Properties

Label 18.4.c.b.13.2
Level $18$
Weight $4$
Character 18.13
Analytic conductor $1.062$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 18 = 2 \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 18.c (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.06203438010\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-35})\)
Defining polynomial: \( x^{4} - x^{3} - 8x^{2} - 9x + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 13.2
Root \(-2.31174 + 1.91203i\) of defining polynomial
Character \(\chi\) \(=\) 18.13
Dual form 18.4.c.b.7.2

$q$-expansion

\(f(q)\) \(=\) \(q+(1.00000 + 1.73205i) q^{2} +(3.31174 - 4.00405i) q^{3} +(-2.00000 + 3.46410i) q^{4} +(-5.43521 + 9.41407i) q^{5} +(10.2470 + 1.73205i) q^{6} +(-12.4352 - 21.5384i) q^{7} -8.00000 q^{8} +(-5.06479 - 26.5207i) q^{9} +O(q^{10})\) \(q+(1.00000 + 1.73205i) q^{2} +(3.31174 - 4.00405i) q^{3} +(-2.00000 + 3.46410i) q^{4} +(-5.43521 + 9.41407i) q^{5} +(10.2470 + 1.73205i) q^{6} +(-12.4352 - 21.5384i) q^{7} -8.00000 q^{8} +(-5.06479 - 26.5207i) q^{9} -21.7409 q^{10} +(21.3704 + 37.0147i) q^{11} +(7.24695 + 19.4803i) q^{12} +(-7.56479 + 13.1026i) q^{13} +(24.8704 - 43.0768i) q^{14} +(19.6944 + 52.9398i) q^{15} +(-8.00000 - 13.8564i) q^{16} -13.8704 q^{17} +(40.8704 - 35.2932i) q^{18} +143.352 q^{19} +(-21.7409 - 37.6563i) q^{20} +(-127.423 - 21.5384i) q^{21} +(-42.7409 + 74.0293i) q^{22} +(-9.56479 + 16.5667i) q^{23} +(-26.4939 + 32.0324i) q^{24} +(3.41692 + 5.91828i) q^{25} -30.2591 q^{26} +(-122.963 - 67.5500i) q^{27} +99.4817 q^{28} +(-113.046 - 195.802i) q^{29} +(-72.0000 + 87.0514i) q^{30} +(-29.6944 + 51.4321i) q^{31} +(16.0000 - 27.7128i) q^{32} +(218.982 + 37.0147i) q^{33} +(-13.8704 - 24.0243i) q^{34} +270.352 q^{35} +(102.000 + 35.4965i) q^{36} -84.1860 q^{37} +(143.352 + 248.293i) q^{38} +(27.4108 + 73.6821i) q^{39} +(43.4817 - 75.3125i) q^{40} +(-101.630 + 176.028i) q^{41} +(-90.1174 - 242.242i) q^{42} +(-162.945 - 282.229i) q^{43} -170.963 q^{44} +(277.196 + 96.4655i) q^{45} -38.2591 q^{46} +(-5.47180 - 9.47744i) q^{47} +(-81.9756 - 13.8564i) q^{48} +(-137.769 + 238.623i) q^{49} +(-6.83384 + 11.8366i) q^{50} +(-45.9352 + 55.5378i) q^{51} +(-30.2591 - 52.4104i) q^{52} -140.186 q^{53} +(-5.96341 - 280.529i) q^{54} -464.611 q^{55} +(99.4817 + 172.307i) q^{56} +(474.745 - 573.989i) q^{57} +(226.093 - 391.605i) q^{58} +(-57.3704 + 99.3685i) q^{59} +(-222.777 - 37.6563i) q^{60} +(377.528 + 653.898i) q^{61} -118.777 q^{62} +(-508.232 + 438.878i) q^{63} +64.0000 q^{64} +(-82.2325 - 142.431i) q^{65} +(154.870 + 416.302i) q^{66} +(383.723 - 664.627i) q^{67} +(27.7409 - 48.0486i) q^{68} +(34.6578 + 93.1624i) q^{69} +(270.352 + 468.264i) q^{70} +335.854 q^{71} +(40.5183 + 212.166i) q^{72} +167.279 q^{73} +(-84.1860 - 145.814i) q^{74} +(35.0130 + 5.91828i) q^{75} +(-286.704 + 496.586i) q^{76} +(531.492 - 920.570i) q^{77} +(-100.210 + 121.159i) q^{78} +(12.6578 + 21.9239i) q^{79} +173.927 q^{80} +(-677.696 + 268.643i) q^{81} -406.518 q^{82} +(-143.861 - 249.174i) q^{83} +(329.457 - 398.329i) q^{84} +(75.3887 - 130.577i) q^{85} +(325.890 - 564.458i) q^{86} +(-1158.38 - 195.802i) q^{87} +(-170.963 - 296.117i) q^{88} -860.817 q^{89} +(110.113 + 576.583i) q^{90} +376.279 q^{91} +(-38.2591 - 66.2668i) q^{92} +(107.597 + 289.227i) q^{93} +(10.9436 - 18.9549i) q^{94} +(-779.149 + 1349.53i) q^{95} +(-57.9756 - 155.842i) q^{96} +(201.075 + 348.272i) q^{97} -551.076 q^{98} +(873.418 - 754.230i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 3 q^{3} - 8 q^{4} + 9 q^{5} - 19 q^{7} - 32 q^{8} - 51 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{2} + 3 q^{3} - 8 q^{4} + 9 q^{5} - 19 q^{7} - 32 q^{8} - 51 q^{9} + 36 q^{10} + 24 q^{11} - 12 q^{12} - 61 q^{13} + 38 q^{14} + 171 q^{15} - 32 q^{16} + 6 q^{17} + 102 q^{18} + 266 q^{19} + 36 q^{20} - 315 q^{21} - 48 q^{22} - 69 q^{23} - 24 q^{24} - 263 q^{25} - 244 q^{26} + 152 q^{28} - 237 q^{29} - 288 q^{30} - 211 q^{31} + 64 q^{32} + 630 q^{33} + 6 q^{34} + 774 q^{35} + 408 q^{36} + 524 q^{37} + 266 q^{38} - 249 q^{39} - 72 q^{40} - 468 q^{41} - 258 q^{42} + 86 q^{43} - 192 q^{44} - 459 q^{45} - 276 q^{46} - 483 q^{47} + 33 q^{49} + 526 q^{50} - 153 q^{51} - 244 q^{52} + 300 q^{53} + 468 q^{54} - 1674 q^{55} + 152 q^{56} + 987 q^{57} + 474 q^{58} - 168 q^{59} - 1260 q^{60} + 1049 q^{61} - 844 q^{62} - 957 q^{63} + 256 q^{64} + 747 q^{65} + 558 q^{66} + 1166 q^{67} - 12 q^{68} - 261 q^{69} + 774 q^{70} - 624 q^{71} + 408 q^{72} - 622 q^{73} + 524 q^{74} + 2835 q^{75} - 532 q^{76} + 1173 q^{77} + 132 q^{78} - 349 q^{79} - 288 q^{80} - 1143 q^{81} - 1872 q^{82} - 1221 q^{83} + 744 q^{84} + 486 q^{85} - 172 q^{86} - 2205 q^{87} - 192 q^{88} - 984 q^{89} - 1404 q^{90} + 214 q^{91} - 276 q^{92} - 789 q^{93} + 966 q^{94} - 1764 q^{95} + 96 q^{96} + 128 q^{97} + 132 q^{98} + 1557 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/18\mathbb{Z}\right)^\times\).

