Properties

Label 18.4.c.b.13.1
Level $18$
Weight $4$
Character 18.13
Analytic conductor $1.062$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 18 = 2 \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 18.c (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.06203438010\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-35})\)
Defining polynomial: \( x^{4} - x^{3} - 8x^{2} - 9x + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 13.1
Root \(2.81174 - 1.04601i\) of defining polynomial
Character \(\chi\) \(=\) 18.13
Dual form 18.4.c.b.7.1

$q$-expansion

\(f(q)\) \(=\) \(q+(1.00000 + 1.73205i) q^{2} +(-1.81174 + 4.87007i) q^{3} +(-2.00000 + 3.46410i) q^{4} +(9.93521 - 17.2083i) q^{5} +(-10.2470 + 1.73205i) q^{6} +(2.93521 + 5.08394i) q^{7} -8.00000 q^{8} +(-20.4352 - 17.6466i) q^{9} +O(q^{10})\) \(q+(1.00000 + 1.73205i) q^{2} +(-1.81174 + 4.87007i) q^{3} +(-2.00000 + 3.46410i) q^{4} +(9.93521 - 17.2083i) q^{5} +(-10.2470 + 1.73205i) q^{6} +(2.93521 + 5.08394i) q^{7} -8.00000 q^{8} +(-20.4352 - 17.6466i) q^{9} +39.7409 q^{10} +(-9.37043 - 16.2301i) q^{11} +(-13.2470 - 16.0162i) q^{12} +(-22.9352 + 39.7250i) q^{13} +(-5.87043 + 10.1679i) q^{14} +(65.8056 + 79.5621i) q^{15} +(-8.00000 - 13.8564i) q^{16} +16.8704 q^{17} +(10.1296 - 53.0414i) q^{18} -10.3521 q^{19} +(39.7409 + 68.8332i) q^{20} +(-30.0770 + 5.08394i) q^{21} +(18.7409 - 32.4601i) q^{22} +(-24.9352 + 43.1891i) q^{23} +(14.4939 - 38.9606i) q^{24} +(-134.917 - 233.683i) q^{25} -91.7409 q^{26} +(122.963 - 67.5500i) q^{27} -23.4817 q^{28} +(-5.45351 - 9.44575i) q^{29} +(-72.0000 + 193.541i) q^{30} +(-75.8056 + 131.299i) q^{31} +(16.0000 - 27.7128i) q^{32} +(96.0183 - 16.2301i) q^{33} +(16.8704 + 29.2204i) q^{34} +116.648 q^{35} +(102.000 - 35.4965i) q^{36} +346.186 q^{37} +(-10.3521 - 17.9304i) q^{38} +(-151.911 - 183.667i) q^{39} +(-79.4817 + 137.666i) q^{40} +(-132.370 + 229.272i) q^{41} +(-38.8826 - 47.0109i) q^{42} +(205.945 + 356.707i) q^{43} +74.9634 q^{44} +(-506.696 + 176.333i) q^{45} -99.7409 q^{46} +(-236.028 - 408.813i) q^{47} +(81.9756 - 13.8564i) q^{48} +(154.269 - 267.202i) q^{49} +(269.834 - 467.366i) q^{50} +(-30.5648 + 82.1602i) q^{51} +(-91.7409 - 158.900i) q^{52} +290.186 q^{53} +(239.963 + 145.429i) q^{54} -372.389 q^{55} +(-23.4817 - 40.6715i) q^{56} +(18.7553 - 50.4156i) q^{57} +(10.9070 - 18.8915i) q^{58} +(-26.6296 + 46.1238i) q^{59} +(-407.223 + 68.8332i) q^{60} +(146.972 + 254.563i) q^{61} -303.223 