 + 2329.25i 0.267369 + 0.718705i
$$220$$ 744.777 + 1289.99i 0.228240 + 0.395324i
$$221$$ −386.927 670.177i −0.117772 0.203986i
$$222$$ −3547.35 599.612i −1.07244 0.181276i
$$223$$ 1231.31 2132.69i 0.369751 0.640427i −0.619776 0.784779i $$-0.712776\pi$$
0.989526 + 0.144352i $$0.0461097\pi$$
$$224$$ 187.854 0.0560335
$$225$$ −1366.65 7156.18i −0.404934 2.12035i
$$226$$ 3301.45 0.971723
$$227$$ −1399.67 + 2424.30i −0.409248 + 0.708838i −0.994806 0.101792i $$-0.967542\pi$$
0.585558 + 0.810631i $$0.300876\pi$$
$$228$$ 137.134 165.802i 0.0398330 0.0481600i
$$229$$ −706.423 1223.56i −0.203850 0.353079i 0.745915 0.666041i $$-0.232012\pi$$
−0.949766 + 0.312961i $$0.898679\pi$$
$$230$$ −990.947 1716.37i −0.284092 0.492061i
$$231$$ 364.347 440.512i 0.103776 0.125470i
$$232$$ 43.6281 75.5660i 0.0123462 0.0213843i
$$233$$ 2033.81 0.571843 0.285922 0.958253i $$-0.407700\pi$$
0.285922 + 0.958253i $$0.407700\pi$$
$$234$$ 1874.74 1618.91i 0.523743 0.452272i
$$235$$ −9379.96 −2.60375
$$236$$ −106.518 + 184.495i −0.0293803 + 0.0508882i
$$237$$ 1917.80 + 324.167i 0.525630 + 0.0888477i
$$238$$ −99.0366 171.536i −0.0269731 0.0467187i
$$239$$ 260.806 + 451.729i 0.0705863 + 0.122259i 0.899158 0.437623i $$-0.144180\pi$$
−0.828572 + 0.559882i $$0.810846\pi$$
$$240$$ 576.000 + 1548.33i 0.154919 + 0.416434i
$$241$$ −2957.82 + 5123.10i −0.790582 + 1.36933i 0.135025 + 0.990842i $$0.456888\pi$$
−0.925607 + 0.378486i $$0.876445\pi$$
$$242$$ 1959.56 0.520518
$$243$$ −3704.81 + 789.486i −0.978040 + 0.208418i
$$244$$ −1175.77 −0.308489
$$245$$ −3065.39 + 5309.41i −0.799350 + 1.38451i
$$246$$ 959.282 + 2578.61i 0.248624 + 0.668319i
$$247$$ 237.428 + 411.238i 0.0611628 + 0.105937i
$$248$$ 606.445 + 1050.39i 0.155279 + 0.268952i
$$249$$ 4781.63 + 808.243i 1.21696 + 0.205704i
$$250$$ −2877.91 + 4984.69i −0.728060 + 1.26104i
$$251$$ 710.127 0.178577 0.0892884 0.996006i $$-0.471541\pi$$
0.0892884 + 0.996006i $$0.471541\pi$$
$$252$$ 479.854 414.372i 0.119952 0.103583i
$$253$$ 934.614 0.232248
$$254$$ 1997.45 3459.68i 0.493429 0.854645i
$$255$$ 1110.17 1342.25i 0.272633 0.329627i
$$256$$ −128.000 221.703i −0.0312500 0.0541266i
$$257$$ −3150.50 5456.83i −0.764681 1.32447i −0.940415 0.340028i $$-0.889563\pi$$
0.175734 0.984438i $$-0.443770\pi$$
$$258$$ −2728.14 + 3298.46i −0.658321 + 0.795941i
$$259$$ 1016.13 1759.99i 0.243781 0.422241i
$$260$$ −3645.86 −0.869641
$$261$$ −55.2417 289.262i −0.0131011 0.0686010i
$$262$$ 247.290 0.0583115
$$263$$ 2460.91 4262.42i 0.576981 0.999361i −0.418842 0.908059i $$-0.637564\pi$$
0.995823 0.0913017i $$-0.0291028\pi$$
$$264$$ −768.146 129.840i −0.179076 0.0302694i
$$265$$ 2883.06 + 4993.61i 0.668320 + 1.15757i
$$266$$ 60.7714 + 105.259i 0.0140080 + 0.0242626i
$$267$$ −668.200 1796.17i −0.153158 0.411699i
$$268$$ 797.110 1380.63i 0.181684 0.314685i
$$269$$ −5454.50 −1.23631 −0.618154 0.786057i $$-0.712119\pi$$
−0.618154 + 0.786057i $$0.712119\pi$$
$$270$$ 4886.67 + 2684.49i 1.10146 + 0.605086i
$$271$$ 2797.10 0.626981 0.313491 0.949591i $$-0.398502\pi$$
0.313491 + 0.949591i $$0.398502\pi$$
$$272$$ −134.963 + 233.763i −0.0300859 + 0.0521103i
$$273$$ 487.863 + 1311.41i 0.108157 + 0.290733i
$$274$$ 113.406 + 196.424i 0.0250039 + 0.0433081i
$$275$$ −2528.46 4379.42i −0.554443 0.960323i
$$276$$ 1022.04 + 172.756i 0.222897 + 0.0376765i
$$277$$ 1072.59 1857.77i 0.232655 0.402970i −0.725934 0.687765i $$-0.758592\pi$$
0.958589 + 0.284794i $$0.0919254\pi$$
$$278$$ 787.195 0.169830
$$279$$ 3866.09 + 1345.42i 0.829594 + 0.288702i
$$280$$ −933.183 −0.199173
$$281$$ 2754.88 4771.60i 0.584849 1.01299i −0.410045 0.912065i $$-0.634487\pi$$
0.994894 0.100923i $$-0.0321797\pi$$
$$282$$ 3126.65 3780.27i 0.660247 0.798269i
$$283$$ −2003.92 3470.89i −0.420921 0.729056i 0.575109 0.818077i $$-0.304960\pi$$
