Properties

Label 18.4.c.b.7.1
Level $18$
Weight $4$
Character 18.7
Analytic conductor $1.062$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 18 = 2 \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 18.c (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.06203438010\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-35})\)
Defining polynomial: \( x^{4} - x^{3} - 8x^{2} - 9x + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 7.1
Root \(2.81174 + 1.04601i\) of defining polynomial
Character \(\chi\) \(=\) 18.7
Dual form 18.4.c.b.13.1

$q$-expansion

\(f(q)\) \(=\) \(q+(1.00000 - 1.73205i) q^{2} +(-1.81174 - 4.87007i) q^{3} +(-2.00000 - 3.46410i) q^{4} +(9.93521 + 17.2083i) q^{5} +(-10.2470 - 1.73205i) q^{6} +(2.93521 - 5.08394i) q^{7} -8.00000 q^{8} +(-20.4352 + 17.6466i) q^{9} +O(q^{10})\) \(q+(1.00000 - 1.73205i) q^{2} +(-1.81174 - 4.87007i) q^{3} +(-2.00000 - 3.46410i) q^{4} +(9.93521 + 17.2083i) q^{5} +(-10.2470 - 1.73205i) q^{6} +(2.93521 - 5.08394i) q^{7} -8.00000 q^{8} +(-20.4352 + 17.6466i) q^{9} +39.7409 q^{10} +(-9.37043 + 16.2301i) q^{11} +(-13.2470 + 16.0162i) q^{12} +(-22.9352 - 39.7250i) q^{13} +(-5.87043 - 10.1679i) q^{14} +(65.8056 - 79.5621i) q^{15} +(-8.00000 + 13.8564i) q^{16} +16.8704 q^{17} +(10.1296 + 53.0414i) q^{18} -10.3521 q^{19} +(39.7409 - 68.8332i) q^{20} +(-30.0770 - 5.08394i) q^{21} +(18.7409 + 32.4601i) q^{22} +(-24.9352 - 43.1891i) q^{23} +(14.4939 + 38.9606i) q^{24} +(-134.917 + 233.683i) q^{25} -91.7409 q^{26} +(122.963 + 67.5500i) q^{27} -23.4817 q^{28} +(-5.45351 + 9.44575i) q^{29} +(-72.0000 - 193.541i) q^{30} +(-75.8056 - 131.299i) q^{31} +(16.0000 + 27.7128i) q^{32} +(96.0183 + 16.2301i) q^{33} +(16.8704 - 29.2204i) q^{34} +116.648 q^{35} +(102.000 + 35.4965i) q^{36} +346.186 q^{37} +(-10.3521 + 17.9304i) q^{38} +(-151.911 + 183.667i) q^{39} +(-79.4817 - 137.666i) q^{40} +(-132.370 - 229.272i) q^{41} +(-38.8826 + 47.0109i) q^{42} +(205.945 - 356.707i) q^{43} +74.9634 q^{44} +(-506.696 - 176.333i) q^{45} -99.7409 q^{46} +(-236.028 + 408.813i) q^{47} +(81.9756 + 13.8564i) q^{48} +(154.269 + 267.202i) q^{49} +(269.834 + 467.366i) q^{50} +(-30.5648 - 82.1602i) q^{51} +(-91.7409 + 158.900i) q^{52} +290.186 q^{53} +(239.963 - 145.429i) q^{54} -372.389 q^{55} +(-23.4817 + 40.6715i) q^{56} +(18.7553 + 50.4156i) q^{57} +(10.9070 + 18.8915i) q^{58} +(-26.6296 - 46.1238i) q^{59} +(-407.223 - 68.8332i) q^{60} +(146.972 - 254.563i) q^{61} -303.223 q^{62} +(29.7325 + 155.688i) q^{63} +64.0000 q^{64} +(455.732 - 789.352i) q^{65} +(124.130 - 150.079i) q^{66} +(199.277 + 345.159i) q^{67} +(-33.7409 - 58.4409i) q^{68} +(-165.158 + 199.684i) q^{69} +(116.648 - 202.040i) q^{70} -647.854 q^{71} +(163.482 - 141.173i) q^{72} -478.279 q^{73} +(346.186 - 599.612i) q^{74} +(1382.49 + 233.683i) q^{75} +(20.7043 + 35.8608i) q^{76} +(55.0084 + 95.2773i) q^{77} +(166.210 + 446.785i) q^{78} +(-187.158 + 324.167i) q^{79} -317.927 q^{80} +(106.196 - 721.224i) q^{81} -529.482 q^{82} +(-466.639 + 808.243i) q^{83} +(42.5427 + 114.358i) q^{84} +(167.611 + 290.311i) q^{85} +(-411.890 - 713.415i) q^{86} +(55.8818 + 9.44575i) q^{87} +(74.9634 - 129.840i) q^{88} +368.817 q^{89} +(-812.113 + 701.290i) q^{90} -269.279 q^{91} +(-99.7409 + 172.756i) q^{92} +(-502.097 + 607.059i) q^{93} +(472.056 + 817.626i) q^{94} +(-102.851 - 178.143i) q^{95} +(105.976 - 128.130i) q^{96} +(-137.075 + 237.420i) q^{97} +617.076 q^{98} +(-94.9184 - 497.021i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 3 q^{3} - 8 q^{4} + 9 q^{5} - 19 q^{7} - 32 q^{8} - 51 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{2} + 3 q^{3} - 8 q^{4} + 9 q^{5} - 19 q^{7} - 32 q^{8} - 51 q^{9} + 36 q^{10} + 24 q^{11} - 12 q^{12} - 61 q^{13} + 38 q^{14} + 171 q^{15} - 32 q^{16} + 6 q^{17} + 102 q^{18} + 266 q^{19} + 36 q^{20} - 315 q^{21} - 48 q^{22} - 69 q^{23} - 24 q^{24} - 263 q^{25} - 244 q^{26} + 152 q^{28} - 237 q^{29} - 288 q^{30} - 211 q^{31} + 64 q^{32} + 630 q^{33} + 6 q^{34} + 774 q^{35} + 408 q^{36} + 524 q^{37} + 266 q^{38} - 249 q^{39} - 72 q^{40} - 468 q^{41} - 258 q^{42} + 86 q^{43} - 192 q^{44} - 459 q^{45} - 276 q^{46} - 483 q^{47} + 33 q^{49} + 526 q^{50} - 153 q^{51} - 244 q^{52} + 300 q^{53} + 468 q^{54} - 1674 q^{55} + 152 q^{56} + 987 q^{57} + 474 q^{58} - 168 q^{59} - 1260 q^{60} + 1049 q^{61} - 844 q^{62} - 957 q^{63} + 256 q^{64} + 747 q^{65} + 558 q^{66} + 1166 q^{67} - 12 q^{68} - 261 q^{69} + 774 q^{70} - 624 q^{71} + 408 q^{72} - 622 q^{73} + 524 q^{74} + 2835 q^{75} - 532 q^{76} + 1173 q^{77} + 132 q^{78} - 349 q^{79} - 288 q^{80} - 1143 q^{81} - 1872 q^{82} - 1221 q^{83} + 744 q^{84} + 486 q^{85} - 172 q^{86} - 2205 q^{87} - 192 q^{88} - 984 q^{89} - 1404 q^{90} + 214 q^{91} - 276 q^{92} - 789 q^{93} + 966 q^{94} - 1764 q^{95} + 96 q^{96} + 128 q^{97} + 132 q^{98} + 1557 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/18\mathbb{Z}\right)^\times\).