\(n\) \(11\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
<
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 + 1.73205i 0.353553 + 0.612372i
\(3\) 3.31174 4.00405i 0.637344 0.770579i
\(4\) −2.00000 + 3.46410i −0.250000 + 0.433013i
\(5\) −5.43521 + 9.41407i −0.486140 + 0.842020i −0.999873 0.0159306i \(-0.994929\pi\)
0.513733 + 0.857950i \(0.328262\pi\)
\(6\) 10.2470 + 1.73205i 0.697217 + 0.117851i
\(7\) −12.4352 21.5384i −0.671438 1.16297i −0.977496 0.210953i \(-0.932343\pi\)
0.306058 0.952013i \(-0.400990\pi\)
\(8\) −8.00000 −0.353553
\(9\) −5.06479 26.5207i −0.187585 0.982248i
\(10\) −21.7409 −0.687506
\(11\) 21.3704 + 37.0147i 0.585766 + 1.01458i 0.994779 + 0.102048i \(0.0325396\pi\)
−0.409013 + 0.912528i \(0.634127\pi\)
\(12\) 7.24695 + 19.4803i 0.174335 + 0.468623i
\(13\) −7.56479 + 13.1026i −0.161392 + 0.279539i −0.935368 0.353676i \(-0.884932\pi\)
0.773976 + 0.633215i \(0.218265\pi\)
\(14\) 24.8704 43.0768i 0.474779 0.822341i
\(15\) 19.6944 + 52.9398i 0.339004 + 0.911266i
\(16\) −8.00000 13.8564i −0.125000 0.216506i
\(17\) −13.8704 −0.197887 −0.0989433 0.995093i \(-0.531546\pi\)
−0.0989433 + 0.995093i \(0.531546\pi\)
\(18\) 40.8704 35.2932i 0.535181 0.462149i
\(19\) 143.352 1.73091 0.865454 0.500989i \(-0.167030\pi\)
0.865454 + 0.500989i \(0.167030\pi\)
\(20\) −21.7409 37.6563i −0.243070 0.421010i
\(21\) −127.423 21.5384i −1.32409 0.223813i
\(22\) −42.7409 + 74.0293i −0.414199 + 0.717414i
\(23\) −9.56479 + 16.5667i −0.0867129 + 0.150191i −0.906120 0.423021i \(-0.860970\pi\)
0.819407 + 0.573212i \(0.194303\pi\)
\(24\) −26.4939 + 32.0324i −0.225335 + 0.272441i
\(25\) 3.41692 + 5.91828i 0.0273353 + 0.0473462i
\(26\) −30.2591 −0.228243
\(27\) −122.963 67.5500i −0.876456 0.481481i
\(28\) 99.4817 0.671438
\(29\) −113.046 195.802i −0.723869 1.25378i −0.959438 0.281920i \(-0.909029\pi\)
0.235569 0.971858i \(-0.424305\pi\)
\(30\) −72.0000 + 87.0514i −0.438178 + 0.529778i
\(31\) −29.6944 + 51.4321i −0.172041 + 0.297983i −0.939133 0.343553i \(-0.888369\pi\)
0.767092 + 0.641537i \(0.221703\pi\)
\(32\) 16.0000 27.7128i 0.0883883 0.153093i
\(33\) 218.982 + 37.0147i 1.15515 + 0.195255i
\(34\) −13.8704 24.0243i −0.0699635 0.121180i
\(35\) 270.352 1.30565
\(36\) 102.000 + 35.4965i 0.472222 + 0.164336i
\(37\) −84.1860 −0.374056 −0.187028 0.982355i \(-0.559886\pi\)
−0.187028 + 0.982355i \(0.559886\pi\)
\(38\) 143.352 + 248.293i 0.611968 + 1.05996i
\(39\) 27.4108 + 73.6821i 0.112545 + 0.302528i
\(40\) 43.4817 75.3125i 0.171877 0.297699i
\(41\) −101.630 + 176.028i −0.387119 + 0.670510i −0.992061 0.125760i \(-0.959863\pi\)
0.604942 + 0.796270i \(0.293196\pi\)
\(42\) −90.1174 242.242i −0.331081 0.889969i
\(43\) −162.945 282.229i −0.577881 1.00092i −0.995722 0.0923995i \(-0.970546\pi\)
0.417841 0.908520i \(-0.362787\pi\)
\(44\) −170.963 −0.585766
\(45\) 277.196 + 96.4655i 0.918265 + 0.319560i
\(46\) −38.2591 −0.122631
\(47\) −5.47180 9.47744i −0.0169818 0.0294133i 0.857410 0.514635i \(-0.172072\pi\)
−0.874391 + 0.485221i \(0.838739\pi\)
\(48\) −81.9756 13.8564i −0.246503 0.0416667i
\(49\) −137.769 + 238.623i −0.401659 + 0.695694i
\(50\) −6.83384 + 11.8366i −0.0193290 + 0.0334788i
\(51\) −45.9352 + 55.5378i −0.126122 + 0.152487i
\(52\) −30.2591 52.4104i −0.0806959 0.139769i
\(53\) −140.186 −0.363321 −0.181661 0.983361i \(-0.558147\pi\)
−0.181661 + 0.983361i \(0.558147\pi\)
\(54\) −5.96341 280.529i −0.0150281 0.706947i
\(55\) −464.611 −1.13906
\(56\) 99.4817 + 172.307i 0.237389 + 0.411170i
\(57\) 474.745 573.989i 1.10318 1.33380i
\(58\) 226.093 391.605i 0.511853 0.886555i
\(59\) −57.3704 + 99.3685i −0.126593 + 0.219266i −0.922355 0.386345i \(-0.873738\pi\)
0.795761 + 0.605610i \(0.207071\pi\)
\(60\) −222.777 37.6563i −0.479341 0.0810234i
\(61\) 377.528 + 653.898i 0.792419 + 1.37251i 0.924465 + 0.381266i \(0.124512\pi\)
−0.132047 + 0.991243i \(0.542155\pi\)
\(62\) −118.777 −0.243302
\(63\) −508.232 + 438.878i −1.01637 + 0.877674i
\(64\) 64.0000 0.125000
\(65\) −82.2325 142.431i −0.156918 0.271790i
\(66\) 154.870 + 416.302i 0.288837 + 0.776413i
\(67\) 383.723 664.627i 0.699689 1.21190i −0.268885 0.963172i \(-0.586655\pi\)
0.968574 0.248725i \(-0.0800115\pi\)
\(68\) 27.7409 48.0486i 0.0494717 0.0856874i
\(69\) 34.6578 + 93.1624i 0.0604682 + 0.162543i
\(70\) 270.352 + 468.264i 0.461618 + 0.799546i
\(71\) 335.854 0.561387 0.280694 0.959797i \(-0.409436\pi\)
0.280694 + 0.959797i \(0.409436\pi\)
\(72\) 40.5183 + 212.166i 0.0663212 + 0.347277i
\(73\) 167.279 0.268199 0.134099 0.990968i \(-0.457186\pi\)
0.134099 + 0.990968i \(0.457186\pi\)
\(74\) −84.1860 145.814i −0.132249 0.229062i
\(75\) 35.0130 + 5.91828i 0.0539060 + 0.00911178i
\(76\) −286.704 + 496.586i −0.432727 + 0.749505i
\(77\) 531.492 920.570i 0.786612 1.36245i
\(78\) −100.210 + 121.159i −0.145469 + 0.175879i
\(79\) 12.6578 + 21.9239i 0.0180267 + 0.0312232i 0.874898 0.484307i \(-0.160928\pi\)
−0.856871 + 0.515530i \(0.827595\pi\)
\(80\) 173.927 0.243070
\(81\) −677.696 + 268.643i −0.929624 + 0.368510i
\(82\) −406.518 −0.547469
\(83\) −143.861 249.174i −0.190250 0.329523i 0.755083 0.655629i \(-0.227597\pi\)
−0.945333 + 0.326107i \(0.894263\pi\)
\(84\) 329.457 398.329i 0.427937 0.517396i
\(85\) 75.3887 130.577i 0.0962006 0.166624i
\(86\) 325.890 564.458i 0.408624 0.707757i
\(87\) −1158.38 195.802i −1.42749 0.241290i
\(88\) −170.963 296.117i −0.207100 0.358707i
\(89\) −860.817 −1.02524 −0.512620 0.858615i \(-0.671325\pi\)
−0.512620 + 0.858615i \(0.671325\pi\)
\(90\) 110.113 + 576.583i 0.128966 + 0.675302i
\(91\) 376.279 0.433459
\(92\) −38.2591 66.2668i −0.0433564 0.0750955i
\(93\) 107.597 + 289.227i 0.119971 + 0.322489i
\(94\) 10.9436 18.9549i 0.0120079 0.0207984i
\(95\) −779.149 + 1349.53i −0.841464 + 1.45746i
\(96\) −57.9756 155.842i −0.0616366 0.165683i
\(97\) 201.075 + 348.272i 0.210475 + 0.364553i 0.951863 0.306523i \(-0.0991657\pi\)
−0.741389 + 0.671076i \(0.765832\pi\)
\(98\) −551.076 −0.568032
\(99\) 873.418 754.230i 0.886685 0.765687i
\(100\) −27.3353 −0.0273353
\(101\) 665.714 + 1153.05i 0.655852 + 1.13597i 0.981680 + 0.190540i \(0.0610237\pi\)
−0.325828 + 0.945429i \(0.605643\pi\)
\(102\) −142.130 24.0243i −0.137970 0.0233212i