q^{62} +(29.7325 - 155.688i) q^{63} +64.0000 q^{64} +(455.732 + 789.352i) q^{65} +(124.130 + 150.079i) q^{66} +(199.277 - 345.159i) q^{67} +(-33.7409 + 58.4409i) q^{68} +(-165.158 - 199.684i) q^{69} +(116.648 + 202.040i) q^{70} -647.854 q^{71} +(163.482 + 141.173i) q^{72} -478.279 q^{73} +(346.186 + 599.612i) q^{74} +(1382.49 - 233.683i) q^{75} +(20.7043 - 35.8608i) q^{76} +(55.0084 - 95.2773i) q^{77} +(166.210 - 446.785i) q^{78} +(-187.158 - 324.167i) q^{79} -317.927 q^{80} +(106.196 + 721.224i) q^{81} -529.482 q^{82} +(-466.639 - 808.243i) q^{83} +(42.5427 - 114.358i) q^{84} +(167.611 - 290.311i) q^{85} +(-411.890 + 713.415i) q^{86} +(55.8818 - 9.44575i) q^{87} +(74.9634 + 129.840i) q^{88} +368.817 q^{89} +(-812.113 - 701.290i) q^{90} -269.279 q^{91} +(-99.7409 - 172.756i) q^{92} +(-502.097 - 607.059i) q^{93} +(472.056 - 817.626i) q^{94} +(-102.851 + 178.143i) q^{95} +(105.976 + 128.130i) q^{96} +(-137.075 - 237.420i) q^{97} +617.076 q^{98} +(-94.9184 + 497.021i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 3 q^{3} - 8 q^{4} + 9 q^{5} - 19 q^{7} - 32 q^{8} - 51 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{2} + 3 q^{3} - 8 q^{4} + 9 q^{5} - 19 q^{7} - 32 q^{8} - 51 q^{9} + 36 q^{10} + 24 q^{11} - 12 q^{12} - 61 q^{13} + 38 q^{14} + 171 q^{15} - 32 q^{16} + 6 q^{17} + 102 q^{18} + 266 q^{19} + 36 q^{20} - 315 q^{21} - 48 q^{22} - 69 q^{23} - 24 q^{24} - 263 q^{25} - 244 q^{26} + 152 q^{28} - 237 q^{29} - 288 q^{30} - 211 q^{31} + 64 q^{32} + 630 q^{33} + 6 q^{34} + 774 q^{35} + 408 q^{36} + 524 q^{37} + 266 q^{38} - 249 q^{39} - 72 q^{40} - 468 q^{41} - 258 q^{42} + 86 q^{43} - 192 q^{44} - 459 q^{45} - 276 q^{46} - 483 q^{47} + 33 q^{49} + 526 q^{50} - 153 q^{51} - 244 q^{52} + 300 q^{53} + 468 q^{54} - 1674 q^{55} + 152 q^{56} + 987 q^{57} + 474 q^{58} - 168 q^{59} - 1260 q^{60} + 1049 q^{61} - 844 q^{62} - 957 q^{63} + 256 q^{64} + 747 q^{65} + 558 q^{66} + 1166 q^{67} - 12 q^{68} - 261 q^{69} + 774 q^{70} - 624 q^{71} + 408 q^{72} - 622 q^{73} + 524 q^{74} + 2835 q^{75} - 532 q^{76} + 1173 q^{77} + 132 q^{78} - 349 q^{79} - 288 q^{80} - 1143 q^{81} - 1872 q^{82} - 1221 q^{83} + 744 q^{84} + 486 q^{85} - 172 q^{86} - 2205 q^{87} - 192 q^{88} - 984 q^{89} - 1404 q^{90} + 214 q^{91} - 276 q^{92} - 789 q^{93} + 966 q^{94} - 1764 q^{95} + 96 q^{96} + 128 q^{97} + 132 q^{98} + 1557 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/18\mathbb{Z}\right)^\times\).