\(n\) \(11\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.73205i 0.353553 0.612372i
\(3\) −1.81174 4.87007i −0.348669 0.937246i
\(4\) −2.00000 3.46410i −0.250000 0.433013i
\(5\) 9.93521 + 17.2083i 0.888632 + 1.53916i 0.841493 + 0.540268i \(0.181677\pi\)
0.0471396 + 0.998888i \(0.484989\pi\)
\(6\) −10.2470 1.73205i −0.697217 0.117851i
\(7\) 2.93521 5.08394i 0.158487 0.274507i −0.775837 0.630934i \(-0.782672\pi\)
0.934323 + 0.356427i \(0.116005\pi\)
\(8\) −8.00000 −0.353553
\(9\) −20.4352 + 17.6466i −0.756860 + 0.653577i
\(10\) 39.7409 1.25672
\(11\) −9.37043 + 16.2301i −0.256845 + 0.444868i −0.965395 0.260792i \(-0.916016\pi\)
0.708550 + 0.705660i \(0.249349\pi\)
\(12\) −13.2470 + 16.0162i −0.318672 + 0.385290i
\(13\) −22.9352 39.7250i −0.489314 0.847517i 0.510610 0.859812i \(-0.329420\pi\)
−0.999924 + 0.0122953i \(0.996086\pi\)
\(14\) −5.87043 10.1679i −0.112067 0.194106i
\(15\) 65.8056 79.5621i 1.13273 1.36952i
\(16\) −8.00000 + 13.8564i −0.125000 + 0.216506i
\(17\) 16.8704 0.240687 0.120344 0.992732i \(-0.461600\pi\)
0.120344 + 0.992732i \(0.461600\pi\)
\(18\) 10.1296 + 53.0414i 0.132642 + 0.694555i
\(19\) −10.3521 −0.124997 −0.0624985 0.998045i \(-0.519907\pi\)
−0.0624985 + 0.998045i \(0.519907\pi\)
\(20\) 39.7409 68.8332i 0.444316 0.769578i
\(21\) −30.0770 5.08394i −0.312540 0.0528289i
\(22\) 18.7409 + 32.4601i 0.181617 + 0.314569i
\(23\) −24.9352 43.1891i −0.226059 0.391545i 0.730578 0.682829i \(-0.239251\pi\)
−0.956637 + 0.291284i \(0.905917\pi\)
\(24\) 14.4939 + 38.9606i 0.123273 + 0.331366i
\(25\) −134.917 + 233.683i −1.07934 + 1.86946i
\(26\) −91.7409 −0.691995
\(27\) 122.963 + 67.5500i 0.876456 + 0.481481i
\(28\) −23.4817 −0.158487
\(29\) −5.45351 + 9.44575i −0.0349204 + 0.0604839i −0.882957 0.469453i \(-0.844451\pi\)
0.848037 + 0.529937i \(0.177784\pi\)
\(30\) −72.0000 193.541i −0.438178 1.17785i
\(31\) −75.8056 131.299i −0.439197 0.760711i 0.558431 0.829551i \(-0.311404\pi\)
−0.997628 + 0.0688401i \(0.978070\pi\)
\(32\) 16.0000 + 27.7128i 0.0883883 + 0.153093i
\(33\) 96.0183 + 16.2301i 0.506504 + 0.0856148i
\(34\) 16.8704 29.2204i 0.0850957 0.147390i
\(35\) 116.648 0.563345
\(36\) 102.000 + 35.4965i 0.472222 + 0.164336i
\(37\) 346.186 1.53818 0.769089 0.639141i \(-0.220710\pi\)
0.769089 + 0.639141i \(0.220710\pi\)
\(38\) −10.3521 + 17.9304i −0.0441931 + 0.0765447i
\(39\) −151.911 + 183.667i −0.623723 + 0.754111i
\(40\) −79.4817 137.666i −0.314179 0.544174i
\(41\) −132.370 229.272i −0.504214 0.873325i −0.999988 0.00487314i \(-0.998449\pi\)
0.495774 0.868452i \(-0.334885\pi\)
\(42\) −38.8826 + 47.0109i −0.142850 + 0.172713i
\(43\) 205.945 356.707i 0.730380 1.26506i −0.226341 0.974048i \(-0.572676\pi\)
0.956721 0.291007i \(-0.0939903\pi\)
\(44\) 74.9634 0.256845
\(45\) −506.696 176.333i −1.67853 0.584136i
\(46\) −99.7409 −0.319695
\(47\) −236.028 + 408.813i −0.732516 + 1.26875i 0.223289 + 0.974752i \(0.428321\pi\)
−0.955805 + 0.294003i \(0.905013\pi\)
\(48\) 81.9756 + 13.8564i 0.246503 + 0.0416667i
\(49\) 154.269 + 267.202i 0.449764 + 0.779014i
\(50\) 269.834 + 467.366i 0.763205 + 1.32191i
\(51\) −30.5648 82.1602i −0.0839201 0.225583i
\(52\) −91.7409 + 158.900i −0.244657 + 0.423758i
\(53\) 290.186 0.752078 0.376039 0.926604i \(-0.377286\pi\)
0.376039 + 0.926604i \(0.377286\pi\)
\(54\) 239.963 145.429i 0.604720 0.366488i
\(55\) −372.389 −0.912962
\(56\) −23.4817 + 40.6715i −0.0560335 + 0.0970528i
\(57\) 18.7553 + 50.4156i 0.0435826 + 0.117153i
\(58\) 10.9070 + 18.8915i 0.0246924 + 0.0427686i
\(59\) −26.6296 46.1238i −0.0587606 0.101776i 0.835149 0.550024i \(-0.185382\pi\)
−0.893909 + 0.448248i \(0.852048\pi\)
\(60\) −407.223 68.8332i −0.876203 0.148105i
\(61\) 146.972 254.563i 0.308489 0.534318i −0.669543 0.742773i \(-0.733510\pi\)
0.978032 + 0.208455i \(0.0668435\pi\)
\(62\) −303.223 −0.621118
\(63\) 29.7325 + 155.688i 0.0594593 + 0.311346i
\(64\) 64.0000 0.125000
\(65\) 455.732 789.352i 0.869641 1.50626i
\(66\) 124.130 150.079i 0.231504 0.279900i
\(67\) 199.277 + 345.159i 0.363367 + 0.629371i 0.988513 0.151138i \(-0.0482936\pi\)
−0.625145 + 0.780508i \(0.714960\pi\)
\(68\) −33.7409 58.4409i −0.0601718 0.104221i
\(69\) −165.158 + 199.684i −0.288154 + 0.348392i
\(70\) 116.648 202.040i 0.199173 0.344977i
\(71\) −647.854 −1.08290 −0.541451 0.840732i \(-0.682125\pi\)
−0.541451 + 0.840732i \(0.682125\pi\)
\(72\) 163.482 141.173i 0.267590 0.231074i
\(73\) −478.279 −0.766826 −0.383413 0.923577i \(-0.625251\pi\)
−0.383413 + 0.923577i \(0.625251\pi\)
\(74\) 346.186 599.612i 0.543828 0.941938i
\(75\) 1382.49 + 233.683i 2.12848 + 0.359778i
\(76\) 20.7043 + 35.8608i 0.0312492 + 0.0541253i
\(77\) 55.0084 + 95.2773i 0.0814128 + 0.141011i
\(78\) 166.210 + 446.785i 0.241277 + 0.648569i
\(79\) −187.158 + 324.167i −0.266543 + 0.461666i −0.967967 0.251079i \(-0.919215\pi\)
0.701424 + 0.712744i \(0.252548\pi\)
\(80\) −317.927 −0.444316
\(81\) 106.196 721.224i 0.145673 0.989333i
\(82\) −529.482 −0.713067
\(83\) −466.639 + 808.243i −0.617112 + 1.06887i 0.372897 + 0.927873i \(0.378364\pi\)
−0.990010 + 0.140998i \(0.954969\pi\)
\(84\) 42.5427 + 114.358i 0.0552594 + 0.148541i
\(85\) 167.611 + 290.311i 0.213882 + 0.370455i
\(86\) −411.890 713.415i −0.516457 0.894529i
\(87\) 55.8818 + 9.44575i 0.0688639 + 0.0116401i
\(88\) 74.9634 129.840i 0.0908083 0.157285i
\(89\) 368.817 0.439264 0.219632 0.975583i \(-0.429514\pi\)
0.219632 + 0.975583i \(0.429514\pi\)
\(90\) −812.113 + 701.290i −0.951158 + 0.821361i
\(91\) −269.279 −0.310199
\(92\) −99.7409 + 172.756i −0.113029 + 0.195773i
\(93\) −502.097 + 607.059i −0.559839 + 0.676872i
\(94\) 472.056 + 817.626i 0.517967 + 0.897145i
\(95\) −102.851 178.143i −0.111076 0.192390i
\(96\) 105.976 128.130i 0.112668 0.136220i
\(97\) −137.075 + 237.420i −0.143483 + 0.248519i −0.928806 0.370567i \(-0.879163\pi\)
0.785323 + 0.619086i \(0.212497\pi\)
\(98\) 617.076 0.636062
\(99\) −94.9184 497.021i −0.0963602 0.504570i
\(100\) 1079.34 1.07934
\(101\) 4.78584 8.28931i 0.00471494 0.00816651i −0.863658 0.504078i \(-0.831833\pi\)
0.868373 + 0.495911i \(0.165166\pi\)
\(102\) −172.870 29.2204i −0.167811 0.0283652i
\(103\) −985.752 1707.37i −0.943001 1.63332i −0.759706 0.650267i \(-0.774657\pi\)