\(103\) 259.252 449.038i 0.248009 0.429563i −0.714965 0.699161i \(-0.753557\pi\)
0.962973 + 0.269597i \(0.0868905\pi\)
\(104\) 60.5183 104.821i 0.0570606 0.0988319i
\(105\) 895.335 1082.50i 0.832150 1.00611i
\(106\) −140.186 242.809i −0.128453 0.222488i
\(107\) 1471.87 1.32982 0.664912 0.746922i \(-0.268469\pi\)
0.664912 + 0.746922i \(0.268469\pi\)
\(108\) 479.927 290.858i 0.427602 0.259146i
\(109\) −643.668 −0.565616 −0.282808 0.959176i \(-0.591266\pi\)
−0.282808 + 0.959176i \(0.591266\pi\)
\(110\) −464.611 804.730i −0.402718 0.697528i
\(111\) −278.802 + 337.085i −0.238403 + 0.288240i
\(112\) −198.963 + 344.615i −0.167860 + 0.290741i
\(113\) −511.864 + 886.574i −0.426125 + 0.738069i −0.996525 0.0832976i \(-0.973455\pi\)
0.570400 + 0.821367i \(0.306788\pi\)
\(114\) 1468.92 + 248.293i 1.20682 + 0.203989i
\(115\) −103.973 180.087i −0.0843092 0.146028i
\(116\) 904.372 0.723869
\(117\) 385.804 + 134.262i 0.304851 + 0.106090i
\(118\) −229.482 −0.179030
\(119\) 172.482 + 298.747i 0.132869 + 0.230135i
\(120\) −157.555 423.518i −0.119856 0.322181i
\(121\) −247.890 + 429.358i −0.186244 + 0.322583i
\(122\) −755.056 + 1307.80i −0.560325 + 0.970511i
\(123\) 368.252 + 989.887i 0.269953 + 0.725651i
\(124\) −118.777 205.729i −0.0860204 0.148992i
\(125\) −1433.09 −1.02544
\(126\) −1268.39 441.406i −0.896804 0.312092i
\(127\) −31.4481 −0.0219730 −0.0109865 0.999940i \(-0.503497\pi\)
−0.0109865 + 0.999940i \(0.503497\pi\)
\(128\) 64.0000 + 110.851i 0.0441942 + 0.0765466i
\(129\) −1669.69 282.229i −1.13960 0.192627i
\(130\) 164.465 284.862i 0.110958 0.192185i
\(131\) 968.678 1677.80i 0.646059 1.11901i −0.337997 0.941147i \(-0.609749\pi\)
0.984056 0.177860i \(-0.0569174\pi\)
\(132\) −566.186 + 684.546i −0.373335 + 0.451379i
\(133\) −1782.61 3087.58i −1.16220 2.01299i
\(134\) 1534.89 0.989510
\(135\) 1304.25 790.437i 0.831497 0.503926i
\(136\) 110.963 0.0699635
\(137\) −579.297 1003.37i −0.361261 0.625722i 0.626908 0.779093i \(-0.284320\pi\)
−0.988169 + 0.153372i \(0.950987\pi\)
\(138\) −126.704 + 153.191i −0.0781578 + 0.0944965i
\(139\) −1155.80 + 2001.90i −0.705277 + 1.22158i 0.261314 + 0.965254i \(0.415844\pi\)
−0.966591 + 0.256323i \(0.917489\pi\)
\(140\) −540.704 + 936.527i −0.326413 + 0.565364i
\(141\) −56.0693 9.47744i −0.0334886 0.00566060i
\(142\) 335.854 + 581.716i 0.198480 + 0.343778i
\(143\) −646.651 −0.378151
\(144\) −326.963 + 282.345i −0.189215 + 0.163394i
\(145\) 2457.73 1.40761
\(146\) 167.279 + 289.736i 0.0948226 + 0.164238i
\(147\) 499.203 + 1341.89i 0.280092 + 0.752907i
\(148\) 168.372 291.629i 0.0935141 0.161971i
\(149\) 1475.11 2554.96i 0.811043 1.40477i −0.101092 0.994877i \(-0.532234\pi\)
0.912135 0.409890i \(-0.134433\pi\)
\(150\) 24.7622 + 66.5625i 0.0134789 + 0.0362321i
\(151\) 863.199 + 1495.10i 0.465206 + 0.805761i 0.999211 0.0397208i \(-0.0126469\pi\)
−0.534005 + 0.845482i \(0.679314\pi\)
\(152\) −1146.82 −0.611968
\(153\) 70.2508 + 367.854i 0.0371205 + 0.194374i
\(154\) 2125.97 1.11244
\(155\) −322.790 559.089i −0.167272 0.289723i
\(156\) −310.064 52.4104i −0.159135 0.0268986i
\(157\) −641.694 + 1111.45i −0.326196 + 0.564988i −0.981754 0.190157i \(-0.939100\pi\)
0.655558 + 0.755145i \(0.272434\pi\)
\(158\) −25.3155 + 43.8478i −0.0127468 + 0.0220781i
\(159\) −464.259 + 561.311i −0.231561 + 0.279968i
\(160\) 173.927 + 301.250i 0.0859383 + 0.148849i
\(161\) 475.761 0.232889
\(162\) −1143.00 905.160i −0.554337 0.438988i
\(163\) 1033.93 0.496831 0.248415 0.968654i \(-0.420090\pi\)
0.248415 + 0.968654i \(0.420090\pi\)
\(164\) −406.518 704.110i −0.193559 0.335255i
\(165\) −1538.67 + 1860.33i −0.725972 + 0.877734i
\(166\) 287.721 498.347i 0.134527 0.233008i
\(167\) 141.309 244.754i 0.0654778 0.113411i −0.831428 0.555632i \(-0.812476\pi\)
0.896906 + 0.442222i \(0.145810\pi\)
\(168\) 1019.38 + 172.307i 0.468138 + 0.0791298i
\(169\) 984.048 + 1704.42i 0.447905 + 0.775795i
\(170\) 301.555 0.136048
\(171\) −726.048 3801.80i −0.324692 1.70018i
\(172\) 1303.56 0.577881
\(173\) 1766.36 + 3059.43i 0.776266 + 1.34453i 0.934080 + 0.357063i \(0.116222\pi\)
−0.157814 + 0.987469i \(0.550445\pi\)
\(174\) −819.242 2202.18i −0.356934 0.959464i
\(175\) 84.9802 147.190i 0.0367080 0.0635801i
\(176\) 341.927 592.235i 0.146441 0.253644i
\(177\) 207.880 + 558.796i 0.0882782 + 0.237298i
\(178\) −860.817 1490.98i −0.362477 0.627829i
\(179\) −4052.74 −1.69227 −0.846135 0.532969i \(-0.821076\pi\)
−0.846135 + 0.532969i \(0.821076\pi\)
\(180\) −888.558 + 767.304i −0.367940 + 0.317730i
\(181\) −2830.97 −1.16257 −0.581283 0.813702i \(-0.697449\pi\)
−0.581283 + 0.813702i \(0.697449\pi\)
\(182\) 376.279 + 651.734i 0.153251 + 0.265438i
\(183\) 3868.51 + 653.898i 1.56267 + 0.264140i
\(184\) 76.5183 132.534i 0.0306576 0.0531006i
\(185\) 457.569 792.532i 0.181844 0.314963i
\(186\) −393.360 + 475.590i −0.155067 + 0.187484i
\(187\) −296.417 513.409i −0.115915 0.200771i
\(188\) 43.7744 0.0169818
\(189\) 74.1563 + 3488.44i 0.0285401 + 1.34257i
\(190\) −3116.60 −1.19001
\(191\) −2254.62 3905.12i −0.854129 1.47940i −0.877451 0.479667i \(-0.840757\pi\)
0.0233215 0.999728i \(-0.492576\pi\)
\(192\) 211.951 256.259i 0.0796680 0.0963224i
\(193\) 1610.56 2789.58i 0.600678 1.04040i −0.392041 0.919948i \(-0.628231\pi\)
0.992719 0.120457i \(-0.0384359\pi\)
\(194\) −402.149 + 696.543i −0.148828 + 0.257778i
\(195\) −842.632 142.431i −0.309447 0.0523061i
\(196\) −551.076 954.492i −0.200830 0.347847i
\(197\) 3784.20 1.36859 0.684297 0.729204i \(-0.260109\pi\)
0.684297 + 0.729204i \(0.260109\pi\)
\(198\) 2179.78 + 758.575i 0.782376 + 0.272271i
\(199\) −2926.27 −1.04240 −0.521200 0.853435i \(-0.674515\pi\)
−0.521200 + 0.853435i \(0.674515\pi\)
\(200\) −27.3353 47.3462i −0.00966450 0.0167394i
\(201\) −1390.41 3737.51i −0.487920 1.31156i
\(202\) −1331.43 + 2306.10i −0.463757 + 0.803251i
\(203\) −2811.51 + 4869.69i −0.972067 + 1.68367i
\(204\) −100.518 270.200i −0.0344985 0.0927342i
\(205\) −1104.76 1913.49i −0.376388 0.651923i
\(206\) 1037.01 0.350737
\(207\) 487.804 + 169.758i 0.163791 + 0.0570000i
\(208\) 242.073 0.0806959
\(209\) 3063.50 + 5306.13i 1.01391 + 1.75614i
\(210\) 2770.28 + 468.264i 0.910323 + 0.153873i