\(n\) \(11\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 + 1.73205i 0.353553 + 0.612372i
\(3\) −1.81174 + 4.87007i −0.348669 + 0.937246i
\(4\) −2.00000 + 3.46410i −0.250000 + 0.433013i
\(5\) 9.93521 17.2083i 0.888632 1.53916i 0.0471396 0.998888i \(-0.484989\pi\)
0.841493 0.540268i \(-0.181677\pi\)
\(6\) −10.2470 + 1.73205i −0.697217 + 0.117851i
\(7\) 2.93521 + 5.08394i 0.158487 + 0.274507i 0.934323 0.356427i \(-0.116005\pi\)
−0.775837 + 0.630934i \(0.782672\pi\)
\(8\) −8.00000 −0.353553
\(9\) −20.4352 17.6466i −0.756860 0.653577i
\(10\) 39.7409 1.25672
\(11\) −9.37043 16.2301i −0.256845 0.444868i 0.708550 0.705660i \(-0.249349\pi\)
−0.965395 + 0.260792i \(0.916016\pi\)
\(12\) −13.2470 16.0162i −0.318672 0.385290i
\(13\) −22.9352 + 39.7250i −0.489314 + 0.847517i −0.999924 0.0122953i \(-0.996086\pi\)
0.510610 + 0.859812i \(0.329420\pi\)
\(14\) −5.87043 + 10.1679i −0.112067 + 0.194106i
\(15\) 65.8056 + 79.5621i 1.13273 + 1.36952i
\(16\) −8.00000 13.8564i −0.125000 0.216506i
\(17\) 16.8704 0.240687 0.120344 0.992732i \(-0.461600\pi\)
0.120344 + 0.992732i \(0.461600\pi\)
\(18\) 10.1296 53.0414i 0.132642 0.694555i
\(19\) −10.3521 −0.124997 −0.0624985 0.998045i \(-0.519907\pi\)
−0.0624985 + 0.998045i \(0.519907\pi\)
\(20\) 39.7409 + 68.8332i 0.444316 + 0.769578i
\(21\) −30.0770 + 5.08394i −0.312540 + 0.0528289i
\(22\) 18.7409 32.4601i 0.181617 0.314569i
\(23\) −24.9352 + 43.1891i −0.226059 + 0.391545i −0.956637 0.291284i \(-0.905917\pi\)
0.730578 + 0.682829i \(0.239251\pi\)
\(24\) 14.4939 38.9606i 0.123273 0.331366i
\(25\) −134.917 233.683i −1.07934 1.86946i
\(26\) −91.7409 −0.691995
\(27\) 122.963 67.5500i 0.876456 0.481481i
\(28\) −23.4817 −0.158487
\(29\) −5.45351 9.44575i −0.0349204 0.0604839i 0.848037 0.529937i \(-0.177784\pi\)
−0.882957 + 0.469453i \(0.844451\pi\)
\(30\) −72.0000 + 193.541i −0.438178 + 1.17785i
\(31\) −75.8056 + 131.299i −0.439197 + 0.760711i −0.997628 0.0688401i \(-0.978070\pi\)
0.558431 + 0.829551i \(0.311404\pi\)
\(32\) 16.0000 27.7128i 0.0883883 0.153093i
\(33\) 96.0183 16.2301i 0.506504 0.0856148i
\(34\) 16.8704 + 29.2204i 0.0850957 + 0.147390i
\(35\) 116.648 0.563345
\(36\) 102.000 35.4965i 0.472222 0.164336i
\(37\) 346.186 1.53818 0.769089 0.639141i \(-0.220710\pi\)
0.769089 + 0.639141i \(0.220710\pi\)
\(38\) −10.3521 17.9304i −0.0441931 0.0765447i
\(39\) −151.911 183.667i −0.623723 0.754111i
\(40\) −79.4817 + 137.666i −0.314179 + 0.544174i
\(41\) −132.370 + 229.272i −0.504214 + 0.873325i 0.495774 + 0.868452i \(0.334885\pi\)
−0.999988 + 0.00487314i \(0.998449\pi\)
\(42\) −38.8826 47.0109i −0.142850 0.172713i
\(43\) 205.945 + 356.707i 0.730380 + 1.26506i 0.956721 + 0.291007i \(0.0939903\pi\)