−0.996030 + 0.0890206i $$0.971626\pi$$
$$284$$ 1295.71 + 2244.23i 0.270726 + 0.468911i
$$285$$ −681.229 + 823.637i −0.141588 + 0.171186i
$$286$$ 859.651 1488.96i 0.177735 0.307846i
$$287$$ −1554.14 −0.319645
$$288$$ −816.000 283.972i −0.166956 0.0581014i
$$289$$ −4628.39 −0.942070
$$290$$ −216.727 + 375.382i −0.0438850 + 0.0760111i
$$291$$ 1404.60 + 237.420i 0.282952 + 0.0478276i
$$292$$ 956.558 + 1656.81i 0.191707 + 0.332046i
$$293$$ 2904.62 + 5030.95i 0.579146 + 1.00311i 0.995578 + 0.0939429i $$0.0299471\pi$$
−0.416432 + 0.909167i $$0.636720\pi$$
$$294$$ −1117.98 3005.21i −0.221775 0.596147i
$$295$$ 529.141 916.499i 0.104433 0.180884i
$$296$$ −2769.49 −0.543828
$$297$$ −2248.56 + 1362.73i −0.439309 + 0.266241i
$$298$$ −3014.42 −0.585976
$$299$$ −1143.79 + 1981.10i −0.221227 + 0.383177i
$$300$$ −1955.47 5256.44i −0.376331 1.01160i
$$301$$ −1208.99 2094.02i −0.231511 0.400989i
$$302$$ 3161.40 + 5475.70i 0.602377 + 1.04335i
$$303$$ −49.0402 8.28931i −0.00929798 0.00157165i
$$304$$ 82.8170 143.443i 0.0156246 0.0270626i
$$305$$ 5840.78 1.09653
$$306$$ 170.890 + 894.831i 0.0319253 + 0.167170i
$$307$$ 8688.30 1.61520 0.807602 0.589728i $$-0.200765\pi$$
0.807602 + 0.589728i $$0.200765\pi$$
$$308$$ 220.034 381.109i 0.0407064 0.0705056i
$$309$$ −6529.11 + 7894.00i −1.20203 + 1.45331i
$$310$$ −3012.58 5217.94i −0.551945 0.955998i
$$311$$ −716.005 1240.16i −0.130550 0.226119i 0.793339 0.608780i $$-0.208341\pi$$
−0.923889 + 0.382662i $$0.875008\pi$$
$$312$$ 1215.29 1469.34i 0.220519 0.266618i
$$313$$ −3307.26 + 5728.34i −0.597244 + 1.03446i 0.395982 + 0.918258i $$0.370404\pi$$
−0.993226 + 0.116199i $$0.962929\pi$$
$$314$$ −2751.22 −0.494460
$$315$$ −2383.72 + 2058.44i −0.426373 + 0.368190i
$$316$$ 1497.26 0.266543
$$317$$ −712.045 + 1233.30i −0.126159 + 0.218514i −0.922185 0.386748i $$-0.873598\pi$$
0.796026 + 0.605262i $$0.206932\pi$$
$$318$$ −2973.52 502.617i −0.524361 0.0886332i
$$319$$ −102.203 177.021i −0.0179382 0.0310699i
$$320$$ 635.854 + 1101.33i 0.111079 + 0.192395i
$$321$$ −2610.95 7018.41i −0.453984 1.22034i
$$322$$ −292.761 + 507.076i −0.0506674 + 0.0877586i
$$323$$ −174.645 −0.0300851
$$324$$ −2710.78 + 1074.57i −0.464812 + 0.184255i
$$325$$ 12377.4 2.11254
$$326$$ 542.073 938.898i 0.0920940 0.159512i
$$327$$ 163.658 + 439.925i 0.0276769 + 0.0743973i
$$328$$ 1058.96 + 1834.18i 0.178267 + 0.308767i
$$329$$ 1385.59 + 2399.91i 0.232188 + 0.402161i
$$330$$ 3815.85 + 644.996i 0.636532 + 0.107594i
$$331$$ −1768.83 + 3063.70i −0.293726 + 0.508749i −0.974688 0.223570i $$-0.928229\pi$$
0.680961 + 0.732319i $$0.261562\pi$$
$$332$$ 3733.12 0.617112
$$333$$ −7074.38 + 6109.00i −1.16419 + 1.00532i
$$334$$ −6259.23 −1.02542
$$335$$ −3959.73 + 6858.45i −0.645800 + 1.11856i
$$336$$ 311.061 376.087i 0.0505053 0.0610632i
$$337$$ 880.140 + 1524.45i 0.142268 + 0.246415i 0.928350 0.371706i $$-0.121227\pi$$
−0.786082 + 0.618122i $$0.787894\pi$$
$$338$$ −92.9040 160.914i −0.0149506 0.0258952i
$$339$$ 5466.78 6609.59i 0.875854 1.05895i
$$340$$ 670.445 1161.25i 0.106941 0.185228i
$$341$$ 2841.32 0.451221
$$342$$ −104.863 549.092i −0.0165799 0.0868172i
$$343$$ 3824.81 0.602099
$$344$$ −1647.56 + 2853.66i −0.258228 + 0.447265i
$$345$$ −5077.09 858.185i −0.792294 0.133922i
$$346$$ −2518.28 4361.78i −0.391281 0.677719i
$$347$$ 802.720 + 1390.35i 0.124185 + 0.215095i 0.921414 0.388582i $$-0.127035\pi$$
−0.797229 + 0.603677i $$0.793702\pi$$
$$348$$ −79.0426 212.472i −0.0121757 0.0327290i
$$349$$ 3320.94 5752.04i 0.509358 0.882235i −0.490583 0.871395i $$-0.663216\pi$$
0.999941 0.0108400i $$-0.00345056\pi$$
$$350$$ 3168.08 0.483831
$$351$$ −136.772 6433.99i −0.0207987 0.978407i
$$352$$ −599.707 −0.0908083
$$353$$ 1528.13 2646.81i 0.230409 0.399080i −0.727520 0.686087i $$-0.759327\pi$$
0.957929 + 0.287007i $$0.0926603\pi$$