−0.183295 0.983058i \(-0.558676\pi\)
\(104\) 183.482 + 317.800i 0.172999 + 0.299642i
\(105\) −211.335 568.084i −0.196421 0.527993i
\(106\) 290.186 502.617i 0.265900 0.460552i
\(107\) 1441.13 1.30205 0.651025 0.759057i \(-0.274339\pi\)
0.651025 + 0.759057i \(0.274339\pi\)
\(108\) −11.9268 561.058i −0.0106265 0.499887i
\(109\) −90.3323 −0.0793786 −0.0396893 0.999212i \(-0.512637\pi\)
−0.0396893 + 0.999212i \(0.512637\pi\)
\(110\) −372.389 + 644.996i −0.322781 + 0.559072i
\(111\) −627.198 1685.95i −0.536315 1.44165i
\(112\) 46.9634 + 81.3430i 0.0396217 + 0.0686267i
\(113\) 825.364 + 1429.57i 0.687112 + 1.19011i 0.972768 + 0.231781i \(0.0744552\pi\)
−0.285656 + 0.958332i \(0.592211\pi\)
\(114\) 106.078 + 17.9304i 0.0871499 + 0.0147310i
\(115\) 495.473 858.185i 0.401766 0.695880i
\(116\) 43.6281 0.0349204
\(117\) 1169.70 + 407.060i 0.924260 + 0.321647i
\(118\) −106.518 −0.0831000
\(119\) 49.5183 85.7682i 0.0381457 0.0660702i
\(120\) −526.445 + 636.497i −0.400480 + 0.484200i
\(121\) 489.890 + 848.515i 0.368062 + 0.637502i
\(122\) −293.944 509.125i −0.218134 0.377820i
\(123\) −876.752 + 1060.03i −0.642716 + 0.777074i
\(124\) −303.223 + 525.197i −0.219598 + 0.380355i
\(125\) −2877.91 −2.05926
\(126\) 299.392 + 104.190i 0.211682 + 0.0736663i
\(127\) 1997.45 1.39563 0.697814 0.716279i \(-0.254156\pi\)
0.697814 + 0.716279i \(0.254156\pi\)
\(128\) 64.0000 110.851i 0.0441942 0.0765466i
\(129\) −2110.31 356.707i −1.44033 0.243460i
\(130\) −911.465 1578.70i −0.614929 1.06509i
\(131\) 61.8224 + 107.080i 0.0412324 + 0.0714167i 0.885905 0.463866i \(-0.153538\pi\)
−0.844673 + 0.535283i \(0.820205\pi\)
\(132\) −135.814 365.077i −0.0895537 0.240726i
\(133\) −30.3857 + 52.6296i −0.0198103 + 0.0343125i
\(134\) 797.110 0.513879
\(135\) 59.2477 + 2787.11i 0.0377721 + 1.77686i
\(136\) −134.963 −0.0850957
\(137\) −56.7028 + 98.2121i −0.0353609 + 0.0612469i −0.883164 0.469064i \(-0.844591\pi\)
0.847803 + 0.530311i \(0.177925\pi\)
\(138\) 180.704 + 485.745i 0.111468 + 0.299633i
\(139\) 196.799 + 340.865i 0.120088 + 0.207999i 0.919802 0.392382i \(-0.128349\pi\)
−0.799714 + 0.600381i \(0.795016\pi\)
\(140\) −233.296 404.080i −0.140836 0.243936i
\(141\) 2418.57 + 408.813i 1.44454 + 0.244172i
\(142\) −647.854 + 1122.12i −0.382864 + 0.663140i
\(143\) 859.651 0.502711
\(144\) −81.0366 424.331i −0.0468962 0.245562i
\(145\) −216.727 −0.124126
\(146\) −478.279 + 828.403i −0.271114 + 0.469583i
\(147\) 1021.80 1235.40i 0.573309 0.693158i
\(148\) −692.372 1199.22i −0.384545 0.666051i
\(149\) −753.606 1305.28i −0.414348 0.717671i 0.581012 0.813895i \(-0.302657\pi\)
−0.995360 + 0.0962237i \(0.969324\pi\)
\(150\) 1787.24 2160.85i 0.972849 1.17622i
\(151\) −1580.70 + 2737.85i −0.851890 + 1.47552i 0.0276097 + 0.999619i \(0.491210\pi\)
−0.879500 + 0.475899i \(0.842123\pi\)
\(152\) 82.8170 0.0441931
\(153\) −344.751 + 297.705i −0.182166 + 0.157308i
\(154\) 220.034 0.115135
\(155\) 1506.29 2608.97i 0.780569 1.35198i
\(156\) 940.064 + 158.900i 0.482470 + 0.0815524i
\(157\) −687.806 1191.31i −0.349636 0.605587i 0.636549 0.771237i \(-0.280361\pi\)
−0.986185 + 0.165649i \(0.947028\pi\)
\(158\) 374.316 + 648.334i 0.188474 + 0.326447i
\(159\) −525.741 1413.23i −0.262226 0.704882i
\(160\) −317.927 + 550.665i −0.157090 + 0.272087i
\(161\) −292.761 −0.143309
\(162\) −1143.00 905.160i −0.554337 0.438988i
\(163\) 542.073 0.260481 0.130241 0.991482i \(-0.458425\pi\)
0.130241 + 0.991482i \(0.458425\pi\)
\(164\) −529.482 + 917.089i −0.252107 + 0.436662i
\(165\) 674.671 + 1813.56i 0.318321 + 0.855669i
\(166\) 933.279 + 1616.49i 0.436364 + 0.755805i
\(167\) −1564.81 2710.33i −0.725081 1.25588i −0.958941 0.283607i \(-0.908469\pi\)
0.233860 0.972270i \(-0.424864\pi\)
\(168\) 240.616 + 40.6715i 0.110500 + 0.0186778i
\(169\) 46.4520 80.4572i 0.0211434 0.0366214i
\(170\) 670.445 0.302475
\(171\) 211.548 182.680i 0.0946051 0.0816952i
\(172\) −1647.56 −0.730380
\(173\) 1259.14 2180.89i 0.553355 0.958440i −0.444674 0.895692i \(-0.646680\pi\)
0.998029 0.0627472i \(-0.0199862\pi\)
\(174\) 72.2424 87.3444i 0.0314752 0.0380550i
\(175\) 792.020 + 1371.82i 0.342120 + 0.592570i
\(176\) −149.927 259.681i −0.0642111 0.111217i
\(177\) −176.380 + 213.252i −0.0749015 + 0.0905594i
\(178\) 368.817 638.810i 0.155303 0.268993i
\(179\) −2331.26 −0.973443 −0.486721 0.873557i \(-0.661807\pi\)
−0.486721 + 0.873557i \(0.661807\pi\)
\(180\) 402.558 + 2107.91i 0.166694 + 0.872858i
\(181\) 734.969 0.301822 0.150911 0.988547i \(-0.451779\pi\)
0.150911 + 0.988547i \(0.451779\pi\)
\(182\) −269.279 + 466.405i −0.109672 + 0.189957i
\(183\) −1506.01 254.563i −0.608348 0.102830i
\(184\) 199.482 + 345.512i 0.0799238 + 0.138432i
\(185\) 3439.43 + 5957.27i 1.36688 + 2.36750i
\(186\) 549.360 + 1476.72i 0.216565 + 0.582140i
\(187\) −158.083 + 273.808i −0.0618191 + 0.107074i
\(188\) 1888.23 0.732516
\(189\) 704.344 426.865i 0.271077 0.164285i
\(190\) −411.402 −0.157086
\(191\) −1808.88 + 3133.07i −0.685266 + 1.18692i 0.288087 + 0.957604i \(0.406981\pi\)
−0.973353 + 0.229312i \(0.926352\pi\)
\(192\) −115.951 311.685i −0.0435836 0.117156i
\(193\) −2170.56 3759.52i −0.809536 1.40216i −0.913186 0.407544i \(-0.866385\pi\)
0.103649 0.994614i \(-0.466948\pi\)
\(194\) 274.149 + 474.841i 0.101458 + 0.175730i
\(195\) −4669.87 789.352i −1.71495 0.289880i
\(196\) 617.076 1068.81i 0.224882 0.389507i
\(197\) −3286.20 −1.18849 −0.594243 0.804285i \(-0.702548\pi\)
−0.594243 + 0.804285i \(0.702548\pi\)
\(198\) −955.783 332.617i −0.343053 0.119384i
\(199\) 332.265 0.118360 0.0591800 0.998247i \(-0.481151\pi\)
0.0591800 + 0.998247i \(0.481151\pi\)
\(200\) 1079.34 1869.46i 0.381603 0.660955i
\(201\) 1319.91 1595.83i 0.463180 0.560007i
\(202\) −9.57168 16.5786i −0.00333396 0.00577460i
\(203\) 32.0144 + 55.4506i 0.0110688 + 0.0191718i
\(204\) −223.482 + 270.200i −0.0767002 + 0.0927342i
\(205\) 2630.26 4555.74i 0.896122 1.55213i
\(206\) −3943.01 −1.33360
\(207\) 1271.70 + 442.556i 0.427000 + 0.148598i
\(208\) 733.927 0.244657
\(209\) 97.0039 168.016i 0.0321048 0.0556071i
\(210\) −1195.28 202.040i −0.392774 0.0663909i