\(211\) −156.737 + 271.476i −0.0511385 + 0.0885744i −0.890462 0.455059i \(-0.849618\pi\)
0.839323 + 0.543633i \(0.182952\pi\)
\(212\) 280.372 485.618i 0.0908303 0.157323i
\(213\) 1112.26 1344.77i 0.357797 0.432593i
\(214\) 1471.87 + 2549.35i 0.470164 + 0.814347i
\(215\) 3542.57 1.12373
\(216\) 983.707 + 540.400i 0.309874 + 0.170229i
\(217\) 1477.02 0.462059
\(218\) −643.668 1114.87i −0.199976 0.346368i
\(219\) 553.984 669.793i 0.170935 0.206669i
\(220\) 929.223 1609.46i 0.284764 0.493226i
\(221\) 104.927 181.739i 0.0319373 0.0553170i
\(222\) −862.649 145.814i −0.260798 0.0440830i
\(223\) 355.193 + 615.212i 0.106661 + 0.184743i 0.914416 0.404776i \(-0.132651\pi\)
−0.807754 + 0.589519i \(0.799317\pi\)
\(224\) −795.854 −0.237389
\(225\) 139.651 120.594i 0.0413780 0.0357315i
\(226\) −2047.45 −0.602631
\(227\) −16.3308 28.2858i −0.00477496 0.00827046i 0.863628 0.504130i \(-0.168187\pi\)
−0.868403 + 0.495859i \(0.834853\pi\)
\(228\) 1038.87 + 2792.54i 0.301757 + 0.811143i
\(229\) 2751.92 4766.47i 0.794114 1.37545i −0.129286 0.991607i \(-0.541268\pi\)
0.923400 0.383839i \(-0.125398\pi\)
\(230\) 207.947 360.174i 0.0596156 0.103257i
\(231\) −1925.85 5176.81i −0.548534 1.47450i
\(232\) 904.372 + 1566.42i 0.255926 + 0.443278i
\(233\) −6788.81 −1.90880 −0.954399 0.298534i \(-0.903502\pi\)
−0.954399 + 0.298534i \(0.903502\pi\)
\(234\) 153.256 + 802.494i 0.0428148 + 0.224191i
\(235\) 118.962 0.0330221
\(236\) −229.482 397.474i −0.0632966 0.109633i
\(237\) 129.704 + 21.9239i 0.0355492 + 0.00600890i
\(238\) −344.963 + 597.494i −0.0939523 + 0.162730i
\(239\) 214.694 371.862i 0.0581064 0.100643i −0.835509 0.549477i \(-0.814827\pi\)
0.893615 + 0.448834i \(0.148160\pi\)
\(240\) 576.000 696.411i 0.154919 0.187305i
\(241\) 2421.82 + 4194.72i 0.647317 + 1.12119i 0.983761 + 0.179483i \(0.0574424\pi\)
−0.336444 + 0.941703i \(0.609224\pi\)
\(242\) −991.561 −0.263388
\(243\) −1168.69 + 3603.20i −0.308525 + 0.951216i
\(244\) −3020.23 −0.792419
\(245\) −1497.61 2593.93i −0.390525 0.676410i
\(246\) −1346.28 + 1627.72i −0.348926 + 0.421868i
\(247\) −1084.43 + 1878.28i −0.279354 + 0.483856i
\(248\) 237.555 411.457i 0.0608256 0.105353i
\(249\) −1474.13 249.174i −0.375178 0.0634166i
\(250\) −1433.09 2482.18i −0.362546 0.627949i
\(251\) 2400.87 0.603752 0.301876 0.953347i \(-0.402387\pi\)
0.301876 + 0.953347i \(0.402387\pi\)
\(252\) −503.854 2638.33i −0.125952 0.659519i
\(253\) −817.614 −0.203174
\(254\) −31.4481 54.4698i −0.00776863 0.0134557i
\(255\) −273.169 734.297i −0.0670844 0.180327i
\(256\) −128.000 + 221.703i −0.0312500 + 0.0541266i
\(257\) −1490.50 + 2581.62i −0.361769 + 0.626602i −0.988252 0.152833i \(-0.951160\pi\)
0.626483 + 0.779435i \(0.284494\pi\)
\(258\) −1180.86 3174.22i −0.284949 0.765962i
\(259\) 1046.87 + 1813.23i 0.251156 + 0.435015i
\(260\) 657.860 0.156918
\(261\) −4620.26 + 3989.77i −1.09573 + 0.946209i
\(262\) 3874.71 0.913666
\(263\) −2780.41 4815.81i −0.651891 1.12911i −0.982664 0.185398i \(-0.940643\pi\)
0.330773 0.943710i \(-0.392691\pi\)
\(264\) −1751.85 296.117i −0.408406 0.0690332i
\(265\) 761.941 1319.72i 0.176625 0.305924i
\(266\) 3565.23 6175.16i 0.821798 1.42340i
\(267\) −2850.80 + 3446.75i −0.653431 + 0.790029i
\(268\) 1534.89 + 2658.51i 0.349845 + 0.605949i
\(269\) 6288.50 1.42534 0.712671 0.701499i \(-0.247485\pi\)
0.712671 + 0.701499i \(0.247485\pi\)
\(270\) 2673.33 + 1468.59i 0.602569 + 0.331021i
\(271\) 6854.90 1.53655 0.768275 0.640119i \(-0.221115\pi\)
0.768275 + 0.640119i \(0.221115\pi\)
\(272\) 110.963 + 192.194i 0.0247358 + 0.0428437i
\(273\) 1246.14 1506.64i 0.276262 0.334014i
\(274\) 1158.59 2006.74i 0.255450 0.442452i
\(275\) −146.042 + 252.952i −0.0320242 + 0.0554676i
\(276\) −392.040 66.2668i −0.0855000 0.0144521i
\(277\) −449.086 777.840i −0.0974114 0.168722i 0.813201 0.581983i \(-0.197723\pi\)
−0.910612 + 0.413261i \(0.864390\pi\)
\(278\) −4623.20 −0.997413
\(279\) 1514.41 + 527.023i 0.324966 + 0.113090i
\(280\) −2162.82 −0.461618
\(281\) −119.385 206.781i −0.0253448 0.0438986i 0.853075 0.521789i \(-0.174735\pi\)
−0.878420 + 0.477890i \(0.841402\pi\)
\(282\) −39.6539 106.592i −0.00837360 0.0225088i
\(283\) −1035.58 + 1793.68i −0.217523 + 0.376760i −0.954050 0.299647i \(-0.903131\pi\)
0.736527 + 0.676408i \(0.236464\pi\)
\(284\) −671.707 + 1163.43i −0.140347 + 0.243088i
\(285\) 2823.23 + 7589.03i 0.586785 + 1.57732i
\(286\) −646.651 1120.03i −0.133697 0.231570i
\(287\) 5055.14 1.03971
\(288\) −816.000 283.972i −0.166956 0.0581014i
\(289\) −4720.61 −0.960841
\(290\) 2457.73 + 4256.91i 0.497664 + 0.861980i
\(291\) 2060.40 + 348.272i 0.415062 + 0.0701582i
\(292\) −334.558 + 579.471i −0.0670497 + 0.116134i
\(293\) 3288.88 5696.51i 0.655763 1.13581i −0.325939 0.945391i \(-0.605681\pi\)
0.981702 0.190423i \(-0.0609861\pi\)
\(294\) −1825.02 + 2206.54i −0.362032 + 0.437713i
\(295\) −623.641 1080.18i −0.123084 0.213188i
\(296\) 673.488 0.132249
\(297\) −127.441 5995.02i −0.0248985 1.17127i
\(298\) 5900.42 1.14699
\(299\) −144.711 250.647i −0.0279895 0.0484792i
\(300\) −90.5275 + 109.452i −0.0174220 + 0.0210640i
\(301\) −4052.51 + 7019.16i −0.776023 + 1.34411i
\(302\) −1726.40 + 2990.21i −0.328950 + 0.569759i
\(303\) 6821.54 + 1153.05i 1.29336 + 0.218617i
\(304\) −1146.82 1986.35i −0.216363 0.374752i
\(305\) −8207.78 −1.54091
\(306\) −566.890 + 489.531i −0.105905 + 0.0914531i
\(307\) −5237.30 −0.973644 −0.486822 0.873501i \(-0.661844\pi\)
−0.486822 + 0.873501i \(0.661844\pi\)
\(308\) 2125.97 + 3682.28i 0.393306 + 0.681226i
\(309\) −939.394 2525.15i −0.172946 0.464890i
\(310\) 645.581 1118.18i 0.118279 0.204865i
\(311\) −2852.49 + 4940.67i −0.520097 + 0.900834i 0.479630 + 0.877471i \(0.340771\pi\)
−0.999727 + 0.0233635i \(0.992562\pi\)
\(312\) −219.287 589.457i −0.0397906 0.106960i
\(313\) −2538.74 4397.23i −0.458460 0.794076i 0.540420 0.841396i \(-0.318265\pi\)
−0.998880 + 0.0473193i \(0.984932\pi\)
\(314\) −2566.78 −0.461311
\(315\) −1369.28 7169.93i −0.244921 1.28248i
\(316\) −101.262 −0.0180267
\(317\) −1434.46 2484.55i −0.254155 0.440209i 0.710511 0.703686i \(-0.248464\pi\)
−0.964666 + 0.263477i \(0.915131\pi\)
\(318\) −1436.48 242.809i −0.253314 0.0428178i