−0.226341 + 0.974048i \(0.572676\pi\)
\(44\) 74.9634 0.256845
\(45\) −506.696 + 176.333i −1.67853 + 0.584136i
\(46\) −99.7409 −0.319695
\(47\) −236.028 408.813i −0.732516 1.26875i −0.955805 0.294003i \(-0.905013\pi\)
0.223289 0.974752i \(-0.428321\pi\)
\(48\) 81.9756 13.8564i 0.246503 0.0416667i
\(49\) 154.269 267.202i 0.449764 0.779014i
\(50\) 269.834 467.366i 0.763205 1.32191i
\(51\) −30.5648 + 82.1602i −0.0839201 + 0.225583i
\(52\) −91.7409 158.900i −0.244657 0.423758i
\(53\) 290.186 0.752078 0.376039 0.926604i \(-0.377286\pi\)
0.376039 + 0.926604i \(0.377286\pi\)
\(54\) 239.963 + 145.429i 0.604720 + 0.366488i
\(55\) −372.389 −0.912962
\(56\) −23.4817 40.6715i −0.0560335 0.0970528i
\(57\) 18.7553 50.4156i 0.0435826 0.117153i
\(58\) 10.9070 18.8915i 0.0246924 0.0427686i
\(59\) −26.6296 + 46.1238i −0.0587606 + 0.101776i −0.893909 0.448248i \(-0.852048\pi\)
0.835149 + 0.550024i \(0.185382\pi\)
\(60\) −407.223 + 68.8332i −0.876203 + 0.148105i
\(61\) 146.972 + 254.563i 0.308489 + 0.534318i 0.978032 0.208455i \(-0.0668435\pi\)
−0.669543 + 0.742773i \(0.733510\pi\)
\(62\) −303.223 −0.621118
\(63\) 29.7325 155.688i 0.0594593 0.311346i
\(64\) 64.0000 0.125000
\(65\) 455.732 + 789.352i 0.869641 + 1.50626i
\(66\) 124.130 + 150.079i 0.231504 + 0.279900i
\(67\) 199.277 345.159i 0.363367 0.629371i −0.625145 0.780508i \(-0.714960\pi\)
0.988513 + 0.151138i \(0.0482936\pi\)
\(68\) −33.7409 + 58.4409i −0.0601718 + 0.104221i
\(69\) −165.158 199.684i −0.288154 0.348392i
\(70\) 116.648 + 202.040i 0.199173 + 0.344977i
\(71\) −647.854 −1.08290 −0.541451 0.840732i \(-0.682125\pi\)
−0.541451 + 0.840732i \(0.682125\pi\)
\(72\) 163.482 + 141.173i 0.267590 + 0.231074i
\(73\) −478.279 −0.766826 −0.383413 0.923577i \(-0.625251\pi\)
−0.383413 + 0.923577i \(0.625251\pi\)
\(74\) 346.186 + 599.612i 0.543828 + 0.941938i
\(75\) 1382.49 233.683i 2.12848 0.359778i
\(76\) 20.7043 35.8608i 0.0312492 0.0541253i
\(77\) 55.0084 95.2773i 0.0814128 0.141011i
\(78\) 166.210 446.785i 0.241277 0.648569i
\(79\) −187.158 324.167i −0.266543 0.461666i 0.701424 0.712744i \(-0.252548\pi\)
−0.967967 + 0.251079i \(0.919215\pi\)
\(80\) −317.927 −0.444316
\(81\) 106.196 + 721.224i 0.145673 + 0.989333i
\(82\) −529.482 −0.713067
\(83\) −466.639 808.243i −0.617112 1.06887i −0.990010 0.140998i \(-0.954969\pi\)
0.372897 0.927873i \(-0.378364\pi\)
\(84\) 42.5427 114.358i 0.0552594 0.148541i
\(85\) 167.611 290.311i 0.213882 0.370455i
\(86\) −411.890 + 713.415i −0.516457 + 0.894529i
\(87\) 55.8818 9.44575i 0.0688639 0.0116401i
\(88\) 74.9634 + 129.840i 0.0908083 + 0.157285i
\(89\) 368.817 0.439264 0.219632 0.975583i \(-0.429514\pi\)