\(211\) 2871.24 + 4973.13i 0.936797 + 1.62258i 0.771398 + 0.636353i \(0.219558\pi\)
0.165398 + 0.986227i \(0.447109\pi\)
\(212\) −580.372 1005.23i −0.188019 0.325659i
\(213\) 1173.74 + 3155.09i 0.377575 + 1.01495i
\(214\) 1441.13 2496.11i 0.460344 0.797339i
\(215\) 8184.43 2.59616
\(216\) −983.707 540.400i −0.309874 0.170229i
\(217\) −890.023 −0.278427
\(218\) −90.3323 + 156.460i −0.0280646 + 0.0486093i
\(219\) 866.516 + 2329.25i 0.267369 + 0.718705i
\(220\) 744.777 + 1289.99i 0.228240 + 0.395324i
\(221\) −386.927 670.177i −0.117772 0.203986i
\(222\) −3547.35 599.612i −1.07244 0.181276i
\(223\) 1231.31 2132.69i 0.369751 0.640427i −0.619776 0.784779i \(-0.712776\pi\)
0.989526 + 0.144352i \(0.0461097\pi\)
\(224\) 187.854 0.0560335
\(225\) −1366.65 7156.18i −0.404934 2.12035i
\(226\) 3301.45 0.971723
\(227\) −1399.67 + 2424.30i −0.409248 + 0.708838i −0.994806 0.101792i \(-0.967542\pi\)
0.585558 + 0.810631i \(0.300876\pi\)
\(228\) 137.134 165.802i 0.0398330 0.0481600i
\(229\) −706.423 1223.56i −0.203850 0.353079i 0.745915 0.666041i \(-0.232012\pi\)
−0.949766 + 0.312961i \(0.898679\pi\)
\(230\) −990.947 1716.37i −0.284092 0.492061i
\(231\) 364.347 440.512i 0.103776 0.125470i
\(232\) 43.6281 75.5660i 0.0123462 0.0213843i
\(233\) 2033.81 0.571843 0.285922 0.958253i \(-0.407700\pi\)
0.285922 + 0.958253i \(0.407700\pi\)
\(234\) 1874.74 1618.91i 0.523743 0.452272i
\(235\) −9379.96 −2.60375
\(236\) −106.518 + 184.495i −0.0293803 + 0.0508882i
\(237\) 1917.80 + 324.167i 0.525630 + 0.0888477i
\(238\) −99.0366 171.536i −0.0269731 0.0467187i
\(239\) 260.806 + 451.729i 0.0705863 + 0.122259i 0.899158 0.437623i \(-0.144180\pi\)
−0.828572 + 0.559882i \(0.810846\pi\)
\(240\) 576.000 + 1548.33i 0.154919 + 0.416434i
\(241\) −2957.82 + 5123.10i −0.790582 + 1.36933i 0.135025 + 0.990842i \(0.456888\pi\)
−0.925607 + 0.378486i \(0.876445\pi\)
\(242\) 1959.56 0.520518
\(243\) −3704.81 + 789.486i −0.978040 + 0.208418i
\(244\) −1175.77 −0.308489
\(245\) −3065.39 + 5309.41i −0.799350 + 1.38451i
\(246\) 959.282 + 2578.61i 0.248624 + 0.668319i
\(247\) 237.428 + 411.238i 0.0611628 + 0.105937i
\(248\) 606.445 + 1050.39i 0.155279 + 0.268952i
\(249\) 4781.63 + 808.243i 1.21696 + 0.205704i
\(250\) −2877.91 + 4984.69i −0.728060 + 1.26104i
\(251\) 710.127 0.178577 0.0892884 0.996006i \(-0.471541\pi\)
0.0892884 + 0.996006i \(0.471541\pi\)
\(252\) 479.854 414.372i 0.119952 0.103583i
\(253\) 934.614 0.232248
\(254\) 1997.45 3459.68i 0.493429 0.854645i
\(255\) 1110.17 1342.25i 0.272633 0.329627i
\(256\) −128.000 221.703i −0.0312500 0.0541266i
\(257\) −3150.50 5456.83i −0.764681 1.32447i −0.940415 0.340028i \(-0.889563\pi\)
0.175734 0.984438i \(-0.443770\pi\)
\(258\) −2728.14 + 3298.46i −0.658321 + 0.795941i
\(259\) 1016.13 1759.99i 0.243781 0.422241i
\(260\) −3645.86 −0.869641
\(261\) −55.2417 289.262i −0.0131011 0.0686010i
\(262\) 247.290 0.0583115
\(263\) 2460.91 4262.42i 0.576981 0.999361i −0.418842 0.908059i \(-0.637564\pi\)
0.995823 0.0913017i \(-0.0291028\pi\)
\(264\) −768.146 129.840i −0.179076 0.0302694i
\(265\) 2883.06 + 4993.61i 0.668320 + 1.15757i
\(266\) 60.7714 + 105.259i 0.0140080 + 0.0242626i
\(267\) −668.200 1796.17i −0.153158 0.411699i
\(268\) 797.110 1380.63i 0.181684 0.314685i
\(269\) −5454.50 −1.23631 −0.618154 0.786057i \(-0.712119\pi\)
−0.618154 + 0.786057i \(0.712119\pi\)
\(270\) 4886.67 + 2684.49i 1.10146 + 0.605086i
\(271\) 2797.10 0.626981 0.313491 0.949591i \(-0.398502\pi\)
0.313491 + 0.949591i \(0.398502\pi\)
\(272\) −134.963 + 233.763i −0.0300859 + 0.0521103i
\(273\) 487.863 + 1311.41i 0.108157 + 0.290733i
\(274\) 113.406 + 196.424i 0.0250039 + 0.0433081i
\(275\) −2528.46 4379.42i −0.554443 0.960323i
\(276\) 1022.04 + 172.756i 0.222897 + 0.0376765i
\(277\) 1072.59 1857.77i 0.232655 0.402970i −0.725934 0.687765i \(-0.758592\pi\)
0.958589 + 0.284794i \(0.0919254\pi\)
\(278\) 787.195 0.169830
\(279\) 3866.09 + 1345.42i 0.829594 + 0.288702i
\(280\) −933.183 −0.199173
\(281\) 2754.88 4771.60i 0.584849 1.01299i −0.410045 0.912065i \(-0.634487\pi\)
0.994894 0.100923i \(-0.0321797\pi\)
\(282\) 3126.65 3780.27i 0.660247 0.798269i
\(283\) −2003.92 3470.89i −0.420921 0.729056i 0.575109 0.818077i \(-0.304960\pi\)
−0.996030 + 0.0890206i \(0.971626\pi\)
\(284\) 1295.71 + 2244.23i 0.270726 + 0.468911i
\(285\) −681.229 + 823.637i −0.141588 + 0.171186i
\(286\) 859.651 1488.96i 0.177735 0.307846i
\(287\) −1554.14 −0.319645
\(288\) −816.000 283.972i −0.166956 0.0581014i
\(289\) −4628.39 −0.942070
\(290\) −216.727 + 375.382i −0.0438850 + 0.0760111i
\(291\) 1404.60 + 237.420i 0.282952 + 0.0478276i
\(292\) 956.558 + 1656.81i 0.191707 + 0.332046i
\(293\) 2904.62 + 5030.95i 0.579146 + 1.00311i 0.995578 + 0.0939429i \(0.0299471\pi\)
−0.416432 + 0.909167i \(0.636720\pi\)
\(294\) −1117.98 3005.21i −0.221775 0.596147i
\(295\) 529.141 916.499i 0.104433 0.180884i
\(296\) −2769.49 −0.543828
\(297\) −2248.56 + 1362.73i −0.439309 + 0.266241i
\(298\) −3014.42 −0.585976
\(299\) −1143.79 + 1981.10i −0.221227 + 0.383177i
\(300\) −1955.47 5256.44i −0.376331 1.01160i
\(301\) −1208.99 2094.02i −0.231511 0.400989i
\(302\) 3161.40 + 5475.70i 0.602377 + 1.04335i
\(303\) −49.0402 8.28931i −0.00929798 0.00157165i
\(304\) 82.8170 143.443i 0.0156246 0.0270626i
\(305\) 5840.78 1.09653
\(306\) 170.890 + 894.831i 0.0319253 + 0.167170i
\(307\) 8688.30 1.61520 0.807602 0.589728i \(-0.200765\pi\)
0.807602 + 0.589728i \(0.200765\pi\)
\(308\) 220.034 381.109i 0.0407064 0.0705056i
\(309\) −6529.11 + 7894.00i −1.20203 + 1.45331i
\(310\) −3012.58 5217.94i −0.551945 0.955998i
\(311\) −716.005 1240.16i −0.130550 0.226119i 0.793339 0.608780i \(-0.208341\pi\)
−0.923889 + 0.382662i \(0.875008\pi\)
\(312\) 1215.29 1469.34i 0.220519 0.266618i
\(313\) −3307.26 + 5728.34i −0.597244 + 1.03446i 0.395982 + 0.918258i \(0.370404\pi\)
−0.993226 + 0.116199i \(0.962929\pi\)
\(314\) −2751.22 −0.494460
\(315\) −2383.72 + 2058.44i −0.426373 + 0.368190i
\(316\) 1497.26 0.266543
\(317\) −712.045 + 1233.30i −0.126159 + 0.218514i −0.922185 0.386748i \(-0.873598\pi\)
0.796026 + 0.605262i \(0.206932\pi\)
\(318\) −2973.52 502.617i −0.524361 0.0886332i
\(319\) −102.203 177.021i −0.0179382 0.0310699i