$$354$$ 192.983 + 518.752i 0.0289744 + 0.0778852i
$$355$$ −6436.56 11148.5i −0.962302 1.66676i
$$356$$ −737.634 1277.62i −0.109816 0.190207i
$$357$$ −507.412 85.7682i −0.0752243 0.0127152i
$$358$$ −2331.26 + 4037.85i −0.344164 + 0.596110i
$$359$$ −2489.46 −0.365985 −0.182993 0.983114i $$-0.558578\pi$$
−0.182993 + 0.983114i $$0.558578\pi$$
$$360$$ 4053.57 + 1410.66i 0.593449 + 0.206523i
$$361$$ −6751.83 −0.984376
$$362$$ 734.969 1273.00i 0.106710 0.184828i
$$363$$ 3244.78 3923.09i 0.469164 0.567242i
$$364$$ 538.558 + 932.810i 0.0775497 + 0.134320i
$$365$$ −4751.80 8230.36i −0.681427 1.18027i
$$366$$ −1946.93 + 2353.93i −0.278053 + 0.336180i
$$367$$ −1177.52 + 2039.53i −0.167483 + 0.290089i −0.937534 0.347893i $$-0.886897\pi$$
0.770051 + 0.637982i $$0.220231\pi$$
$$368$$ 797.927 0.113029
$$369$$ 6750.89 + 2349.34i 0.952405 + 0.331441i
$$370$$ 13757.7 1.93305
$$371$$ 851.758 1475.29i 0.119194 0.206450i
$$372$$ 3107.11 + 525.197i 0.433054 + 0.0731994i
$$373$$ 1378.51 + 2387.65i 0.191358 + 0.331443i 0.945701 0.325039i $$-0.105377\pi$$
−0.754342 + 0.656481i $$0.772044\pi$$
$$374$$ 316.166 + 547.616i 0.0437127 + 0.0757127i
$$375$$ 5214.02 + 14015.6i 0.718002 + 1.93004i
$$376$$ 1888.23 3270.50i 0.258984 0.448573i
$$377$$ 500.310 0.0683481
$$378$$ −35.0078 1646.82i −0.00476350 0.224083i
$$379$$ 246.459 0.0334030 0.0167015 0.999861i $$-0.494683\pi$$
0.0167015 + 0.999861i $$0.494683\pi$$
$$380$$ −411.402 + 712.570i −0.0555382 + 0.0961949i
$$381$$ −3618.85 9727.72i −0.486613 1.30805i
$$382$$ 3617.76 + 6266.14i 0.484557 + 0.839276i
$$383$$ −325.287 563.414i −0.0433979 0.0751674i 0.843511 0.537113i $$-0.180485\pi$$
−0.886908 + 0.461945i $$0.847152\pi$$
$$384$$ −655.805 110.851i −0.0871521 0.0147314i
$$385$$ −1093.04 + 1893.20i −0.144692 + 0.250614i
$$386$$ −8682.25 −1.14486
$$387$$ 2086.14 + 10923.6i 0.274016 + 1.43483i
$$388$$ 1096.60 0.143483
$$389$$ 5123.08 8873.44i 0.667739 1.15656i −0.310795 0.950477i $$-0.600595\pi$$
0.978535 0.206082i $$-0.0660713\pi$$
$$390$$ −6037.07 + 7299.10i −0.783843 + 0.947703i
$$391$$ −420.668 728.618i −0.0544094 0.0942399i
$$392$$ −1234.15 2137.61i −0.159016 0.275423i
$$393$$ 409.479 495.080i 0.0525585 0.0635457i
$$394$$ −3286.20 + 5691.86i −0.420194 + 0.727797i
$$395$$ −7437.81 −0.947435
$$396$$ −1531.89 + 1322.85i −0.194395 + 0.167868i
$$397$$ −9453.68 −1.19513 −0.597565 0.801820i $$-0.703865\pi$$
−0.597565 + 0.801820i $$0.703865\pi$$
$$398$$ 332.265 575.500i 0.0418466 0.0724804i
$$399$$ 311.361 + 52.6296i 0.0390665 + 0.00660345i
$$400$$ −2158.67 3738.93i −0.269834 0.467366i
$$401$$ −135.361 234.453i −0.0168569 0.0291970i 0.857474 0.514527i $$-0.172033\pi$$
−0.874331 + 0.485330i $$0.838699\pi$$
$$402$$ −1444.15 3881.98i −0.179174 0.481631i
$$403$$ −3477.24 + 6022.75i −0.429810 + 0.744453i
$$404$$ −38.2867 −0.00471494
$$405$$ 13466.1 5338.06i 1.65219 0.654939i
$$406$$ 128.058 0.0156537
$$407$$ −3243.91 + 5618.62i −0.395073 + 0.684286i
$$408$$ 244.518 + 657.282i 0.0296702 + 0.0797556i
$$409$$ 5793.08 + 10033.9i 0.700366 + 1.21307i 0.968338 + 0.249642i $$0.0803130\pi$$
−0.267972 + 0.963427i $$0.586354\pi$$
$$410$$ −5260.51 9111.48i −0.633654 1.09752i
$$411$$ 581.030 + 98.2121i 0.0697326 + 0.0117870i
$$412$$ −3943.01 + 6829.49i −0.471500 + 0.816662i
$$413$$ −312.654 −0.0372511
$$414$$ 2038.23 1760.09i 0.241965 0.208946i
$$415$$ −18544.7 −2.19354
$$416$$ 733.927 1271.20i 0.0864993 0.149821i
$$417$$ 1303.49 1575.98i 0.153075 0.185075i
$$418$$ −194.008 336.031i −0.0227015 0.0393202i
$$419$$ 8066.87 + 13972.2i 0.940554 + 1.62909i 0.764417 + 0.644722i $$0.223027\pi$$
0.176137 + 0.984366i $$0.443640\pi$$
$$420$$ −1545.23 + 1868.25i −0.179522 + 0.217051i
$$421$$ −2495.96 + 4323.14i −0.288945 + 0.500467i −0.973558 0.228439i $$-0.926638\pi$$
0.684613 + 0.728907i $$0.259971\pi$$