0.219632 + 0.975583i \(0.429514\pi\)
\(90\) −812.113 701.290i −0.951158 0.821361i
\(91\) −269.279 −0.310199
\(92\) −99.7409 172.756i −0.113029 0.195773i
\(93\) −502.097 607.059i −0.559839 0.676872i
\(94\) 472.056 817.626i 0.517967 0.897145i
\(95\) −102.851 + 178.143i −0.111076 + 0.192390i
\(96\) 105.976 + 128.130i 0.112668 + 0.136220i
\(97\) −137.075 237.420i −0.143483 0.248519i 0.785323 0.619086i \(-0.212497\pi\)
−0.928806 + 0.370567i \(0.879163\pi\)
\(98\) 617.076 0.636062
\(99\) −94.9184 + 497.021i −0.0963602 + 0.504570i
\(100\) 1079.34 1.07934
\(101\) 4.78584 + 8.28931i 0.00471494 + 0.00816651i 0.868373 0.495911i \(-0.165166\pi\)
−0.863658 + 0.504078i \(0.831833\pi\)
\(102\) −172.870 + 29.2204i −0.167811 + 0.0283652i
\(103\) −985.752 + 1707.37i −0.943001 + 1.63332i −0.183295 + 0.983058i \(0.558676\pi\)
−0.759706 + 0.650267i \(0.774657\pi\)
\(104\) 183.482 317.800i 0.172999 0.299642i
\(105\) −211.335 + 568.084i −0.196421 + 0.527993i
\(106\) 290.186 + 502.617i 0.265900 + 0.460552i
\(107\) 1441.13 1.30205 0.651025 0.759057i \(-0.274339\pi\)
0.651025 + 0.759057i \(0.274339\pi\)
\(108\) −11.9268 + 561.058i −0.0106265 + 0.499887i
\(109\) −90.3323 −0.0793786 −0.0396893 0.999212i \(-0.512637\pi\)
−0.0396893 + 0.999212i \(0.512637\pi\)
\(110\) −372.389 644.996i −0.322781 0.559072i
\(111\) −627.198 + 1685.95i −0.536315 + 1.44165i
\(112\) 46.9634 81.3430i 0.0396217 0.0686267i
\(113\) 825.364 1429.57i 0.687112 1.19011i −0.285656 0.958332i \(-0.592211\pi\)
0.972768 0.231781i \(-0.0744552\pi\)
\(114\) 106.078 17.9304i 0.0871499 0.0147310i
\(115\) 495.473 + 858.185i 0.401766 + 0.695880i
\(116\) 43.6281 0.0349204
\(117\) 1169.70 407.060i 0.924260 0.321647i
\(118\) −106.518 −0.0831000
\(119\) 49.5183 + 85.7682i 0.0381457 + 0.0660702i
\(120\) −526.445 636.497i −0.400480 0.484200i
\(121\) 489.890 848.515i 0.368062 0.637502i
\(122\) −293.944 + 509.125i −0.218134 + 0.377820i
\(123\) −876.752 1060.03i −0.642716 0.777074i
\(124\) −303.223 525.197i −0.219598 0.380355i
\(125\) −2877.91 −2.05926
\(126\) 299.392 104.190i 0.211682 0.0736663i
\(127\) 1997.45 1.39563 0.697814 0.716279i \(-0.254156\pi\)
0.697814 + 0.716279i \(0.254156\pi\)
\(128\) 64.0000 + 110.851i 0.0441942 + 0.0765466i
\(129\) −2110.31 + 356.707i −1.44033 + 0.243460i
\(130\) −911.465 + 1578.70i −0.614929 + 1.06509i
\(131\) 61.8224 107.080i 0.0412324 0.0714167i −0.844673 0.535283i \(-0.820205\pi\)
0.885905 + 0.463866i \(0.153538\pi\)
\(132\) −135.814 + 365.077i −0.0895537 + 0.240726i
\(133\) −30.3857 52.6296i −0.0198103 0.0343125i
\(134\) 797.110 0.513879
\(135\) 59.2477 2787.11i 0.0377721 1.77686i
\(136\) −134.963 −0.0850957