\(319\) 4831.70 8368.76i 0.848036 1.46884i
\(320\) −347.854 + 602.500i −0.0607675 + 0.105252i
\(321\) 4874.45 5893.44i 0.847555 1.02473i
\(322\) 475.761 + 824.042i 0.0823388 + 0.142615i
\(323\) −1988.36 −0.342523
\(324\) 424.783 2884.89i 0.0728367 0.494666i
\(325\) −103.393 −0.0176468
\(326\) 1033.93 + 1790.81i 0.175656 + 0.304245i
\(327\) −2131.66 + 2577.28i −0.360492 + 0.435852i
\(328\) 813.037 1408.22i 0.136867 0.237061i
\(329\) −136.086 + 235.708i −0.0228045 + 0.0394985i
\(330\) −4760.85 804.730i −0.794170 0.134239i
\(331\) −1015.67 1759.20i −0.168660 0.292128i 0.769289 0.638901i \(-0.220611\pi\)
−0.937949 + 0.346773i \(0.887277\pi\)
\(332\) 1150.88 0.190250
\(333\) 426.384 + 2232.67i 0.0701673 + 0.367416i
\(334\) 565.235 0.0925996
\(335\) 4171.23 + 7224.78i 0.680294 + 1.17830i
\(336\) 720.939 + 1937.93i 0.117055 + 0.314651i
\(337\) −4899.14 + 8485.56i −0.791909 + 1.37163i 0.132875 + 0.991133i \(0.457579\pi\)
−0.924784 + 0.380493i \(0.875754\pi\)
\(338\) −1968.10 + 3408.84i −0.316717 + 0.548570i
\(339\) 1854.72 + 4985.63i 0.297153 + 0.798767i
\(340\) 301.555 + 522.308i 0.0481003 + 0.0833122i
\(341\) −2538.32 −0.403103
\(342\) 5858.86 5059.35i 0.926348 0.799937i
\(343\) −1677.81 −0.264120
\(344\) 1303.56 + 2257.83i 0.204312 + 0.353879i
\(345\) −1065.41 180.087i −0.166260 0.0281031i
\(346\) −3532.72 + 6118.86i −0.548903 + 0.950728i
\(347\) 2278.28 3946.10i 0.352463 0.610483i −0.634218 0.773154i \(-0.718678\pi\)
0.986680 + 0.162671i \(0.0520111\pi\)
\(348\) 2995.04 3621.15i 0.461354 0.557799i
\(349\) −1674.44 2900.22i −0.256822 0.444829i 0.708567 0.705644i \(-0.249342\pi\)
−0.965389 + 0.260815i \(0.916009\pi\)
\(350\) 339.921 0.0519129
\(351\) 1815.27 1100.14i 0.276046 0.167296i
\(352\) 1367.71 0.207100
\(353\) −931.134 1612.77i −0.140395 0.243170i 0.787251 0.616633i \(-0.211504\pi\)
−0.927645 + 0.373463i \(0.878170\pi\)
\(354\) −759.983 + 918.856i −0.114104 + 0.137957i
\(355\) −1825.44 + 3161.75i −0.272913 + 0.472699i
\(356\) 1721.63 2981.96i 0.256310 0.443942i
\(357\) 1767.41 + 298.747i 0.262021 + 0.0442896i
\(358\) −4052.74 7019.56i −0.598308 1.03630i
\(359\) 6179.46 0.908466 0.454233 0.890883i \(-0.349913\pi\)
0.454233 + 0.890883i \(0.349913\pi\)
\(360\) −2217.57 771.724i −0.324656 0.112982i
\(361\) 13690.8 1.99604
\(362\) −2830.97 4903.38i −0.411029 0.711923i
\(363\) 898.224 + 2414.49i 0.129875 + 0.349112i
\(364\) −752.558 + 1303.47i −0.108365 + 0.187693i
\(365\) −909.197 + 1574.77i −0.130382 + 0.225829i
\(366\) 2735.93 + 7354.36i 0.390736 + 1.05032i
\(367\) −3436.98 5953.02i −0.488852 0.846717i 0.511066 0.859542i \(-0.329251\pi\)
−0.999918 + 0.0128251i \(0.995918\pi\)
\(368\) 306.073 0.0433564
\(369\) 5183.11 + 1803.75i 0.731224 + 0.254470i
\(370\) 1830.27 0.257166
\(371\) 1743.24 + 3019.38i 0.243948 + 0.422530i
\(372\) −1217.11 205.729i −0.169635 0.0286735i
\(373\) −635.013 + 1099.87i −0.0881494 + 0.152679i −0.906729 0.421714i \(-0.861429\pi\)
0.818580 + 0.574393i \(0.194762\pi\)
\(374\) 592.834 1026.82i 0.0819645 0.141967i
\(375\) −4746.02 + 5738.16i −0.653556 + 0.790179i
\(376\) 43.7744 + 75.8195i 0.00600397 + 0.0103992i
\(377\) 3420.69 0.467306
\(378\) −5967.99 + 3616.88i −0.812065 + 0.492149i
\(379\) 2490.54 0.337548 0.168774 0.985655i \(-0.446019\pi\)
0.168774 + 0.985655i \(0.446019\pi\)
\(380\) −3116.60 5398.11i −0.420732 0.728729i
\(381\) −104.148 + 125.920i −0.0140044 + 0.0169319i
\(382\) 4509.24 7810.24i 0.603960 1.04609i
\(383\) −156.213 + 270.568i −0.0208410 + 0.0360976i −0.876258 0.481843i \(-0.839968\pi\)
0.855417 + 0.517940i \(0.173301\pi\)
\(384\) 655.805 + 110.851i 0.0871521 + 0.0147314i
\(385\) 5777.54 + 10007.0i 0.764807 + 1.32468i
\(386\) 6442.25 0.849487
\(387\) −6659.64 + 5750.85i −0.874750 + 0.755380i
\(388\) −1608.60 −0.210475
\(389\) −4821.58 8351.23i −0.628442 1.08849i −0.987864 0.155319i \(-0.950360\pi\)
0.359422 0.933175i \(-0.382974\pi\)
\(390\) −595.935 1601.91i −0.0773752 0.207990i
\(391\) 132.668 229.787i 0.0171593 0.0297208i
\(392\) 1102.15 1908.98i 0.142008 0.245965i
\(393\) −3509.98 9435.06i −0.450522 1.21103i
\(394\) 3784.20 + 6554.42i 0.483871 + 0.838089i
\(395\) −275.191 −0.0350540
\(396\) 865.893 + 4534.07i 0.109881 + 0.575368i
\(397\) −2260.32 −0.285749 −0.142874 0.989741i \(-0.545634\pi\)
−0.142874 + 0.989741i \(0.545634\pi\)
\(398\) −2926.27 5068.44i −0.368544 0.638337i
\(399\) −18266.4 3087.58i −2.29188 0.387399i
\(400\) 54.6707 94.6924i 0.00683384 0.0118366i
\(401\) −5084.64 + 8806.85i −0.633204 + 1.09674i 0.353689 + 0.935363i \(0.384927\pi\)
−0.986893 + 0.161378i \(0.948406\pi\)
\(402\) 5083.15 6145.77i 0.630658 0.762496i
\(403\) −449.263 778.146i −0.0555320 0.0961842i
\(404\) −5325.71 −0.655852
\(405\) 1154.39 7840.01i 0.141635 0.961909i
\(406\) −11246.1 −1.37471
\(407\) −1799.09 3116.12i −0.219110 0.379509i
\(408\) 367.482 444.303i 0.0445908 0.0539124i
\(409\) 474.916 822.579i 0.0574159 0.0994472i −0.835889 0.548899i \(-0.815047\pi\)
0.893305 + 0.449452i \(0.148381\pi\)
\(410\) 2209.51 3826.99i 0.266147 0.460979i
\(411\) −5936.03 1003.37i −0.712416 0.120420i
\(412\) 1037.01 + 1796.15i 0.124004 + 0.214782i
\(413\) 2853.65 0.339998
\(414\) 193.774 + 1014.66i 0.0230036 + 0.120454i
\(415\) 3127.65 0.369953
\(416\) 242.073 + 419.283i 0.0285303 + 0.0494160i
\(417\) 4188.01 + 11257.6i 0.491817 + 1.32204i
\(418\) −6126.99 + 10612.3i −0.716940 + 1.24178i
\(419\) 5899.63 10218.5i 0.687866 1.19142i −0.284660 0.958628i \(-0.591881\pi\)
0.972527 0.232791i \(-0.0747859\pi\)
\(420\) 1959.23 + 5266.54i 0.227620 + 0.611859i
\(421\) 3206.46 + 5553.76i 0.371196 + 0.642930i 0.989750 0.142812i \(-0.0456145\pi\)
−0.618554 + 0.785742i \(0.712281\pi\)
\(422\) −626.948 −0.0723207
\(423\) −223.635 + 193.117i −0.0257057 + 0.0221978i
\(424\) 1121.49 0.128453
\(425\) −47.3941 82.0890i −0.00540930 0.00936918i
\(426\) 3441.48 + 581.716i 0.391409 + 0.0661601i
\(427\) 9389.29 16262.7i 1.06412 1.84311i
\(428\) −2943.74 + 5098.71i −0.332456 + 0.575830i
\(429\) −2141.54 + 2589.22i −0.241013 + 0.291396i
\(430\) 3542.57 + 6135.90i 0.397297 + 0.688138i
\(431\) −12042.7 −1.34589 −0.672945 0.739693i \(-0.734971\pi\)
−0.672945 + 0.739693i \(0.734971\pi\)