$$422$$ 11484.9 1.32483
$$423$$ −2390.87 12519.3i −0.274818 1.43903i
$$424$$ −2321.49 −0.265900
$$425$$ −2276.11 + 3942.33i −0.259782 + 0.449956i
$$426$$ 6638.52 + 1122.12i 0.755018 + 0.127621i
$$427$$ −862.787 1494.39i −0.0977827 0.169365i
$$428$$ −2882.26 4992.22i −0.325512 0.563804i
$$429$$ −1557.46 4186.56i −0.175280 0.471163i
$$430$$ 8184.43 14175.9i 0.917880 1.58982i
$$431$$ 8184.74 0.914722 0.457361 0.889281i $$-0.348795\pi$$
0.457361 + 0.889281i $$0.348795\pi$$
$$432$$ −1919.71 + 1163.43i −0.213801 + 0.129573i
$$433$$ 8663.17 0.961490 0.480745 0.876860i $$-0.340366\pi$$
0.480745 + 0.876860i $$0.340366\pi$$
$$434$$ −890.023 + 1541.56i −0.0984389 + 0.170501i
$$435$$ 392.653 + 1055.48i 0.0432787 + 0.116336i
$$436$$ 180.665 + 312.920i 0.0198447 + 0.0343719i
$$437$$ 258.133 + 447.099i 0.0282567 + 0.0489420i
$$438$$ 4900.90 + 828.403i 0.534644 + 0.0903713i
$$439$$ 7932.15 13738.9i 0.862371 1.49367i −0.00726314 0.999974i $$-0.502312\pi$$
0.869634 0.493697i $$-0.164355\pi$$
$$440$$ 2979.11 0.322781
$$441$$ −7867.72 2738.00i −0.849554 0.295649i
$$442$$ −1547.71 −0.166554
$$443$$ 199.820 346.099i 0.0214306 0.0371189i −0.855111 0.518445i $$-0.826511\pi$$
0.876542 + 0.481326i $$0.159845\pi$$
$$444$$ −4585.91 + 5544.58i −0.490175 + 0.592644i
$$445$$ 3664.28 + 6346.71i 0.390345 + 0.676097i
$$446$$ −2462.61 4265.37i −0.261453 0.452850i
$$447$$ −4991.49 + 6034.95i −0.528164 + 0.638575i
$$448$$ 187.854 325.372i 0.0198108 0.0343134i
$$449$$ 5924.51 0.622706 0.311353 0.950294i $$-0.399218\pi$$
0.311353 + 0.950294i $$0.399218\pi$$
$$450$$ −13761.5 4789.08i −1.44161 0.501687i
$$451$$ 4961.47 0.518019
$$452$$ 3301.45 5718.29i 0.343556 0.595057i
$$453$$ 16197.3 + 2737.85i 1.67995 + 0.283963i
$$454$$ 2799.34 + 4848.60i 0.289382 + 0.501224i
$$455$$ −2675.34 4633.83i −0.275653 0.477445i
$$456$$ −150.043 403.325i −0.0154088 0.0414198i
$$457$$ 3945.57 6833.93i 0.403864 0.699513i −0.590324 0.807166i $$-0.701000\pi$$
0.994189 + 0.107653i $$0.0343335\pi$$
$$458$$ −2825.69 −0.288288
$$459$$ 2074.45 + 1139.60i 0.210952 + 0.115886i
$$460$$ −3963.79 −0.401766
$$461$$ 1631.09 2825.13i 0.164789 0.285422i −0.771792 0.635876i $$-0.780639\pi$$
0.936580 + 0.350453i $$0.113972\pi$$
$$462$$ −398.643 1071.58i −0.0401441 0.107910i
$$463$$ −1845.20 3195.98i −0.185213 0.320799i 0.758435 0.651749i $$-0.225964\pi$$
−0.943648 + 0.330950i $$0.892631\pi$$
$$464$$ −87.2561 151.132i −0.00873010 0.0151210i
$$465$$ −15434.9 2608.97i −1.53930 0.260190i
$$466$$ 2033.81 3522.67i 0.202177 0.350181i
$$467$$ −10193.2 −1.01003 −0.505017 0.863110i $$-0.668514\pi$$
−0.505017 + 0.863110i $$0.668514\pi$$
$$468$$ −929.296 4866.06i −0.0917878 0.480628i
$$469$$ 2339.69 0.230355
$$470$$ −9379.96 + 16246.6i −0.920565 + 1.59446i
$$471$$ −4555.66 + 5508.01i −0.445677 + 0.538845i
$$472$$ 213.037 + 368.990i 0.0207750 + 0.0359834i
$$473$$ 3859.59 + 6685.00i 0.375188 + 0.649845i
$$474$$ 2479.27 2997.55i 0.240246 0.290469i
$$475$$ 1396.68 2419.12i 0.134914 0.233677i
$$476$$ −396.146 −0.0381457
$$477$$ −5930.01 + 5120.79i −0.569217 + 0.491541i
$$478$$ 1043.22 0.0998240
$$479$$ −420.034 + 727.521i −0.0400665 + 0.0693972i −0.885363 0.464900i $$-0.846090\pi$$
0.845297 + 0.534297i $$0.179424\pi$$
$$480$$ 3257.78 + 550.665i 0.309785 + 0.0523632i
$$481$$ −7939.85 13752.2i −0.752653 1.30363i
$$482$$ 5915.65 + 10246.2i 0.559026 + 0.968261i
$$483$$ 530.406 + 1425.77i 0.0499675 + 0.134316i
$$484$$ 1959.56 3394.06i 0.184031 0.318751i
$$485$$ −5447.46 −0.510014
$$486$$ −2337.38 + 7206.41i −0.218160 + 0.672612i
$$487$$ −3367.28 −0.313319 −0.156659 0.987653i $$-0.550072\pi$$
−0.156659 + 0.987653i $$0.550072\pi$$
$$488$$ −1175.77 + 2036.50i −0.109067 + 0.188910i
$$489$$ −982.094 2639.94i −0.0908218 0.244135i
$$490$$ 6130.78 + 10618.8i 0.565226 + 0.979000i