\(320\) 635.854 + 1101.33i 0.111079 + 0.192395i
\(321\) −2610.95 7018.41i −0.453984 1.22034i
\(322\) −292.761 + 507.076i −0.0506674 + 0.0877586i
\(323\) −174.645 −0.0300851
\(324\) −2710.78 + 1074.57i −0.464812 + 0.184255i
\(325\) 12377.4 2.11254
\(326\) 542.073 938.898i 0.0920940 0.159512i
\(327\) 163.658 + 439.925i 0.0276769 + 0.0743973i
\(328\) 1058.96 + 1834.18i 0.178267 + 0.308767i
\(329\) 1385.59 + 2399.91i 0.232188 + 0.402161i
\(330\) 3815.85 + 644.996i 0.636532 + 0.107594i
\(331\) −1768.83 + 3063.70i −0.293726 + 0.508749i −0.974688 0.223570i \(-0.928229\pi\)
0.680961 + 0.732319i \(0.261562\pi\)
\(332\) 3733.12 0.617112
\(333\) −7074.38 + 6109.00i −1.16419 + 1.00532i
\(334\) −6259.23 −1.02542
\(335\) −3959.73 + 6858.45i −0.645800 + 1.11856i
\(336\) 311.061 376.087i 0.0505053 0.0610632i
\(337\) 880.140 + 1524.45i 0.142268 + 0.246415i 0.928350 0.371706i \(-0.121227\pi\)
−0.786082 + 0.618122i \(0.787894\pi\)
\(338\) −92.9040 160.914i −0.0149506 0.0258952i
\(339\) 5466.78 6609.59i 0.875854 1.05895i
\(340\) 670.445 1161.25i 0.106941 0.185228i
\(341\) 2841.32 0.451221
\(342\) −104.863 549.092i −0.0165799 0.0868172i
\(343\) 3824.81 0.602099
\(344\) −1647.56 + 2853.66i −0.258228 + 0.447265i
\(345\) −5077.09 858.185i −0.792294 0.133922i
\(346\) −2518.28 4361.78i −0.391281 0.677719i
\(347\) 802.720 + 1390.35i 0.124185 + 0.215095i 0.921414 0.388582i \(-0.127035\pi\)
−0.797229 + 0.603677i \(0.793702\pi\)
\(348\) −79.0426 212.472i −0.0121757 0.0327290i
\(349\) 3320.94 5752.04i 0.509358 0.882235i −0.490583 0.871395i \(-0.663216\pi\)
0.999941 0.0108400i \(-0.00345056\pi\)
\(350\) 3168.08 0.483831
\(351\) −136.772 6433.99i −0.0207987 0.978407i
\(352\) −599.707 −0.0908083
\(353\) 1528.13 2646.81i 0.230409 0.399080i −0.727520 0.686087i \(-0.759327\pi\)
0.957929 + 0.287007i \(0.0926603\pi\)
\(354\) 192.983 + 518.752i 0.0289744 + 0.0778852i
\(355\) −6436.56 11148.5i −0.962302 1.66676i
\(356\) −737.634 1277.62i −0.109816 0.190207i
\(357\) −507.412 85.7682i −0.0752243 0.0127152i
\(358\) −2331.26 + 4037.85i −0.344164 + 0.596110i
\(359\) −2489.46 −0.365985 −0.182993 0.983114i \(-0.558578\pi\)
−0.182993 + 0.983114i \(0.558578\pi\)
\(360\) 4053.57 + 1410.66i 0.593449 + 0.206523i
\(361\) −6751.83 −0.984376
\(362\) 734.969 1273.00i 0.106710 0.184828i
\(363\) 3244.78 3923.09i 0.469164 0.567242i
\(364\) 538.558 + 932.810i 0.0775497 + 0.134320i
\(365\) −4751.80 8230.36i −0.681427 1.18027i
\(366\) −1946.93 + 2353.93i −0.278053 + 0.336180i
\(367\) −1177.52 + 2039.53i −0.167483 + 0.290089i −0.937534 0.347893i \(-0.886897\pi\)
0.770051 + 0.637982i \(0.220231\pi\)
\(368\) 797.927 0.113029
\(369\) 6750.89 + 2349.34i 0.952405 + 0.331441i
\(370\) 13757.7 1.93305
\(371\) 851.758 1475.29i 0.119194 0.206450i
\(372\) 3107.11 + 525.197i 0.433054 + 0.0731994i
\(373\) 1378.51 + 2387.65i 0.191358 + 0.331443i 0.945701 0.325039i \(-0.105377\pi\)
−0.754342 + 0.656481i \(0.772044\pi\)
\(374\) 316.166 + 547.616i 0.0437127 + 0.0757127i
\(375\) 5214.02 + 14015.6i 0.718002 + 1.93004i
\(376\) 1888.23 3270.50i 0.258984 0.448573i
\(377\) 500.310 0.0683481
\(378\) −35.0078 1646.82i −0.00476350 0.224083i
\(379\) 246.459 0.0334030 0.0167015 0.999861i \(-0.494683\pi\)
0.0167015 + 0.999861i \(0.494683\pi\)
\(380\) −411.402 + 712.570i −0.0555382 + 0.0961949i
\(381\) −3618.85 9727.72i −0.486613 1.30805i
\(382\) 3617.76 + 6266.14i 0.484557 + 0.839276i
\(383\) −325.287 563.414i −0.0433979 0.0751674i 0.843511 0.537113i \(-0.180485\pi\)
−0.886908 + 0.461945i \(0.847152\pi\)
\(384\) −655.805 110.851i −0.0871521 0.0147314i
\(385\) −1093.04 + 1893.20i −0.144692 + 0.250614i
\(386\) −8682.25 −1.14486
\(387\) 2086.14 + 10923.6i 0.274016 + 1.43483i
\(388\) 1096.60 0.143483
\(389\) 5123.08 8873.44i 0.667739 1.15656i −0.310795 0.950477i \(-0.600595\pi\)
0.978535 0.206082i \(-0.0660713\pi\)
\(390\) −6037.07 + 7299.10i −0.783843 + 0.947703i
\(391\) −420.668 728.618i −0.0544094 0.0942399i
\(392\) −1234.15 2137.61i −0.159016 0.275423i
\(393\) 409.479 495.080i 0.0525585 0.0635457i
\(394\) −3286.20 + 5691.86i −0.420194 + 0.727797i
\(395\) −7437.81 −0.947435
\(396\) −1531.89 + 1322.85i −0.194395 + 0.167868i
\(397\) −9453.68 −1.19513 −0.597565 0.801820i \(-0.703865\pi\)
−0.597565 + 0.801820i \(0.703865\pi\)
\(398\) 332.265 575.500i 0.0418466 0.0724804i
\(399\) 311.361 + 52.6296i 0.0390665 + 0.00660345i
\(400\) −2158.67 3738.93i −0.269834 0.467366i
\(401\) −135.361 234.453i −0.0168569 0.0291970i 0.857474 0.514527i \(-0.172033\pi\)
−0.874331 + 0.485330i \(0.838699\pi\)
\(402\) −1444.15 3881.98i −0.179174 0.481631i
\(403\) −3477.24 + 6022.75i −0.429810 + 0.744453i
\(404\) −38.2867 −0.00471494
\(405\) 13466.1 5338.06i 1.65219 0.654939i
\(406\) 128.058 0.0156537
\(407\) −3243.91 + 5618.62i −0.395073 + 0.684286i
\(408\) 244.518 + 657.282i 0.0296702 + 0.0797556i
\(409\) 5793.08 + 10033.9i 0.700366 + 1.21307i 0.968338 + 0.249642i \(0.0803130\pi\)
−0.267972 + 0.963427i \(0.586354\pi\)
\(410\) −5260.51 9111.48i −0.633654 1.09752i
\(411\) 581.030 + 98.2121i 0.0697326 + 0.0117870i
\(412\) −3943.01 + 6829.49i −0.471500 + 0.816662i
\(413\) −312.654 −0.0372511
\(414\) 2038.23 1760.09i 0.241965 0.208946i
\(415\) −18544.7 −2.19354
\(416\) 733.927 1271.20i 0.0864993 0.149821i
\(417\) 1303.49 1575.98i 0.153075 0.185075i
\(418\) −194.008 336.031i −0.0227015 0.0393202i
\(419\) 8066.87 + 13972.2i 0.940554 + 1.62909i 0.764417 + 0.644722i \(0.223027\pi\)
0.176137 + 0.984366i \(0.443640\pi\)
\(420\) −1545.23 + 1868.25i −0.179522 + 0.217051i
\(421\) −2495.96 + 4323.14i −0.288945 + 0.500467i −0.973558 0.228439i \(-0.926638\pi\)
0.684613 + 0.728907i \(0.259971\pi\)
\(422\) 11484.9 1.32483
\(423\) −2390.87 12519.3i −0.274818 1.43903i
\(424\) −2321.49 −0.265900
\(425\) −2276.11 + 3942.33i −0.259782 + 0.449956i
\(426\) 6638.52 + 1122.12i 0.755018 + 0.127621i
\(427\) −862.787 1494.39i −0.0977827 0.169365i
\(428\) −2882.26 4992.22i −0.325512 0.563804i
\(429\) −1557.46 4186.56i −0.175280 0.471163i
\(430\) 8184.43 14175.9i 0.917880 1.58982i
\(431\) 8184.74 0.914722 0.457361 0.889281i \(-0.348795\pi\)
0.457361 + 0.889281i \(0.348795\pi\)
\(432\) −1919.71 + 1163.43i −0.213801 + 0.129573i