\(137\) −56.7028 98.2121i −0.0353609 0.0612469i 0.847803 0.530311i \(-0.177925\pi\)
−0.883164 + 0.469064i \(0.844591\pi\)
\(138\) 180.704 485.745i 0.111468 0.299633i
\(139\) 196.799 340.865i 0.120088 0.207999i −0.799714 0.600381i \(-0.795016\pi\)
0.919802 + 0.392382i \(0.128349\pi\)
\(140\) −233.296 + 404.080i −0.140836 + 0.243936i
\(141\) 2418.57 408.813i 1.44454 0.244172i
\(142\) −647.854 1122.12i −0.382864 0.663140i
\(143\) 859.651 0.502711
\(144\) −81.0366 + 424.331i −0.0468962 + 0.245562i
\(145\) −216.727 −0.124126
\(146\) −478.279 828.403i −0.271114 0.469583i
\(147\) 1021.80 + 1235.40i 0.573309 + 0.693158i
\(148\) −692.372 + 1199.22i −0.384545 + 0.666051i
\(149\) −753.606 + 1305.28i −0.414348 + 0.717671i −0.995360 0.0962237i \(-0.969324\pi\)
0.581012 + 0.813895i \(0.302657\pi\)
\(150\) 1787.24 + 2160.85i 0.972849 + 1.17622i
\(151\) −1580.70 2737.85i −0.851890 1.47552i −0.879500 0.475899i \(-0.842123\pi\)
0.0276097 0.999619i \(-0.491210\pi\)
\(152\) 82.8170 0.0441931
\(153\) −344.751 297.705i −0.182166 0.157308i
\(154\) 220.034 0.115135
\(155\) 1506.29 + 2608.97i 0.780569 + 1.35198i
\(156\) 940.064 158.900i 0.482470 0.0815524i
\(157\) −687.806 + 1191.31i −0.349636 + 0.605587i −0.986185 0.165649i \(-0.947028\pi\)
0.636549 + 0.771237i \(0.280361\pi\)
\(158\) 374.316 648.334i 0.188474 0.326447i
\(159\) −525.741 + 1413.23i −0.262226 + 0.704882i
\(160\) −317.927 550.665i −0.157090 0.272087i
\(161\) −292.761 −0.143309
\(162\) −1143.00 + 905.160i −0.554337 + 0.438988i
\(163\) 542.073 0.260481 0.130241 0.991482i \(-0.458425\pi\)
0.130241 + 0.991482i \(0.458425\pi\)
\(164\) −529.482 917.089i −0.252107 0.436662i
\(165\) 674.671 1813.56i 0.318321 0.855669i
\(166\) 933.279 1616.49i 0.436364 0.755805i
\(167\) −1564.81 + 2710.33i −0.725081 + 1.25588i 0.233860 + 0.972270i \(0.424864\pi\)
−0.958941 + 0.283607i \(0.908469\pi\)
\(168\) 240.616 40.6715i 0.110500 0.0186778i
\(169\) 46.4520 + 80.4572i 0.0211434 + 0.0366214i
\(170\) 670.445 0.302475
\(171\) 211.548 + 182.680i 0.0946051 + 0.0816952i
\(172\) −1647.56 −0.730380
\(173\) 1259.14 + 2180.89i 0.553355 + 0.958440i 0.998029 + 0.0627472i \(0.0199862\pi\)
−0.444674 + 0.895692i \(0.646680\pi\)
\(174\) 72.2424 + 87.3444i 0.0314752 + 0.0380550i
\(175\) 792.020 1371.82i 0.342120 0.592570i
\(176\) −149.927 + 259.681i −0.0642111 + 0.111217i
\(177\) −176.380 213.252i −0.0749015 0.0905594i
\(178\) 368.817 + 638.810i 0.155303 + 0.268993i
\(179\) −2331.26 −0.973443 −0.486721 0.873557i \(-0.661807\pi\)
−0.486721 + 0.873557i \(0.661807\pi\)
\(180\) 402.558 2107.91i 0.166694 0.872858i
\(181\) 734.969 0.301822 0.150911 0.988547i \(-0.451779\pi\)
0.150911 + 0.988547i \(0.451779\pi\)
\(182\) −269.279 466.405i −0.109672 0.189957i