$$491$$ 9434.55 + 16341.1i 0.867160 + 1.50196i 0.864887 + 0.501967i $$0.167390\pi$$
0.00227283 + 0.999997i $$0.499277\pi$$
$$492$$ 5425.57 + 917.089i 0.497162 + 0.0840357i
$$493$$ −92.0030 + 159.354i −0.00840488 + 0.0145577i
$$494$$ 949.713 0.0864972
$$495$$ 7609.84 6571.39i 0.690984 0.596691i
$$496$$ 2425.78 0.219598
$$497$$ −1901.59 + 3293.65i −0.171626 + 0.297264i
$$498$$ 6181.55 7473.79i 0.556229 0.672507i
$$499$$ 7283.00 + 12614.5i 0.653371 + 1.13167i 0.982300 + 0.187317i $$0.0599791\pi$$
−0.328929 + 0.944355i $$0.606688\pi$$
$$500$$ 5755.82 + 9969.37i 0.514816 + 0.891688i
$$501$$ −10364.5 + 12531.1i −0.924252 + 1.11746i
$$502$$ 710.127 1229.98i 0.0631365 0.109356i
$$503$$ −17361.6 −1.53900 −0.769499 0.638648i $$-0.779494\pi$$
−0.769499 + 0.638648i $$0.779494\pi$$
$$504$$ −237.860 1245.50i −0.0210220 0.110078i
$$505$$ 190.193 0.0167594
$$506$$ 934.614 1618.80i 0.0821120 0.142222i
$$507$$ −475.991 80.4572i −0.0416953 0.00704779i
$$508$$ −3994.90 6919.36i −0.348907 0.604325i
$$509$$ −6966.63 12066.6i −0.606661 1.05077i −0.991787 0.127903i $$-0.959175\pi$$
0.385126 0.922864i $$-0.374158\pi$$
$$510$$ −1214.67 3265.12i −0.105464 0.283494i
$$511$$ −1403.85 + 2431.54i −0.121532 + 0.210499i
$$512$$ −512.000 −0.0441942
$$513$$ −1272.93 699.286i −0.109554 0.0601837i
$$514$$ −12602.0 −1.08142
$$515$$ 19587.3 33926.2i 1.67596 2.90285i
$$516$$ 2984.95 + 8023.74i 0.254661 + 0.684546i
$$517$$ −4423.37 7661.50i −0.376285 0.651745i
$$518$$ −2032.26 3519.98i −0.172379 0.298569i
$$519$$ −12902.3 2180.89i −1.09123 0.184452i
$$520$$ −3645.86 + 6314.81i −0.307464 + 0.532544i
$$521$$ 5024.22 0.422486 0.211243 0.977434i $$-0.432249\pi$$
0.211243 + 0.977434i $$0.432249\pi$$
$$522$$ −556.258 193.580i −0.0466413 0.0162314i
$$523$$ 16008.7 1.33845 0.669226 0.743059i $$-0.266626\pi$$
0.669226 + 0.743059i $$0.266626\pi$$
$$524$$ 247.290 428.318i 0.0206162 0.0357083i
$$525$$ 5245.92 6342.57i 0.436097 0.527262i
$$526$$ −4921.82 8524.83i −0.407987 0.706655i
$$527$$ −1278.87 2215.07i −0.105709 0.183093i
$$528$$ −993.037 + 1200.63i −0.0818492 + 0.0989595i
$$529$$ 4839.97 8383.07i 0.397795 0.689001i
$$530$$ 11532.2 0.945148
$$531$$ 1358.11 + 472.628i 0.110992 + 0.0386258i
$$532$$ 243.086 0.0198103
$$533$$ −6071.89 + 10516.8i −0.493438 + 0.854660i
$$534$$ −3779.25 638.810i −0.306262 0.0517678i
$$535$$ 14317.9 + 24799.4i 1.15704 + 2.00406i
$$536$$ −1594.22 2761.27i −0.128470 0.222516i
$$537$$ 4223.62 + 11353.4i 0.339409 + 0.912355i
$$538$$ −5454.50 + 9447.48i −0.437101 + 0.757081i
$$539$$ −5782.27 −0.462078
$$540$$ 9536.35 5779.47i 0.759961 0.460572i
$$541$$ −10094.1 −0.802179 −0.401089 0.916039i $$-0.631368\pi$$
−0.401089 + 0.916039i $$0.631368\pi$$
$$542$$ 2797.10 4844.73i 0.221671 0.383946i
$$543$$ −1331.57 3579.35i −0.105236 0.282882i
$$544$$ 269.927 + 467.527i 0.0212739 + 0.0368475i
$$545$$ −897.471 1554.47i −0.0705384 0.122176i
$$546$$ 2759.29 + 466.405i 0.216276 + 0.0365573i
$$547$$ 3030.27 5248.58i 0.236865 0.410262i −0.722948 0.690902i $$-0.757213\pi$$
0.959813 + 0.280640i $$0.0905468\pi$$
$$548$$ 453.622 0.0353609
$$549$$ 1488.76 + 7795.59i 0.115736 + 0.606025i
$$550$$ −10113.8 −0.784100
$$551$$ 56.4554 97.7837i 0.00436494 0.00756030i
$$552$$ 1321.26 1597.47i 0.101878 0.123175i
$$553$$ 1098.70 + 1903.00i 0.0844870 + 0.146336i
$$554$$ −2145.17 3715.55i −0.164512 0.284943i
$$555$$ 22781.0 27543.3i 1.74234 2.10657i
$$556$$ 787.195 1363.46i 0.0600441 0.103999i
$$557$$ 13688.4 1.04128 0.520642 0.853775i $$-0.325693\pi$$
0.520642 + 0.853775i $$0.325693\pi$$
$$558$$ 6196.42 5350.84i 0.470099 0.405949i
$$559$$ −18893.6 −1.42954
$$560$$ −933.183 + 1616.32i −0.0704182 + 0.121968i
$$561$$ 1619.87 + 273.808i 0.121909 + 0.0206064i
$$562$$ −5509.77 9543.20i −0.413551 0.716291i
$$563$$ −11173.3 19352.8i −0.836411 1.44871i −0.892877 0.450301i $$-0.851317\pi$$