\(433\) 8663.17 0.961490 0.480745 0.876860i \(-0.340366\pi\)
0.480745 + 0.876860i \(0.340366\pi\)
\(434\) −890.023 + 1541.56i −0.0984389 + 0.170501i
\(435\) 392.653 + 1055.48i 0.0432787 + 0.116336i
\(436\) 180.665 + 312.920i 0.0198447 + 0.0343719i
\(437\) 258.133 + 447.099i 0.0282567 + 0.0489420i
\(438\) 4900.90 + 828.403i 0.534644 + 0.0903713i
\(439\) 7932.15 13738.9i 0.862371 1.49367i −0.00726314 0.999974i \(-0.502312\pi\)
0.869634 0.493697i \(-0.164355\pi\)
\(440\) 2979.11 0.322781
\(441\) −7867.72 2738.00i −0.849554 0.295649i
\(442\) −1547.71 −0.166554
\(443\) 199.820 346.099i 0.0214306 0.0371189i −0.855111 0.518445i \(-0.826511\pi\)
0.876542 + 0.481326i \(0.159845\pi\)
\(444\) −4585.91 + 5544.58i −0.490175 + 0.592644i
\(445\) 3664.28 + 6346.71i 0.390345 + 0.676097i
\(446\) −2462.61 4265.37i −0.261453 0.452850i
\(447\) −4991.49 + 6034.95i −0.528164 + 0.638575i
\(448\) 187.854 325.372i 0.0198108 0.0343134i
\(449\) 5924.51 0.622706 0.311353 0.950294i \(-0.399218\pi\)
0.311353 + 0.950294i \(0.399218\pi\)
\(450\) −13761.5 4789.08i −1.44161 0.501687i
\(451\) 4961.47 0.518019
\(452\) 3301.45 5718.29i 0.343556 0.595057i
\(453\) 16197.3 + 2737.85i 1.67995 + 0.283963i
\(454\) 2799.34 + 4848.60i 0.289382 + 0.501224i
\(455\) −2675.34 4633.83i −0.275653 0.477445i
\(456\) −150.043 403.325i −0.0154088 0.0414198i
\(457\) 3945.57 6833.93i 0.403864 0.699513i −0.590324 0.807166i \(-0.701000\pi\)
0.994189 + 0.107653i \(0.0343335\pi\)
\(458\) −2825.69 −0.288288
\(459\) 2074.45 + 1139.60i 0.210952 + 0.115886i
\(460\) −3963.79 −0.401766
\(461\) 1631.09 2825.13i 0.164789 0.285422i −0.771792 0.635876i \(-0.780639\pi\)
0.936580 + 0.350453i \(0.113972\pi\)
\(462\) −398.643 1071.58i −0.0401441 0.107910i
\(463\) −1845.20 3195.98i −0.185213 0.320799i 0.758435 0.651749i \(-0.225964\pi\)
−0.943648 + 0.330950i \(0.892631\pi\)
\(464\) −87.2561 151.132i −0.00873010 0.0151210i
\(465\) −15434.9 2608.97i −1.53930 0.260190i
\(466\) 2033.81 3522.67i 0.202177 0.350181i
\(467\) −10193.2 −1.01003 −0.505017 0.863110i \(-0.668514\pi\)
−0.505017 + 0.863110i \(0.668514\pi\)
\(468\) −929.296 4866.06i −0.0917878 0.480628i
\(469\) 2339.69 0.230355
\(470\) −9379.96 + 16246.6i −0.920565 + 1.59446i
\(471\) −4555.66 + 5508.01i −0.445677 + 0.538845i
\(472\) 213.037 + 368.990i 0.0207750 + 0.0359834i
\(473\) 3859.59 + 6685.00i 0.375188 + 0.649845i
\(474\) 2479.27 2997.55i 0.240246 0.290469i
\(475\) 1396.68 2419.12i 0.134914 0.233677i
\(476\) −396.146 −0.0381457
\(477\) −5930.01 + 5120.79i −0.569217 + 0.491541i
\(478\) 1043.22 0.0998240
\(479\) −420.034 + 727.521i −0.0400665 + 0.0693972i −0.885363 0.464900i \(-0.846090\pi\)
0.845297 + 0.534297i \(0.179424\pi\)
\(480\) 3257.78 + 550.665i 0.309785 + 0.0523632i
\(481\) −7939.85 13752.2i −0.752653 1.30363i
\(482\) 5915.65 + 10246.2i 0.559026 + 0.968261i
\(483\) 530.406 + 1425.77i 0.0499675 + 0.134316i
\(484\) 1959.56 3394.06i 0.184031 0.318751i
\(485\) −5447.46 −0.510014
\(486\) −2337.38 + 7206.41i −0.218160 + 0.672612i
\(487\) −3367.28 −0.313319 −0.156659 0.987653i \(-0.550072\pi\)
−0.156659 + 0.987653i \(0.550072\pi\)
\(488\) −1175.77 + 2036.50i −0.109067 + 0.188910i
\(489\) −982.094 2639.94i −0.0908218 0.244135i
\(490\) 6130.78 + 10618.8i 0.565226 + 0.979000i
\(491\) 9434.55 + 16341.1i 0.867160 + 1.50196i 0.864887 + 0.501967i \(0.167390\pi\)
0.00227283 + 0.999997i \(0.499277\pi\)
\(492\) 5425.57 + 917.089i 0.497162 + 0.0840357i
\(493\) −92.0030 + 159.354i −0.00840488 + 0.0145577i
\(494\) 949.713 0.0864972
\(495\) 7609.84 6571.39i 0.690984 0.596691i
\(496\) 2425.78 0.219598
\(497\) −1901.59 + 3293.65i −0.171626 + 0.297264i
\(498\) 6181.55 7473.79i 0.556229 0.672507i
\(499\) 7283.00 + 12614.5i 0.653371 + 1.13167i 0.982300 + 0.187317i \(0.0599791\pi\)
−0.328929 + 0.944355i \(0.606688\pi\)
\(500\) 5755.82 + 9969.37i 0.514816 + 0.891688i
\(501\) −10364.5 + 12531.1i −0.924252 + 1.11746i
\(502\) 710.127 1229.98i 0.0631365 0.109356i
\(503\) −17361.6 −1.53900 −0.769499 0.638648i \(-0.779494\pi\)
−0.769499 + 0.638648i \(0.779494\pi\)
\(504\) −237.860 1245.50i −0.0210220 0.110078i
\(505\) 190.193 0.0167594
\(506\) 934.614 1618.80i 0.0821120 0.142222i
\(507\) −475.991 80.4572i −0.0416953 0.00704779i
\(508\) −3994.90 6919.36i −0.348907 0.604325i
\(509\) −6966.63 12066.6i −0.606661 1.05077i −0.991787 0.127903i \(-0.959175\pi\)
0.385126 0.922864i \(-0.374158\pi\)
\(510\) −1214.67 3265.12i −0.105464 0.283494i
\(511\) −1403.85 + 2431.54i −0.121532 + 0.210499i
\(512\) −512.000 −0.0441942
\(513\) −1272.93 699.286i −0.109554 0.0601837i
\(514\) −12602.0 −1.08142
\(515\) 19587.3 33926.2i 1.67596 2.90285i
\(516\) 2984.95 + 8023.74i 0.254661 + 0.684546i
\(517\) −4423.37 7661.50i −0.376285 0.651745i
\(518\) −2032.26 3519.98i −0.172379 0.298569i
\(519\) −12902.3 2180.89i −1.09123 0.184452i
\(520\) −3645.86 + 6314.81i −0.307464 + 0.532544i
\(521\) 5024.22 0.422486 0.211243 0.977434i \(-0.432249\pi\)
0.211243 + 0.977434i \(0.432249\pi\)
\(522\) −556.258 193.580i −0.0466413 0.0162314i
\(523\) 16008.7 1.33845 0.669226 0.743059i \(-0.266626\pi\)
0.669226 + 0.743059i \(0.266626\pi\)
\(524\) 247.290 428.318i 0.0206162 0.0357083i
\(525\) 5245.92 6342.57i 0.436097 0.527262i
\(526\) −4921.82 8524.83i −0.407987 0.706655i
\(527\) −1278.87 2215.07i −0.105709 0.183093i
\(528\) −993.037 + 1200.63i −0.0818492 + 0.0989595i
\(529\) 4839.97 8383.07i 0.397795 0.689001i
\(530\) 11532.2 0.945148
\(531\) 1358.11 + 472.628i 0.110992 + 0.0386258i
\(532\) 243.086 0.0198103
\(533\) −6071.89 + 10516.8i −0.493438 + 0.854660i
\(534\) −3779.25 638.810i −0.306262 0.0517678i
\(535\) 14317.9 + 24799.4i 1.15704 + 2.00406i
\(536\) −1594.22 2761.27i −0.128470 0.222516i
\(537\) 4223.62 + 11353.4i 0.339409 + 0.912355i
\(538\) −5454.50 + 9447.48i −0.437101 + 0.757081i
\(539\) −5782.27 −0.462078
\(540\) 9536.35 5779.47i 0.759961 0.460572i
\(541\) −10094.1 −0.802179 −0.401089 0.916039i \(-0.631368\pi\)
−0.401089 + 0.916039i \(0.631368\pi\)
\(542\) 2797.10 4844.73i 0.221671 0.383946i
\(543\) −1331.57 3579.35i −0.105236 0.282882i
\(544\) 269.927 + 467.527i 0.0212739 + 0.0368475i
\(545\) −897.471 1554.47i −0.0705384 0.122176i