\(432\) 47.7073 + 2244.23i 0.00531323 + 0.249944i
\(433\) 7279.83 0.807959 0.403980 0.914768i \(-0.367627\pi\)
0.403980 + 0.914768i \(0.367627\pi\)
\(434\) 1477.02 + 2558.28i 0.163363 + 0.282952i
\(435\) 8139.35 9840.86i 0.897131 1.08467i
\(436\) 1287.34 2229.73i 0.141404 0.244919i
\(437\) −1371.13 + 2374.87i −0.150092 + 0.259967i
\(438\) 1714.10 + 289.736i 0.186993 + 0.0316075i
\(439\) 1799.35 + 3116.57i 0.195623 + 0.338828i 0.947104 0.320926i \(-0.103994\pi\)
−0.751482 + 0.659754i \(0.770661\pi\)
\(440\) 3716.89 0.402718
\(441\) 7026.22 + 2445.16i 0.758689 + 0.264027i
\(442\) 419.707 0.0451662
\(443\) 7393.18 + 12805.4i 0.792913 + 1.37337i 0.924156 + 0.382016i \(0.124770\pi\)
−0.131243 + 0.991350i \(0.541897\pi\)
\(444\) −610.092 1639.97i −0.0652110 0.175291i
\(445\) 4678.72 8103.79i 0.498411 0.863273i
\(446\) −710.386 + 1230.42i −0.0754209 + 0.130633i
\(447\) −5345.01 14367.7i −0.565571 1.52029i
\(448\) −795.854 1378.46i −0.0839298 0.145371i
\(449\) 114.489 0.0120336 0.00601681 0.999982i \(-0.498085\pi\)
0.00601681 + 0.999982i \(0.498085\pi\)
\(450\) 348.526 + 121.289i 0.0365103 + 0.0127058i
\(451\) −8687.47 −0.907044
\(452\) −2047.45 3546.29i −0.213062 0.369035i
\(453\) 8845.16 + 1495.10i 0.917399 + 0.155069i
\(454\) 32.6616 56.5716i 0.00337640 0.00584810i
\(455\) −2045.16 + 3542.31i −0.210722 + 0.364981i
\(456\) −3797.96 + 4591.91i −0.390034 + 0.471570i
\(457\) −3155.57 5465.60i −0.323001 0.559453i 0.658105 0.752926i \(-0.271358\pi\)
−0.981106 + 0.193473i \(0.938025\pi\)
\(458\) 11007.7 1.12305
\(459\) 1705.55 + 936.947i 0.173439 + 0.0952787i
\(460\) 831.786 0.0843092
\(461\) 6872.41 + 11903.4i 0.694317 + 1.20259i 0.970411 + 0.241461i \(0.0776266\pi\)
−0.276094 + 0.961131i \(0.589040\pi\)
\(462\) 7040.64 8512.47i 0.709005 0.857221i
\(463\) −7824.30 + 13552.1i −0.785369 + 1.36030i 0.143409 + 0.989664i \(0.454194\pi\)
−0.928778 + 0.370636i \(0.879140\pi\)
\(464\) −1808.74 + 3132.84i −0.180967 + 0.313445i
\(465\) −3307.62 559.089i −0.329865 0.0557573i
\(466\) −6788.81 11758.6i −0.674862 1.16890i
\(467\) −7395.79 −0.732840 −0.366420 0.930450i \(-0.619417\pi\)
−0.366420 + 0.930450i \(0.619417\pi\)
\(468\) −1236.70 + 1067.94i −0.122151 + 0.105482i
\(469\) −19086.7 −1.87919
\(470\) 118.962 + 206.048i 0.0116751 + 0.0202219i
\(471\) 2325.16 + 6250.20i 0.227469 + 0.611452i
\(472\) 458.963 794.948i 0.0447574 0.0775221i
\(473\) 6964.41 12062.7i 0.677006 1.17261i
\(474\) 91.7302 + 246.577i 0.00888884 + 0.0238938i
\(475\) 489.822 + 848.397i 0.0473149 + 0.0819519i
\(476\) −1379.85 −0.132869
\(477\) 710.012 + 3717.83i 0.0681535 + 0.356872i
\(478\) 858.777 0.0821748
\(479\) 3130.53 + 5422.24i 0.298617 + 0.517221i 0.975820 0.218576i \(-0.0701412\pi\)
−0.677202 + 0.735797i \(0.736808\pi\)
\(480\) 1782.22 + 301.250i 0.169473 + 0.0286461i
\(481\) 636.849 1103.05i 0.0603697 0.104563i
\(482\) −4843.65 + 8389.45i −0.457722 + 0.792798i
\(483\) 1575.59 1904.97i 0.148431 0.179460i
\(484\) −991.561 1717.43i −0.0931218 0.161292i
\(485\) −4371.54 −0.409281
\(486\) −7409.62 + 1578.97i −0.691579 + 0.147374i
\(487\) −10314.7 −0.959763 −0.479881 0.877333i \(-0.659320\pi\)
−0.479881 + 0.877333i \(0.659320\pi\)
\(488\) −3020.23 5231.18i −0.280162 0.485255i
\(489\) 3424.09 4139.89i 0.316652 0.382847i
\(490\) 2995.22 5187.87i 0.276143 0.478294i
\(491\) 1380.45 2391.01i 0.126881 0.219765i −0.795585 0.605841i \(-0.792837\pi\)
0.922467 + 0.386076i \(0.126170\pi\)
\(492\) −4165.57 704.110i −0.381704 0.0645198i
\(493\) 1568.00 + 2715.86i 0.143244 + 0.248106i
\(494\) −4337.71 −0.395067
\(495\) 2353.16 + 12321.8i 0.213670 + 1.11884i
\(496\) 950.220 0.0860204
\(497\) −4176.41 7233.76i −0.376937 0.652874i
\(498\) −1042.55 2802.44i −0.0938108 0.252170i
\(499\) 4793.00 8301.71i 0.429988 0.744761i −0.566884 0.823798i \(-0.691851\pi\)
0.996872 + 0.0790369i \(0.0251845\pi\)
\(500\) 2866.18 4964.37i 0.256359 0.444027i
\(501\) −512.028 1376.37i −0.0456602 0.122738i
\(502\) 2400.87 + 4158.43i 0.213459 + 0.369721i
\(503\) 8829.60 0.782689 0.391344 0.920244i \(-0.372010\pi\)
0.391344 + 0.920244i \(0.372010\pi\)
\(504\) 4065.86 3511.03i 0.359341 0.310305i
\(505\) −14473.2 −1.27534
\(506\) −817.614 1416.15i −0.0718328 0.124418i
\(507\) 10083.5 + 1704.42i 0.883281 + 0.149302i
\(508\) 62.8963 108.940i 0.00549325 0.00951458i
\(509\) −2370.87 + 4106.47i −0.206458 + 0.357595i −0.950596 0.310430i \(-0.899527\pi\)
0.744138 + 0.668025i \(0.232860\pi\)
\(510\) 998.671 1207.44i 0.0867096 0.104836i
\(511\) −2080.15 3602.92i −0.180079 0.311906i
\(512\) −512.000 −0.0441942
\(513\) −17627.1 9683.43i −1.51706 0.833400i
\(514\) −5961.99 −0.511619
\(515\) 2818.18 + 4881.24i 0.241134 + 0.417656i
\(516\) 4317.05 5219.52i 0.368309 0.445303i
\(517\) 233.870 405.074i 0.0198947 0.0344587i
\(518\) −2093.74 + 3626.47i −0.177594 + 0.307602i
\(519\) 18099.8 + 3059.43i 1.53082 + 0.258755i
\(520\) 657.860 + 1139.45i 0.0554790 + 0.0960924i
\(521\) −2753.22 −0.231518 −0.115759 0.993277i \(-0.536930\pi\)
−0.115759 + 0.993277i \(0.536930\pi\)
\(522\) −11530.7 4012.75i −0.966833 0.336462i
\(523\) 17115.3 1.43098 0.715489 0.698624i \(-0.246204\pi\)
0.715489 + 0.698624i \(0.246204\pi\)
\(524\) 3874.71 + 6711.20i 0.323030 + 0.559504i
\(525\) −307.924 827.719i −0.0255979 0.0688088i
\(526\) 5560.82 9631.61i 0.460956 0.798400i
\(527\) 411.873 713.386i 0.0340446 0.0589669i
\(528\) −1238.96 3330.42i −0.102119 0.274503i
\(529\) 5900.53 + 10220.0i 0.484962 + 0.839978i
\(530\) 3047.76 0.249786
\(531\) 2925.89 + 1018.22i 0.239120 + 0.0832150i
\(532\) 14260.9 1.16220
\(533\) −1537.61 2663.22i −0.124956 0.216430i
\(534\) −8820.75 1490.98i −0.714815 0.120826i
\(535\) −7999.93 + 13856.3i −0.646481 + 1.11974i
\(536\) −3069.78 + 5317.02i −0.247377 + 0.428470i
\(537\) −13421.6 + 16227.4i −1.07856 + 1.30403i
\(538\) 6288.50 + 10892.0i 0.503934 + 0.872840i
\(539\) −11776.7 −0.941113
\(540\) 129.650 + 6098.94i 0.0103319 + 0.486030i
\(541\) 17880.1 1.42093 0.710467 0.703731i \(-0.248484\pi\)
0.710467 + 0.703731i \(0.248484\pi\)
\(542\) 6854.90 + 11873.0i 0.543253 + 0.940941i
\(543\) −9375.43 + 11335.3i −0.740954 + 0.895849i
\(544\) −221.927 + 384.389i −0.0174909 + 0.0302951i