0.0564662 0.998405i $$-0.482017\pi$$
$$564$$ −3420.97 9195.80i −0.255406 0.686548i
$$565$$ −16400.3 + 28406.2i −1.22118 + 2.11515i
$$566$$ −8015.67 −0.595272
$$567$$ −3354.95 2656.84i −0.248491 0.196784i
$$568$$ 5182.83 0.382864
$$569$$ −4058.97 + 7030.34i −0.299052 + 0.517974i −0.975919 0.218131i $$-0.930004\pi$$
0.676867 + 0.736105i $$0.263337\pi$$
$$570$$ 745.353 + 2003.56i 0.0547709 + 0.147228i
$$571$$ −3491.49 6047.43i −0.255892 0.443217i 0.709246 0.704961i $$-0.249036\pi$$
−0.965137 + 0.261744i $$0.915702\pi$$
$$572$$ −1719.30 2977.92i −0.125678 0.217680i
$$573$$ 18535.5 + 3133.07i 1.35136 + 0.228422i
$$574$$ −1554.14 + 2691.85i −0.113012 + 0.195742i
$$575$$ 13456.7 0.975973
$$576$$ −1307.85 + 1129.38i −0.0946075 + 0.0816972i
$$577$$ 13972.4 1.00811 0.504055 0.863671i $$-0.331841\pi$$
0.504055 + 0.863671i $$0.331841\pi$$
$$578$$ −4628.39 + 8016.60i −0.333072 + 0.576898i
$$579$$ −14376.7 + 17382.1i −1.03191 + 1.24762i
$$580$$ 433.454 + 750.765i 0.0310314 + 0.0537479i
$$581$$ 2739.37 + 4744.73i 0.195608 + 0.338803i
$$582$$ 1815.82 2195.41i 0.129327 0.156362i
$$583$$ −2719.17 + 4709.73i −0.193167 + 0.334575i
$$584$$ 3826.23 0.271114
$$585$$ 4616.38 + 24172.7i 0.326263 + 1.70841i
$$586$$ 11618.5 0.819036
$$587$$ 754.756 1307.28i 0.0530701 0.0919200i −0.838270 0.545255i $$-0.816433\pi$$
0.891340 + 0.453335i $$0.149766\pi$$
$$588$$ −6323.15 1068.81i −0.443473 0.0749607i
$$589$$ 784.750 + 1359.23i 0.0548982 + 0.0950865i
$$590$$ −1058.28 1833.00i −0.0738454 0.127904i
$$591$$ 5953.73 + 16004.0i 0.414389 + 1.11390i
$$592$$ −2769.49 + 4796.89i −0.192272 + 0.333026i
$$593$$ −21495.3 −1.48854 −0.744270 0.667879i $$-0.767202\pi$$
−0.744270 + 0.667879i $$0.767202\pi$$
$$594$$ 111.759 + 5257.35i 0.00771977 + 0.363151i
$$595$$ 1967.90 0.135590
$$596$$ −3014.42 + 5221.13i −0.207174 + 0.358836i
$$597$$ −601.977 1618.16i −0.0412685 0.110932i
$$598$$ 2287.58 + 3962.20i 0.156431 + 0.270947i
$$599$$ −5052.44 8751.08i −0.344636 0.596927i 0.640652 0.767832i $$-0.278664\pi$$
−0.985288 + 0.170905i $$0.945331\pi$$
$$600$$ −11059.9 1869.46i −0.752531 0.127201i
$$601$$ 5504.09 9533.37i 0.373572 0.647045i −0.616540 0.787323i $$-0.711466\pi$$
0.990112 + 0.140278i $$0.0447997\pi$$
$$602$$ −4835.94 −0.327406
$$603$$ −10163.1 3536.82i −0.686361 0.238857i
$$604$$ 12645.6 0.851890
$$605$$ −9734.33 + 16860.3i −0.654143 + 1.13301i
$$606$$ −63.3978 + 76.6509i −0.00424977 + 0.00513817i
$$607$$ −7340.08 12713.4i −0.490815 0.850116i 0.509129 0.860690i $$-0.329967\pi$$
−0.999944 + 0.0105740i $$0.996634\pi$$
$$608$$ −165.634 286.887i −0.0110483 0.0191362i
$$609$$ 212.047 256.374i 0.0141093 0.0170588i
$$610$$ 5840.78 10116.5i 0.387683 0.671486i
$$611$$ 21653.4 1.43372
$$612$$ 1720.78 + 598.841i 0.113658 + 0.0395534i
$$613$$ 235.863 0.0155407 0.00777033 0.999970i $$-0.497527\pi$$
0.00777033 + 0.999970i $$0.497527\pi$$
$$614$$ 8688.30 15048.6i 0.571061 0.989106i
$$615$$ −26952.1 4555.74i −1.76718 0.298707i
$$616$$ −440.067 762.219i −0.0287838 0.0498550i
$$617$$ −9156.53 15859.6i −0.597452 1.03482i −0.993196 0.116457i $$-0.962846\pi$$
0.395744 0.918361i $$-0.370487\pi$$
$$618$$ 7143.70 + 19202.7i 0.464987 + 1.24992i
$$619$$ −3424.73 + 5931.81i −0.222377 + 0.385169i −0.955529 0.294896i $$-0.904715\pi$$
0.733152 + 0.680065i $$0.238048\pi$$
$$620$$ −12050.3 −0.780569
$$621$$ −148.699 6995.05i −0.00960883 0.452015i
$$622$$ −2864.02 −0.184625
$$623$$ 1082.56 1875.04i 0.0696175 0.120581i
$$624$$ −1329.68 3574.28i −0.0853044 0.229304i
$$625$$ −11728.0 20313.6i −0.750594 1.30007i
$$626$$ 6614.52 + 11456.7i 0.422315 + 0.731472i
$$627$$ −993.994 168.016i −0.0633115 0.0107016i
$$628$$ −2751.22 + 4765.26i −0.174818 + 0.302794i
$$629$$ 5840.30 0.370220
$$630$$ 1181.59 + 6187.17i 0.0747235 + 0.391274i