\(546\) 2759.29 + 466.405i 0.216276 + 0.0365573i
\(547\) 3030.27 5248.58i 0.236865 0.410262i −0.722948 0.690902i \(-0.757213\pi\)
0.959813 + 0.280640i \(0.0905468\pi\)
\(548\) 453.622 0.0353609
\(549\) 1488.76 + 7795.59i 0.115736 + 0.606025i
\(550\) −10113.8 −0.784100
\(551\) 56.4554 97.7837i 0.00436494 0.00756030i
\(552\) 1321.26 1597.47i 0.101878 0.123175i
\(553\) 1098.70 + 1903.00i 0.0844870 + 0.146336i
\(554\) −2145.17 3715.55i −0.164512 0.284943i
\(555\) 22781.0 27543.3i 1.74234 2.10657i
\(556\) 787.195 1363.46i 0.0600441 0.103999i
\(557\) 13688.4 1.04128 0.520642 0.853775i \(-0.325693\pi\)
0.520642 + 0.853775i \(0.325693\pi\)
\(558\) 6196.42 5350.84i 0.470099 0.405949i
\(559\) −18893.6 −1.42954
\(560\) −933.183 + 1616.32i −0.0704182 + 0.121968i
\(561\) 1619.87 + 273.808i 0.121909 + 0.0206064i
\(562\) −5509.77 9543.20i −0.413551 0.716291i
\(563\) −11173.3 19352.8i −0.836411 1.44871i −0.892877 0.450301i \(-0.851317\pi\)
0.0564662 0.998405i \(-0.482017\pi\)
\(564\) −3420.97 9195.80i −0.255406 0.686548i
\(565\) −16400.3 + 28406.2i −1.22118 + 2.11515i
\(566\) −8015.67 −0.595272
\(567\) −3354.95 2656.84i −0.248491 0.196784i
\(568\) 5182.83 0.382864
\(569\) −4058.97 + 7030.34i −0.299052 + 0.517974i −0.975919 0.218131i \(-0.930004\pi\)
0.676867 + 0.736105i \(0.263337\pi\)
\(570\) 745.353 + 2003.56i 0.0547709 + 0.147228i
\(571\) −3491.49 6047.43i −0.255892 0.443217i 0.709246 0.704961i \(-0.249036\pi\)
−0.965137 + 0.261744i \(0.915702\pi\)
\(572\) −1719.30 2977.92i −0.125678 0.217680i
\(573\) 18535.5 + 3133.07i 1.35136 + 0.228422i
\(574\) −1554.14 + 2691.85i −0.113012 + 0.195742i
\(575\) 13456.7 0.975973
\(576\) −1307.85 + 1129.38i −0.0946075 + 0.0816972i
\(577\) 13972.4 1.00811 0.504055 0.863671i \(-0.331841\pi\)
0.504055 + 0.863671i \(0.331841\pi\)
\(578\) −4628.39 + 8016.60i −0.333072 + 0.576898i
\(579\) −14376.7 + 17382.1i −1.03191 + 1.24762i
\(580\) 433.454 + 750.765i 0.0310314 + 0.0537479i
\(581\) 2739.37 + 4744.73i 0.195608 + 0.338803i
\(582\) 1815.82 2195.41i 0.129327 0.156362i
\(583\) −2719.17 + 4709.73i −0.193167 + 0.334575i
\(584\) 3826.23 0.271114
\(585\) 4616.38 + 24172.7i 0.326263 + 1.70841i
\(586\) 11618.5 0.819036
\(587\) 754.756 1307.28i 0.0530701 0.0919200i −0.838270 0.545255i \(-0.816433\pi\)
0.891340 + 0.453335i \(0.149766\pi\)
\(588\) −6323.15 1068.81i −0.443473 0.0749607i
\(589\) 784.750 + 1359.23i 0.0548982 + 0.0950865i
\(590\) −1058.28 1833.00i −0.0738454 0.127904i
\(591\) 5953.73 + 16004.0i 0.414389 + 1.11390i
\(592\) −2769.49 + 4796.89i −0.192272 + 0.333026i
\(593\) −21495.3 −1.48854 −0.744270 0.667879i \(-0.767202\pi\)
−0.744270 + 0.667879i \(0.767202\pi\)
\(594\) 111.759 + 5257.35i 0.00771977 + 0.363151i
\(595\) 1967.90 0.135590
\(596\) −3014.42 + 5221.13i −0.207174 + 0.358836i
\(597\) −601.977 1618.16i −0.0412685 0.110932i
\(598\) 2287.58 + 3962.20i 0.156431 + 0.270947i
\(599\) −5052.44 8751.08i −0.344636 0.596927i 0.640652 0.767832i \(-0.278664\pi\)
−0.985288 + 0.170905i \(0.945331\pi\)
\(600\) −11059.9 1869.46i −0.752531 0.127201i
\(601\) 5504.09 9533.37i 0.373572 0.647045i −0.616540 0.787323i \(-0.711466\pi\)
0.990112 + 0.140278i \(0.0447997\pi\)
\(602\) −4835.94 −0.327406
\(603\) −10163.1 3536.82i −0.686361 0.238857i
\(604\) 12645.6 0.851890
\(605\) −9734.33 + 16860.3i −0.654143 + 1.13301i
\(606\) −63.3978 + 76.6509i −0.00424977 + 0.00513817i
\(607\) −7340.08 12713.4i −0.490815 0.850116i 0.509129 0.860690i \(-0.329967\pi\)
−0.999944 + 0.0105740i \(0.996634\pi\)
\(608\) −165.634 286.887i −0.0110483 0.0191362i
\(609\) 212.047 256.374i 0.0141093 0.0170588i
\(610\) 5840.78 10116.5i 0.387683 0.671486i
\(611\) 21653.4 1.43372
\(612\) 1720.78 + 598.841i 0.113658 + 0.0395534i
\(613\) 235.863 0.0155407 0.00777033 0.999970i \(-0.497527\pi\)
0.00777033 + 0.999970i \(0.497527\pi\)
\(614\) 8688.30 15048.6i 0.571061 0.989106i
\(615\) −26952.1 4555.74i −1.76718 0.298707i
\(616\) −440.067 762.219i −0.0287838 0.0498550i
\(617\) −9156.53 15859.6i −0.597452 1.03482i −0.993196 0.116457i \(-0.962846\pi\)
0.395744 0.918361i \(-0.370487\pi\)
\(618\) 7143.70 + 19202.7i 0.464987 + 1.24992i
\(619\) −3424.73 + 5931.81i −0.222377 + 0.385169i −0.955529 0.294896i \(-0.904715\pi\)
0.733152 + 0.680065i \(0.238048\pi\)
\(620\) −12050.3 −0.780569
\(621\) −148.699 6995.05i −0.00960883 0.452015i
\(622\) −2864.02 −0.184625
\(623\) 1082.56 1875.04i 0.0696175 0.120581i
\(624\) −1329.68 3574.28i −0.0853044 0.229304i
\(625\) −11728.0 20313.6i −0.750594 1.30007i
\(626\) 6614.52 + 11456.7i 0.422315 + 0.731472i
\(627\) −993.994 168.016i −0.0633115 0.0107016i
\(628\) −2751.22 + 4765.26i −0.174818 + 0.302794i
\(629\) 5840.30 0.370220
\(630\) 1181.59 + 6187.17i 0.0747235 + 0.391274i
\(631\) 22464.3 1.41726 0.708629 0.705581i \(-0.249314\pi\)
0.708629 + 0.705581i \(0.249314\pi\)
\(632\) 1497.26 2593.33i 0.0942372 0.163224i
\(633\) 19017.6 22993.1i 1.19412 1.44375i
\(634\) 1424.09 + 2466.60i 0.0892079 + 0.154513i
\(635\) 19845.1 + 34372.7i 1.24020 + 2.14809i
\(636\) −3844.08 + 4647.67i −0.239666 + 0.289768i
\(637\) 7076.39 12256.7i 0.440152 0.762365i
\(638\) −408.814 −0.0253685
\(639\) 13239.0 11432.4i 0.819605 0.707761i
\(640\) 2543.41 0.157090
\(641\) −9444.39 + 16358.2i −0.581952 + 1.00797i 0.413296 + 0.910597i \(0.364377\pi\)
−0.995248 + 0.0973730i \(0.968956\pi\)
\(642\) −14767.2 2496.11i −0.907810 0.153448i
\(643\) −3396.98 5883.74i −0.208342 0.360858i 0.742851 0.669457i \(-0.233473\pi\)
−0.951192 + 0.308599i \(0.900140\pi\)
\(644\) 585.521 + 1014.15i 0.0358273 + 0.0620547i
\(645\) −14828.0 39858.8i −0.905200 2.43324i
\(646\) −174.645 + 302.494i −0.0106367 + 0.0184233i
\(647\) 5277.92 0.320706 0.160353 0.987060i \(-0.448737\pi\)
0.160353 + 0.987060i \(0.448737\pi\)
\(648\) −849.567 + 5769.79i −0.0515033 + 0.349782i
\(649\) 998.122 0.0603694
\(650\) 12377.4 21438.3i 0.746894 1.29366i
\(651\) 1612.49 + 4334.48i 0.0970789 + 0.260955i
\(652\) −1084.15 1877.80i −0.0651203 0.112792i
\(653\) 8282.09 + 14345.0i 0.496330 + 0.859668i 0.999991 0.00423291i \(-0.00134738\pi\)
−0.503661 + 0.863901i \(0.668014\pi\)
\(654\) 925.631 + 156.460i 0.0553441 + 0.00935486i
\(655\) −1228.44 + 2127.72i −0.0732810 + 0.126926i