\(183\) −1506.01 + 254.563i −0.608348 + 0.102830i
\(184\) 199.482 345.512i 0.0799238 0.138432i
\(185\) 3439.43 5957.27i 1.36688 2.36750i
\(186\) 549.360 1476.72i 0.216565 0.582140i
\(187\) −158.083 273.808i −0.0618191 0.107074i
\(188\) 1888.23 0.732516
\(189\) 704.344 + 426.865i 0.271077 + 0.164285i
\(190\) −411.402 −0.157086
\(191\) −1808.88 3133.07i −0.685266 1.18692i −0.973353 0.229312i \(-0.926352\pi\)
0.288087 0.957604i \(-0.406981\pi\)
\(192\) −115.951 + 311.685i −0.0435836 + 0.117156i
\(193\) −2170.56 + 3759.52i −0.809536 + 1.40216i 0.103649 + 0.994614i \(0.466948\pi\)
−0.913186 + 0.407544i \(0.866385\pi\)
\(194\) 274.149 474.841i 0.101458 0.175730i
\(195\) −4669.87 + 789.352i −1.71495 + 0.289880i
\(196\) 617.076 + 1068.81i 0.224882 + 0.389507i
\(197\) −3286.20 −1.18849 −0.594243 0.804285i \(-0.702548\pi\)
−0.594243 + 0.804285i \(0.702548\pi\)
\(198\) −955.783 + 332.617i −0.343053 + 0.119384i
\(199\) 332.265 0.118360 0.0591800 0.998247i \(-0.481151\pi\)
0.0591800 + 0.998247i \(0.481151\pi\)
\(200\) 1079.34 + 1869.46i 0.381603 + 0.660955i
\(201\) 1319.91 + 1595.83i 0.463180 + 0.560007i
\(202\) −9.57168 + 16.5786i −0.00333396 + 0.00577460i
\(203\) 32.0144 55.4506i 0.0110688 0.0191718i
\(204\) −223.482 270.200i −0.0767002 0.0927342i
\(205\) 2630.26 + 4555.74i 0.896122 + 1.55213i
\(206\) −3943.01 −1.33360
\(207\) 1271.70 442.556i 0.427000 0.148598i
\(208\) 733.927 0.244657
\(209\) 97.0039 + 168.016i 0.0321048 + 0.0556071i
\(210\) −1195.28 + 202.040i −0.392774 + 0.0663909i
\(211\) 2871.24 4973.13i 0.936797 1.62258i 0.165398 0.986227i \(-0.447109\pi\)
0.771398 0.636353i \(-0.219558\pi\)
\(212\) −580.372 + 1005.23i −0.188019 + 0.325659i
\(213\) 1173.74 3155.09i 0.377575 1.01495i
\(214\) 1441.13 + 2496.11i 0.460344 + 0.797339i
\(215\) 8184.43 2.59616
\(216\) −983.707 + 540.400i −0.309874 + 0.170229i
\(217\) −890.023 −0.278427
\(218\) −90.3323 156.460i −0.0280646 0.0486093i
\(219\) 866.516 2329.25i 0.267369 0.718705i
\(220\) 744.777 1289.99i 0.228240 0.395324i
\(221\) −386.927 + 670.177i −0.117772 + 0.203986i
\(222\) −3547.35 + 599.612i −1.07244 + 0.181276i
\(223\) 1231.31 + 2132.69i 0.369751 + 0.640427i 0.989526 0.144352i \(-0.0461097\pi\)
−0.619776 + 0.784779i \(0.712776\pi\)
\(224\) 187.854 0.0560335
\(225\) −1366.65 + 7156.18i −0.404934 + 2.12035i
\(226\) 3301.45 0.971723
\(227\) −1399.67 2424.30i −0.409248 0.708838i 0.585558 0.810631i \(-0.300876\pi\)
−0.994806 + 0.101792i \(0.967542\pi\)
\(228\) 137.134 + 165.802i 0.0398330 + 0.0481600i
\(229\) −706.423 + 1223.56i −0.203850 + 0.353079i −0.949766 0.312961i \(-0.898679\pi\)
0.745915 + 0.666041i \(0.232012\pi\)
\(230\) −990.947 + 1716.37i −0.284092 + 0.492061i