$$631$$ 22464.3 1.41726 0.708629 0.705581i $$-0.249314\pi$$
0.708629 + 0.705581i $$0.249314\pi$$
$$632$$ 1497.26 2593.33i 0.0942372 0.163224i
$$633$$ 19017.6 22993.1i 1.19412 1.44375i
$$634$$ 1424.09 + 2466.60i 0.0892079 + 0.154513i
$$635$$ 19845.1 + 34372.7i 1.24020 + 2.14809i
$$636$$ −3844.08 + 4647.67i −0.239666 + 0.289768i
$$637$$ 7076.39 12256.7i 0.440152 0.762365i
$$638$$ −408.814 −0.0253685
$$639$$ 13239.0 11432.4i 0.819605 0.707761i
$$640$$ 2543.41 0.157090
$$641$$ −9444.39 + 16358.2i −0.581952 + 1.00797i 0.413296 + 0.910597i $$0.364377\pi$$
−0.995248 + 0.0973730i $$0.968956\pi$$
$$642$$ −14767.2 2496.11i −0.907810 0.153448i
$$643$$ −3396.98 5883.74i −0.208342 0.360858i 0.742851 0.669457i $$-0.233473\pi$$
−0.951192 + 0.308599i $$0.900140\pi$$
$$644$$ 585.521 + 1014.15i 0.0358273 + 0.0620547i
$$645$$ −14828.0 39858.8i −0.905200 2.43324i
$$646$$ −174.645 + 302.494i −0.0106367 + 0.0184233i
$$647$$ 5277.92 0.320706 0.160353 0.987060i $$-0.448737\pi$$
0.160353 + 0.987060i $$0.448737\pi$$
$$648$$ −849.567 + 5769.79i −0.0515033 + 0.349782i
$$649$$ 998.122 0.0603694
$$650$$ 12377.4 21438.3i 0.746894 1.29366i
$$651$$ 1612.49 + 4334.48i 0.0970789 + 0.260955i
$$652$$ −1084.15 1877.80i −0.0651203 0.112792i
$$653$$ 8282.09 + 14345.0i 0.496330 + 0.859668i 0.999991 0.00423291i $$-0.00134738\pi$$
−0.503661 + 0.863901i $$0.668014\pi$$
$$654$$ 925.631 + 156.460i 0.0553441 + 0.00935486i
$$655$$ −1228.44 + 2127.72i −0.0732810 + 0.126926i
$$656$$ 4235.85 0.252107
$$657$$ 9773.73 8439.99i 0.580380 0.501180i
$$658$$ 5542.34 0.328363
$$659$$ 1650.51 2858.77i 0.0975641 0.168986i −0.813112 0.582108i $$-0.802228\pi$$
0.910676 + 0.413122i $$0.135562\pi$$
$$660$$ 4933.02 5964.25i 0.290935 0.351755i
$$661$$ −6495.17 11250.0i −0.382198 0.661986i 0.609178 0.793033i $$-0.291499\pi$$
−0.991376 + 0.131047i $$0.958166\pi$$
$$662$$ 3537.65 + 6127.39i 0.207696 + 0.359740i
$$663$$ −2562.80 + 3098.55i −0.150122 + 0.181505i
$$664$$ 3733.12 6465.95i 0.218182 0.377903i
$$665$$ −1207.55 −0.0704164
$$666$$ 3506.72 + 18362.2i 0.204028 + 1.06835i
$$667$$ 543.938 0.0315762
$$668$$ −6259.23 + 10841.3i −0.362541 + 0.627939i
$$669$$ −12617.1 2132.69i −0.729158 0.123250i
$$670$$ 7919.46 + 13716.9i 0.456650 + 0.790940i
$$671$$ 2754.38 + 4770.72i 0.158467 + 0.274473i
$$672$$ −340.342 914.861i −0.0195371 0.0525171i
$$673$$ −9257.15 + 16033.9i −0.530219 + 0.918365i 0.469160 + 0.883113i $$0.344557\pi$$
−0.999378 + 0.0352522i $$0.988777\pi$$
$$674$$ 3520.56 0.201197
$$675$$ −32375.1 + 19620.8i −1.84610 + 1.11882i
$$676$$ −371.616 −0.0211434
$$677$$ 3050.00 5282.75i 0.173148 0.299900i −0.766371 0.642398i $$-0.777940\pi$$
0.939519 + 0.342498i $$0.111273\pi$$
$$678$$ −5981.37 16078.3i −0.338810 0.910744i
$$679$$ 804.687 + 1393.76i 0.0454802 + 0.0787740i
$$680$$ −1340.89 2322.49i −0.0756188 0.130976i
$$681$$ 14342.3 + 2424.30i 0.807048 + 0.136416i
$$682$$ 2841.32 4921.32i 0.159531 0.276315i
$$683$$ −22630.0 −1.26781 −0.633905 0.773411i $$-0.718549\pi$$
−0.633905 + 0.773411i $$0.718549\pi$$
$$684$$ −1055.92 367.464i −0.0590263 0.0205414i
$$685$$ −2253.42 −0.125691
$$686$$ 3824.81 6624.76i 0.212874 0.368709i
$$687$$ −4678.97 + 5657.10i −0.259846 + 0.314166i
$$688$$ 3295.12 + 5707.32i 0.182595 + 0.316264i
$$689$$ −6655.48 11527.6i −0.368002 0.637398i
$$690$$ −6563.51 + 7935.59i −0.362128 + 0.437830i
$$691$$ −11493.4 + 19907.2i −0.632750 + 1.09595i 0.354237 + 0.935156i $$0.384741\pi$$
−0.986987 + 0.160799i $$0.948593\pi$$
$$692$$ −10073.1 −0.553355
$$693$$ −2805.43 976.302i −0.153780 0.0535161i
$$694$$ 3210.88 0.175624
$$695$$ −3910.48 + 6773.14i −0.213428 + 0.369669i
$$696$$ −447.055 75.5660i −0.0243471 0.00411541i
$$697$$ −2233.15 3867.92i −0.121358 0.210198i
$$698$$ −6641.89 11504.1i −0.360171 0.623834i
$$699$$ −3684.73 9904.81i −0.199384 0.535958i