\(656\) 4235.85 0.252107
\(657\) 9773.73 8439.99i 0.580380 0.501180i
\(658\) 5542.34 0.328363
\(659\) 1650.51 2858.77i 0.0975641 0.168986i −0.813112 0.582108i \(-0.802228\pi\)
0.910676 + 0.413122i \(0.135562\pi\)
\(660\) 4933.02 5964.25i 0.290935 0.351755i
\(661\) −6495.17 11250.0i −0.382198 0.661986i 0.609178 0.793033i \(-0.291499\pi\)
−0.991376 + 0.131047i \(0.958166\pi\)
\(662\) 3537.65 + 6127.39i 0.207696 + 0.359740i
\(663\) −2562.80 + 3098.55i −0.150122 + 0.181505i
\(664\) 3733.12 6465.95i 0.218182 0.377903i
\(665\) −1207.55 −0.0704164
\(666\) 3506.72 + 18362.2i 0.204028 + 1.06835i
\(667\) 543.938 0.0315762
\(668\) −6259.23 + 10841.3i −0.362541 + 0.627939i
\(669\) −12617.1 2132.69i −0.729158 0.123250i
\(670\) 7919.46 + 13716.9i 0.456650 + 0.790940i
\(671\) 2754.38 + 4770.72i 0.158467 + 0.274473i
\(672\) −340.342 914.861i −0.0195371 0.0525171i
\(673\) −9257.15 + 16033.9i −0.530219 + 0.918365i 0.469160 + 0.883113i \(0.344557\pi\)
−0.999378 + 0.0352522i \(0.988777\pi\)
\(674\) 3520.56 0.201197
\(675\) −32375.1 + 19620.8i −1.84610 + 1.11882i
\(676\) −371.616 −0.0211434
\(677\) 3050.00 5282.75i 0.173148 0.299900i −0.766371 0.642398i \(-0.777940\pi\)
0.939519 + 0.342498i \(0.111273\pi\)
\(678\) −5981.37 16078.3i −0.338810 0.910744i
\(679\) 804.687 + 1393.76i 0.0454802 + 0.0787740i
\(680\) −1340.89 2322.49i −0.0756188 0.130976i
\(681\) 14342.3 + 2424.30i 0.807048 + 0.136416i
\(682\) 2841.32 4921.32i 0.159531 0.276315i
\(683\) −22630.0 −1.26781 −0.633905 0.773411i \(-0.718549\pi\)
−0.633905 + 0.773411i \(0.718549\pi\)
\(684\) −1055.92 367.464i −0.0590263 0.0205414i
\(685\) −2253.42 −0.125691
\(686\) 3824.81 6624.76i 0.212874 0.368709i
\(687\) −4678.97 + 5657.10i −0.259846 + 0.314166i
\(688\) 3295.12 + 5707.32i 0.182595 + 0.316264i
\(689\) −6655.48 11527.6i −0.368002 0.637398i
\(690\) −6563.51 + 7935.59i −0.362128 + 0.437830i
\(691\) −11493.4 + 19907.2i −0.632750 + 1.09595i 0.354237 + 0.935156i \(0.384741\pi\)
−0.986987 + 0.160799i \(0.948593\pi\)
\(692\) −10073.1 −0.553355
\(693\) −2805.43 976.302i −0.153780 0.0535161i
\(694\) 3210.88 0.175624
\(695\) −3910.48 + 6773.14i −0.213428 + 0.369669i
\(696\) −447.055 75.5660i −0.0243471 0.00411541i
\(697\) −2233.15 3867.92i −0.121358 0.210198i
\(698\) −6641.89 11504.1i −0.360171 0.623834i
\(699\) −3684.73 9904.81i −0.199384 0.535958i
\(700\) 3168.08 5487.27i 0.171060 0.296285i
\(701\) 27015.5 1.45558 0.727790 0.685800i \(-0.240548\pi\)
0.727790 + 0.685800i \(0.240548\pi\)
\(702\) −11280.8 6197.09i −0.606503 0.333183i
\(703\) −3583.76 −0.192268
\(704\) −599.707 + 1038.72i −0.0321056 + 0.0556085i
\(705\) 16994.0 + 45681.1i 0.907847 + 2.44035i
\(706\) −3056.27 5293.61i −0.162924 0.282192i
\(707\) −28.0949 48.6618i −0.00149451 0.00258857i
\(708\) 1091.49 + 184.495i 0.0579387 + 0.00979343i
\(709\) 9588.67 16608.1i 0.507912 0.879730i −0.492046 0.870569i \(-0.663751\pi\)
0.999958 0.00916077i \(-0.00291601\pi\)
\(710\) −25746.3 −1.36090
\(711\) −1895.83 9927.11i −0.0999988 0.523623i
\(712\) −2950.54 −0.155303
\(713\) −3780.46 + 6547.95i −0.198568 + 0.343931i
\(714\) −655.966 + 793.094i −0.0343822 + 0.0415698i
\(715\) 8540.81 + 14793.1i 0.446725 + 0.773750i
\(716\) 4662.51 + 8075.71i 0.243361 + 0.421513i
\(717\) 1727.44 2088.56i 0.0899755 0.108785i
\(718\) −2489.46 + 4311.87i −0.129395 + 0.224119i
\(719\) 25931.8 1.34505 0.672526 0.740073i \(-0.265209\pi\)
0.672526 + 0.740073i \(0.265209\pi\)
\(720\) 6496.90 5610.32i 0.336285 0.290395i
\(721\) −11573.6 −0.597812
\(722\) −6751.83 + 11694.5i −0.348029 + 0.602805i
\(723\) 30308.7 + 5123.10i 1.55905 + 0.263527i
\(724\) −1469.94 2546.01i −0.0754556 0.130693i
\(725\) −1471.54 2548.78i −0.0753816 0.130565i
\(726\) −3550.21 9543.20i −0.181489 0.487853i
\(727\) −2915.25 + 5049.36i −0.148722 + 0.257594i −0.930755 0.365643i \(-0.880849\pi\)
0.782034 + 0.623236i \(0.214183\pi\)
\(728\) 2154.23 0.109672
\(729\) 10557.0 + 16612.4i 0.536351 + 0.843995i
\(730\) −19007.2 −0.963683
\(731\) 3474.38 6017.81i 0.175793 0.304482i
\(732\) 2130.19 + 5726.11i 0.107560 + 0.289130i
\(733\) 11577.3 + 20052.4i 0.583379 + 1.01044i 0.995075 + 0.0991211i \(0.0316031\pi\)
−0.411696 + 0.911321i \(0.635064\pi\)
\(734\) 2355.05 + 4079.06i 0.118428 + 0.205124i
\(735\) 31410.9 + 5309.41i 1.57634 + 0.266450i
\(736\) 797.927 1382.05i 0.0399619 0.0692161i
\(737\) −7469.26 −0.373316
\(738\) 10820.1 9343.55i 0.539692 0.466044i
\(739\) −27085.8 −1.34827 −0.674133 0.738610i \(-0.735483\pi\)
−0.674133 + 0.738610i \(0.735483\pi\)
\(740\) 13757.7 23829.1i 0.683438 1.18375i
\(741\) 1572.60 1901.35i 0.0779635 0.0942615i
\(742\) −1703.52 2950.58i −0.0842830 0.145983i
\(743\) −16093.8 27875.3i −0.794650 1.37637i −0.923061 0.384653i \(-0.874321\pi\)
0.128412 0.991721i \(-0.459012\pi\)
\(744\) 4016.77 4856.47i 0.197933 0.239310i
\(745\) 14974.5 25936.5i 0.736406 1.27549i
\(746\) 5514.05 0.270622
\(747\) −4726.86 24751.2i −0.231522 1.21232i
\(748\) 1264.66 0.0618191
\(749\) 4230.02 7326.61i 0.206357 0.357421i
\(750\) 29489.8 + 4984.69i 1.43575 + 0.242687i
\(751\) 1366.46 + 2366.78i 0.0663954 + 0.115000i 0.897312 0.441397i \(-0.145517\pi\)
−0.830917 + 0.556397i \(0.812183\pi\)
\(752\) −3776.45 6541.01i −0.183129 0.317189i
\(753\) −1286.56 3458.37i −0.0622642 0.167370i
\(754\) 500.310 866.562i 0.0241647 0.0418545i
\(755\) −62818.3 −3.02807
\(756\) −2887.39 1586.19i −0.138907 0.0763084i
\(757\) −6315.62 −0.303230 −0.151615 0.988440i \(-0.548447\pi\)
−0.151615 + 0.988440i \(0.548447\pi\)
\(758\) 246.459 426.879i 0.0118097 0.0204551i
\(759\) −1693.28 4551.64i −0.0809776 0.217673i
\(760\) 822.805 + 1425.14i 0.0392714 + 0.0680201i
\(761\) −15740.7 27263.6i −0.749801 1.29869i −0.947918 0.318516i \(-0.896816\pi\)
0.198116 0.980179i \(-0.436518\pi\)
\(762\) −20467.8 3459.68i −0.973056 0.164476i
\(763\) −265.145 + 459.244i −0.0125804 + 0.0217900i
\(764\) 14471.0 0.685266
\(765\) −8548.18 2974.81i −0.404000 0.140594i
\(766\) −1301.15 −0.0613739
\(767\) −1221.51 + 2115.72i −0.0575048 + 0.0996012i
\(768\) −847.805 + 1025.04i −0.0398340 + 0.0481612i
\(769\) 13648.3 + 23639.6i 0.640014 + 1.10854i 0.985429 + 0.170087i \(0.0544048\pi\)
−0.345415 +