\(545\) 3498.47 6059.53i 0.274969 0.476260i
\(546\) 3855.71 + 651.734i 0.302215 + 0.0510836i
\(547\) 6534.73 + 11318.5i 0.510795 + 0.884723i 0.999922 + 0.0125101i \(0.00398218\pi\)
−0.489127 + 0.872213i \(0.662684\pi\)
\(548\) 4634.38 0.361261
\(549\) 15429.7 13324.2i 1.19950 1.03581i
\(550\) −584.168 −0.0452891
\(551\) −16205.5 28068.7i −1.25295 2.17017i
\(552\) −277.262 745.299i −0.0213787 0.0574675i
\(553\) 314.804 545.257i 0.0242077 0.0419289i
\(554\) 898.172 1555.68i 0.0688803 0.119304i
\(555\) −1657.99 4456.79i −0.126807 0.340865i
\(556\) −4623.20 8007.61i −0.352639 0.610788i
\(557\) 9507.62 0.723251 0.361626 0.932323i \(-0.382222\pi\)
0.361626 + 0.932323i \(0.382222\pi\)
\(558\) 601.582 + 3150.06i 0.0456398 + 0.238983i
\(559\) 4930.58 0.373061
\(560\) −2162.82 3746.11i −0.163207 0.282682i
\(561\) −3037.37 513.409i −0.228588 0.0386384i
\(562\) 238.770 413.561i 0.0179215 0.0310410i
\(563\) 10222.3 17705.6i 0.765221 1.32540i −0.174909 0.984585i \(-0.555963\pi\)
0.940130 0.340817i \(-0.110704\pi\)
\(564\) 144.969 175.275i 0.0108233 0.0130858i
\(565\) −5564.17 9637.43i −0.414313 0.717610i
\(566\) −4142.33 −0.307624
\(567\) 14213.4 + 11255.9i 1.05275 + 0.833689i
\(568\) −2686.83 −0.198480
\(569\) −1323.03 2291.56i −0.0974770 0.168835i 0.813163 0.582036i \(-0.197744\pi\)
−0.910640 + 0.413201i \(0.864411\pi\)
\(570\) −10321.4 + 12479.0i −0.758445 + 0.916996i
\(571\) −878.514 + 1521.63i −0.0643864 + 0.111521i −0.896422 0.443202i \(-0.853842\pi\)
0.832035 + 0.554723i \(0.187176\pi\)
\(572\) 1293.30 2240.06i 0.0945379 0.163744i
\(573\) −23103.0 3905.12i −1.68437 0.284710i
\(574\) 5055.14 + 8755.76i 0.367592 + 0.636687i
\(575\) −130.728 −0.00948130
\(576\) −324.146 1697.33i −0.0234481 0.122781i
\(577\) −7515.43 −0.542238 −0.271119 0.962546i \(-0.587394\pi\)
−0.271119 + 0.962546i \(0.587394\pi\)
\(578\) −4720.61 8176.34i −0.339709 0.588392i
\(579\) −5835.83 15687.1i −0.418876 1.12597i
\(580\) −4915.45 + 8513.82i −0.351902 + 0.609512i
\(581\) −3577.87 + 6197.06i −0.255482 + 0.442508i
\(582\) 1457.18 + 3916.99i 0.103783 + 0.278977i
\(583\) −2995.83 5188.94i −0.212821 0.368617i
\(584\) −1338.23 −0.0948226
\(585\) −3360.88 + 2902.24i −0.237530 + 0.205116i
\(586\) 13155.5 0.927388
\(587\) 2476.24 + 4288.98i 0.174115 + 0.301576i 0.939855 0.341575i \(-0.110960\pi\)
−0.765740 + 0.643151i \(0.777627\pi\)
\(588\) −5646.85 954.492i −0.396041 0.0669432i
\(589\) −4256.75 + 7372.91i −0.297787 + 0.515782i
\(590\) 1247.28 2160.36i 0.0870335 0.150747i
\(591\) 12532.3 15152.1i 0.872265 1.05461i
\(592\) 673.488 + 1166.51i 0.0467571 + 0.0809856i
\(593\) 17115.3 1.18523 0.592613 0.805487i \(-0.298096\pi\)
0.592613 + 0.805487i \(0.298096\pi\)
\(594\) 10256.2 6215.75i 0.708449 0.429353i
\(595\) −3749.90 −0.258371
\(596\) 5900.42 + 10219.8i 0.405521 + 0.702384i
\(597\) −9691.02 + 11716.9i −0.664367 + 0.803251i
\(598\) 289.422 501.294i 0.0197916 0.0342800i
\(599\) −4207.06 + 7286.85i −0.286972 + 0.497049i −0.973085 0.230445i \(-0.925982\pi\)
0.686114 + 0.727494i \(0.259315\pi\)
\(600\) −280.104 47.3462i −0.0190587 0.00322150i
\(601\) −14047.1 24330.3i −0.953399 1.65134i −0.737990 0.674812i \(-0.764225\pi\)
−0.215409 0.976524i \(-0.569108\pi\)
\(602\) −16210.1 −1.09746
\(603\) −19569.9 6810.40i −1.32164 0.459935i
\(604\) −6905.59 −0.465206
\(605\) −2694.67 4667.31i −0.181081 0.313642i
\(606\) 4824.40 + 12968.3i 0.323396 + 0.869309i
\(607\) −715.423 + 1239.15i −0.0478388 + 0.0828592i −0.888953 0.457998i \(-0.848567\pi\)
0.841114 + 0.540857i \(0.181900\pi\)
\(608\) 2293.63 3972.69i 0.152992 0.264990i
\(609\) 10187.5 + 27384.6i 0.677860 + 1.82213i
\(610\) −8207.78 14216.3i −0.544793 0.943608i
\(611\) 165.572 0.0109629
\(612\) −1414.78 492.351i −0.0934465 0.0325198i
\(613\) 14438.1 0.951306 0.475653 0.879633i \(-0.342212\pi\)
0.475653 + 0.879633i \(0.342212\pi\)
\(614\) −5237.30 9071.27i −0.344235 0.596233i
\(615\) −11320.4 1913.49i −0.742247 0.125463i
\(616\) −4251.93 + 7364.56i −0.278109 + 0.481699i
\(617\) −12722.5 + 22036.0i −0.830125 + 1.43782i 0.0678130 + 0.997698i \(0.478398\pi\)
−0.897938 + 0.440121i \(0.854935\pi\)
\(618\) 3434.30 4152.23i 0.223540 0.270271i
\(619\) 1739.73 + 3013.30i 0.112966 + 0.195662i 0.916965 0.398968i \(-0.130632\pi\)
−0.803999 + 0.594631i \(0.797298\pi\)
\(620\) 2582.32 0.167272
\(621\) 2295.20 1391.00i 0.148314 0.0898853i
\(622\) −11410.0 −0.735528
\(623\) 10704.4 + 18540.6i 0.688386 + 1.19232i
\(624\) 801.683 969.272i 0.0514311 0.0621826i
\(625\) 7362.03 12751.4i 0.471170 0.816091i
\(626\) 5077.48 8794.45i 0.324180 0.561497i
\(627\) 31391.5 + 5306.13i 1.99945 + 0.337969i
\(628\) −2566.78 4445.79i −0.163098 0.282494i
\(629\) 1167.70 0.0740208
\(630\) 11049.4 9541.59i 0.698760 0.603406i
\(631\) 11151.7 0.703552 0.351776 0.936084i \(-0.385578\pi\)
0.351776 + 0.936084i \(0.385578\pi\)
\(632\) −101.262 175.391i −0.00637341 0.0110391i
\(633\) 567.933 + 1526.64i 0.0356608 + 0.0958587i
\(634\) 2868.91 4969.10i 0.179714 0.311275i
\(635\) 170.927 296.055i 0.0106820 0.0185017i
\(636\) −1015.92 2730.86i −0.0633394 0.170261i
\(637\) −2084.39 3610.26i −0.129649 0.224559i
\(638\) 19326.8 1.19930
\(639\) −1701.03 8907.08i −0.105308 0.551422i
\(640\) −1391.41 −0.0859383
\(641\) 546.388 + 946.373i 0.0336678 + 0.0583143i 0.882368 0.470559i \(-0.155948\pi\)
−0.848701 + 0.528874i \(0.822615\pi\)
\(642\) 15082.2 + 2549.35i 0.927175 + 0.156721i
\(643\) −15847.0 + 27447.8i −0.971922 + 1.68342i −0.282181 + 0.959361i \(0.591058\pi\)
−0.689741 + 0.724056i \(0.742276\pi\)
\(644\) −951.521 + 1648.08i −0.0582223 + 0.100844i
\(645\) 11732.0 14184.6i 0.716200 0.865919i
\(646\) −1988.36 3443.93i −0.121100 0.209752i
\(647\) −13719.9 −0.833672 −0.416836 0.908982i \(-0.636861\pi\)
−0.416836 + 0.908982i \(0.636861\pi\)
\(648\) 5421.57 2149.15i 0.328672 0.130288i
\(649\) −4904.12 −0.296616
\(650\) −103.393 179.082i −0.00623909 0.0108064i
\(651\) 4891.51 5914.07i 0.294491 0.356053i
\(652\) −2067.85 + 3581.63i −0.124208 + 0.215134i
\(653\) −6642.59 + 11505.3i −0.398078 + 0.689491i −0.993489 0.113930i \(-0.963656\pi\)
0.595411 + 0.803421i \(0.296989\pi\)
\(654\) −6595.63 1114.87i −0.394357 0.0666585i