$$700$$ 3168.08 5487.27i 0.171060 0.296285i
$$701$$ 27015.5 1.45558 0.727790 0.685800i $$-0.240548\pi$$
0.727790 + 0.685800i $$0.240548\pi$$
$$702$$ −11280.8 6197.09i −0.606503 0.333183i
$$703$$ −3583.76 −0.192268
$$704$$ −599.707 + 1038.72i −0.0321056 + 0.0556085i
$$705$$ 16994.0 + 45681.1i 0.907847 + 2.44035i
$$706$$ −3056.27 5293.61i −0.162924 0.282192i
$$707$$ −28.0949 48.6618i −0.00149451 0.00258857i
$$708$$ 1091.49 + 184.495i 0.0579387 + 0.00979343i
$$709$$ 9588.67 16608.1i 0.507912 0.879730i −0.492046 0.870569i $$-0.663751\pi$$
0.999958 0.00916077i $$-0.00291601\pi$$
$$710$$ −25746.3 −1.36090
$$711$$ −1895.83 9927.11i −0.0999988 0.523623i
$$712$$ −2950.54 −0.155303
$$713$$ −3780.46 + 6547.95i −0.198568 + 0.343931i
$$714$$ −655.966 + 793.094i −0.0343822 + 0.0415698i
$$715$$ 8540.81 + 14793.1i 0.446725 + 0.773750i
$$716$$ 4662.51 + 8075.71i 0.243361 + 0.421513i
$$717$$ 1727.44 2088.56i 0.0899755 0.108785i
$$718$$ −2489.46 + 4311.87i −0.129395 + 0.224119i
$$719$$ 25931.8 1.34505 0.672526 0.740073i $$-0.265209\pi$$
0.672526 + 0.740073i $$0.265209\pi$$
$$720$$ 6496.90 5610.32i 0.336285 0.290395i
$$721$$ −11573.6 −0.597812
$$722$$ −6751.83 + 11694.5i −0.348029 + 0.602805i
$$723$$ 30308.7 + 5123.10i 1.55905 + 0.263527i
$$724$$ −1469.94 2546.01i −0.0754556 0.130693i
$$725$$ −1471.54 2548.78i −0.0753816 0.130565i
$$726$$ −3550.21 9543.20i −0.181489 0.487853i
$$727$$ −2915.25 + 5049.36i −0.148722 + 0.257594i −0.930755 0.365643i $$-0.880849\pi$$
0.782034 + 0.623236i $$0.214183\pi$$
$$728$$ 2154.23 0.109672
$$729$$ 10557.0 + 16612.4i 0.536351 + 0.843995i
$$730$$ −19007.2 −0.963683
$$731$$ 3474.38 6017.81i 0.175793 0.304482i
$$732$$ 2130.19 + 5726.11i 0.107560 + 0.289130i
$$733$$ 11577.3 + 20052.4i 0.583379 + 1.01044i 0.995075 + 0.0991211i $$0.0316031\pi$$
−0.411696 + 0.911321i $$0.635064\pi$$
$$734$$ 2355.05 + 4079.06i 0.118428 + 0.205124i
$$735$$ 31410.9 + 5309.41i 1.57634 + 0.266450i
$$736$$ 797.927 1382.05i 0.0399619 0.0692161i
$$737$$ −7469.26 −0.373316
$$738$$ 10820.1 9343.55i 0.539692 0.466044i
$$739$$ −27085.8 −1.34827 −0.674133 0.738610i $$-0.735483\pi$$
−0.674133 + 0.738610i $$0.735483\pi$$
$$740$$ 13757.7 23829.1i 0.683438 1.18375i
$$741$$ 1572.60 1901.35i 0.0779635 0.0942615i
$$742$$ −1703.52 2950.58i −0.0842830 0.145983i
$$743$$ −16093.8 27875.3i −0.794650 1.37637i −0.923061 0.384653i $$-0.874321\pi$$
0.128412 0.991721i $$-0.459012\pi$$
$$744$$ 4016.77 4856.47i 0.197933 0.239310i
$$745$$ 14974.5 25936.5i 0.736406 1.27549i
$$746$$ 5514.05 0.270622
$$747$$ −4726.86 24751.2i −0.231522 1.21232i
$$748$$ 1264.66 0.0618191
$$749$$ 4230.02 7326.61i 0.206357 0.357421i
$$750$$ 29489.8 + 4984.69i 1.43575 + 0.242687i
$$751$$ 1366.46 + 2366.78i 0.0663954 + 0.115000i 0.897312 0.441397i $$-0.145517\pi$$
−0.830917 + 0.556397i $$0.812183\pi$$
$$752$$ −3776.45 6541.01i −0.183129 0.317189i
$$753$$ −1286.56 3458.37i −0.0622642 0.167370i
$$754$$ 500.310 866.562i 0.0241647 0.0418545i
$$755$$ −62818.3 −3.02807
$$756$$ −2887.39 1586.19i −0.138907 0.0763084i
$$757$$ −6315.62 −0.303230 −0.151615 0.988440i $$-0.548447\pi$$
−0.151615 + 0.988440i $$0.548447\pi$$
$$758$$ 246.459 426.879i 0.0118097 0.0204551i
$$759$$ −1693.28 4551.64i −0.0809776 0.217673i
$$760$$ 822.805 + 1425.14i 0.0392714 + 0.0680201i
$$761$$ −15740.7 27263.6i −0.749801 1.29869i −0.947918 0.318516i $$-0.896816\pi$$
0.198116 0.980179i $$-0.436518\pi$$
$$762$$ −20467.8 3459.68i −0.973056 0.164476i
$$763$$ −265.145 + 459.244i −0.0125804 + 0.0217900i
$$764$$ 14471.0 0.685266
$$765$$ −8548.18 2974.81i −0.404000 0.140594i
$$766$$ −1301.15 −0.0613739
$$767$$ −1221.51 + 2115.72i −0.0575048 + 0.0996012i
$$768$$ −847.805 + 1025.04i −0.0398340 + 0.0481612i
$$769$$ 13648.3 + 23639.6i 0.640014 + 1.10854i 0.985429 + 0.170087i $$0.0544048\pi$$
−0.345415 +