\(655\) 10529.9 + 18238.4i 0.628151 + 1.08799i
\(656\) 3252.15 0.193559
\(657\) −847.232 4436.36i −0.0503100 0.263438i
\(658\) −544.344 −0.0322504
\(659\) 1296.99 + 2246.45i 0.0766670 + 0.132791i 0.901810 0.432133i \(-0.142239\pi\)
−0.825143 + 0.564924i \(0.808905\pi\)
\(660\) −3367.02 9050.76i −0.198577 0.533789i
\(661\) 7937.67 13748.4i 0.467079 0.809005i −0.532213 0.846610i \(-0.678640\pi\)
0.999293 + 0.0376052i \(0.0119729\pi\)
\(662\) 2031.35 3518.40i 0.119261 0.206566i
\(663\) −380.200 1022.00i −0.0222711 0.0598662i
\(664\) 1150.88 + 1993.39i 0.0672635 + 0.116504i
\(665\) 38755.6 2.25996
\(666\) −3440.72 + 2971.19i −0.200188 + 0.172870i
\(667\) 4325.06 0.251075
\(668\) 565.235 + 979.015i 0.0327389 + 0.0567054i
\(669\) 3639.64 + 615.212i 0.210339 + 0.0355538i
\(670\) −8342.46 + 14449.6i −0.481041 + 0.833187i
\(671\) −16135.9 + 27948.2i −0.928344 + 1.60794i
\(672\) −2635.66 + 3186.64i −0.151299 + 0.182927i
\(673\) −10717.3 18563.0i −0.613853 1.06323i −0.990585 0.136903i \(-0.956285\pi\)
0.376731 0.926323i \(-0.377048\pi\)
\(674\) −19596.6 −1.11993
\(675\) −20.3765 958.544i −0.00116191 0.0546583i
\(676\) −7872.38 −0.447905
\(677\) 10166.5 + 17608.9i 0.577150 + 0.999653i 0.995804 + 0.0915074i \(0.0291685\pi\)
−0.418655 + 0.908146i \(0.637498\pi\)
\(678\) −6780.63 + 8198.10i −0.384083 + 0.464375i
\(679\) 5000.81 8661.66i 0.282642 0.489549i
\(680\) −603.110 + 1044.62i −0.0340121 + 0.0589106i
\(681\) −167.341 28.2858i −0.00941634 0.00159165i
\(682\) −2538.32 4396.51i −0.142518 0.246849i
\(683\) −27149.0 −1.52097 −0.760487 0.649353i \(-0.775040\pi\)
−0.760487 + 0.649353i \(0.775040\pi\)
\(684\) 14621.9 + 5088.50i 0.817373 + 0.284450i
\(685\) 12594.4 0.702493
\(686\) −1677.81 2906.05i −0.0933804 0.161740i
\(687\) −9971.53 26804.1i −0.553766 1.48856i
\(688\) −2607.12 + 4515.67i −0.144470 + 0.250230i
\(689\) 1060.48 1836.80i 0.0586371 0.101562i
\(690\) −753.489 2025.43i −0.0415723 0.111749i
\(691\) −11355.1 19667.6i −0.625134 1.08276i −0.988515 0.151123i \(-0.951711\pi\)
0.363381 0.931641i \(-0.381622\pi\)
\(692\) −14130.9 −0.776266
\(693\) −27106.1 9433.04i −1.48582 0.517073i
\(694\) 9113.12 0.498457
\(695\) −12564.0 21761.5i −0.685728 1.18771i
\(696\) 9267.05 + 1566.42i 0.504694 + 0.0853088i
\(697\) 1409.65 2441.58i 0.0766056 0.132685i
\(698\) 3348.89 5800.45i 0.181601 0.314542i
\(699\) −22482.8 + 27182.7i −1.21656 + 1.47088i
\(700\) 339.921 + 588.760i 0.0183540 + 0.0317901i
\(701\) −20079.5 −1.08187 −0.540936 0.841064i \(-0.681930\pi\)
−0.540936 + 0.841064i \(0.681930\pi\)
\(702\) 3720.77 + 2044.00i 0.200045 + 0.109895i
\(703\) −12068.2 −0.647457
\(704\) 1367.71 + 2368.94i 0.0732207 + 0.126822i
\(705\) 393.970 476.328i 0.0210465 0.0254462i
\(706\) 1862.27 3225.54i 0.0992739 0.171947i
\(707\) 16556.6 28676.9i 0.880728 1.52547i
\(708\) −2351.49 397.474i −0.124822 0.0210989i
\(709\) 14491.8 + 25100.6i 0.767634 + 1.32958i 0.938843 + 0.344346i \(0.111899\pi\)
−0.171209 + 0.985235i \(0.554767\pi\)
\(710\) −7301.74 −0.385957
\(711\) 517.328 446.733i 0.0272874 0.0235637i
\(712\) 6886.54 0.362477
\(713\) −568.040 983.875i −0.0298363 0.0516780i
\(714\) 1249.97 + 3359.99i 0.0655166 + 0.176113i
\(715\) 3514.69 6087.61i 0.183835 0.318411i
\(716\) 8105.49 14039.1i 0.423067 0.732774i
\(717\) −777.940 2091.15i −0.0405198 0.108920i
\(718\) 6179.46 + 10703.1i 0.321191 + 0.556320i
\(719\) 14496.2 0.751901 0.375951 0.926640i \(-0.377316\pi\)
0.375951 + 0.926640i \(0.377316\pi\)
\(720\) −880.902 4612.66i −0.0455962 0.238755i
\(721\) −12895.4 −0.666090
\(722\) 13690.8 + 23713.2i 0.705706 + 1.22232i
\(723\) 24816.3 + 4194.72i 1.27653 + 0.215772i
\(724\) 5661.94 9806.77i 0.290641 0.503405i
\(725\) 772.541 1338.08i 0.0395744 0.0685449i
\(726\) −3283.79 + 3970.26i −0.167869 + 0.202961i
\(727\) −2500.25 4330.56i −0.127550 0.220924i 0.795177 0.606378i \(-0.207378\pi\)
−0.922727 + 0.385454i \(0.874045\pi\)
\(728\) −3010.23 −0.153251
\(729\) 10557.0 + 16612.4i 0.536351 + 0.843995i
\(730\) −3636.79 −0.184388
\(731\) 2260.12 + 3914.64i 0.114355 + 0.198069i
\(732\) −10002.2 + 12093.1i −0.505043 + 0.610621i
\(733\) −8757.79 + 15168.9i −0.441305 + 0.764362i −0.997787 0.0664977i \(-0.978817\pi\)
0.556482 + 0.830860i \(0.312151\pi\)
\(734\) 6873.95 11906.0i 0.345671 0.598719i
\(735\) −15345.9 2593.93i −0.770126 0.130175i
\(736\) 306.073 + 530.134i 0.0153288 + 0.0265503i
\(737\) 32801.3 1.63942
\(738\) 2058.93 + 10781.2i 0.102697 + 0.537750i
\(739\) −20169.2 −1.00397 −0.501985 0.864876i \(-0.667397\pi\)
−0.501985 + 0.864876i \(0.667397\pi\)
\(740\) 1830.27 + 3170.13i 0.0909219 + 0.157481i
\(741\) 3929.40 + 10562.5i 0.194804 + 0.523647i
\(742\) −3486.48 + 6038.77i −0.172497 + 0.298774i
\(743\) 18351.3 31785.4i 0.906116 1.56944i 0.0867044 0.996234i \(-0.472366\pi\)
0.819412 0.573205i \(-0.194300\pi\)
\(744\) −860.774 2313.82i −0.0424160 0.114017i
\(745\) 16035.0 + 27773.5i 0.788561 + 1.36583i
\(746\) −2540.05 −0.124662
\(747\) −5879.64 + 5077.29i −0.287985 + 0.248686i
\(748\) 2371.34 0.115915
\(749\) −18303.0 31701.8i −0.892894 1.54654i
\(750\) −14684.8 2482.18i −0.714951 0.120849i
\(751\) 16660.0 28856.0i 0.809499 1.40209i −0.103713 0.994607i \(-0.533072\pi\)
0.913212 0.407485i \(-0.133594\pi\)
\(752\) −87.5489 + 151.639i −0.00424545 + 0.00735334i
\(753\) 7951.06 9613.21i 0.384798 0.465239i
\(754\) 3420.69 + 5924.81i 0.165218 + 0.286166i
\(755\) −18766.7 −0.904622
\(756\) −12232.6 6719.99i −0.588486 0.323285i
\(757\) 26515.6 1.27309 0.636543 0.771241i \(-0.280364\pi\)
0.636543 + 0.771241i \(0.280364\pi\)
\(758\) 2490.54 + 4313.74i 0.119341 + 0.206705i
\(759\) −2707.72 + 3273.77i −0.129492 + 0.156562i
\(760\) 6233.20 10796.2i 0.297502 0.515289i
\(761\) 2842.17 4922.79i 0.135386 0.234495i −0.790359 0.612644i \(-0.790106\pi\)
0.925745 + 0.378149i \(0.123439\pi\)
\(762\) −322.247 54.4698i −0.0153199 0.00258954i
\(763\) 8004.14 + 13863.6i 0.379777 + 0.657792i
\(764\) 18037.0 0.854129
\(765\) −3844.82 1338.02i −0.181712 0.0632367i
\(766\) −624.851 −0.0294736
\(767\) −867.990 1503.40i −0.0408622 0.0707754i
\(768\) 463.805 + 1246.74i 0.0217918 + 0.0585779i
\(769\) 199.189 345.005i 0.00934060 0.0161784i −0.861317 0.508067i \(-0.830360\pi\)