\(231\) 364.347 + 440.512i 0.103776 + 0.125470i
\(232\) 43.6281 + 75.5660i 0.0123462 + 0.0213843i
\(233\) 2033.81 0.571843 0.285922 0.958253i \(-0.407700\pi\)
0.285922 + 0.958253i \(0.407700\pi\)
\(234\) 1874.74 + 1618.91i 0.523743 + 0.452272i
\(235\) −9379.96 −2.60375
\(236\) −106.518 184.495i −0.0293803 0.0508882i
\(237\) 1917.80 324.167i 0.525630 0.0888477i
\(238\) −99.0366 + 171.536i −0.0269731 + 0.0467187i
\(239\) 260.806 451.729i 0.0705863 0.122259i −0.828572 0.559882i \(-0.810846\pi\)
0.899158 + 0.437623i \(0.144180\pi\)
\(240\) 576.000 1548.33i 0.154919 0.416434i
\(241\) −2957.82 5123.10i −0.790582 1.36933i −0.925607 0.378486i \(-0.876445\pi\)
0.135025 0.990842i \(-0.456888\pi\)
\(242\) 1959.56 0.520518
\(243\) −3704.81 789.486i −0.978040 0.208418i
\(244\) −1175.77 −0.308489
\(245\) −3065.39 5309.41i −0.799350 1.38451i
\(246\) 959.282 2578.61i 0.248624 0.668319i
\(247\) 237.428 411.238i 0.0611628 0.105937i
\(248\) 606.445 1050.39i 0.155279 0.268952i
\(249\) 4781.63 808.243i 1.21696 0.205704i
\(250\) −2877.91 4984.69i −0.728060 1.26104i
\(251\) 710.127 0.178577 0.0892884 0.996006i \(-0.471541\pi\)
0.0892884 + 0.996006i \(0.471541\pi\)
\(252\) 479.854 + 414.372i 0.119952 + 0.103583i
\(253\) 934.614 0.232248
\(254\) 1997.45 + 3459.68i 0.493429 + 0.854645i
\(255\) 1110.17 + 1342.25i 0.272633 + 0.329627i
\(256\) −128.000 + 221.703i −0.0312500 + 0.0541266i
\(257\) −3150.50 + 5456.83i −0.764681 + 1.32447i 0.175734 + 0.984438i \(0.443770\pi\)
−0.940415 + 0.340028i \(0.889563\pi\)
\(258\) −2728.14 3298.46i −0.658321 0.795941i
\(259\) 1016.13 + 1759.99i 0.243781 + 0.422241i
\(260\) −3645.86 −0.869641
\(261\) −55.2417 + 289.262i −0.0131011 + 0.0686010i
\(262\) 247.290 0.0583115
\(263\) 2460.91 + 4262.42i 0.576981 + 0.999361i 0.995823 + 0.0913017i \(0.0291028\pi\)
−0.418842 + 0.908059i \(0.637564\pi\)
\(264\) −768.146 + 129.840i −0.179076 + 0.0302694i
\(265\) 2883.06 4993.61i 0.668320 1.15757i
\(266\) 60.7714 105.259i 0.0140080 0.0242626i
\(267\) −668.200 + 1796.17i −0.153158 + 0.411699i
\(268\) 797.110 + 1380.63i 0.181684 + 0.314685i
\(269\) −5454.50 −1.23631 −0.618154 0.786057i \(-0.712119\pi\)
−0.618154 + 0.786057i \(0.712119\pi\)
\(270\) 4886.67 2684.49i 1.10146 0.605086i
\(271\) 2797.10 0.626981 0.313491 0.949591i \(-0.398502\pi\)
0.313491 + 0.949591i \(0.398502\pi\)
\(272\) −134.963 233.763i −0.0300859 0.0521103i
\(273\) 487.863 1311.41i 0.108157 0.290733i
\(274\) 113.406 196.424i 0.0250039 0.0433081i
\(275\) −2528.46 + 4379.42i −0.554443 + 0.960323i
\(276\) 1022.04 172.756i 0.222897 0.0376765i
\(277\) 1072.59 + 1857.77i 0.232655 + 0.402970i 0.958589 0.284794i \(-0.0919254\pi\)
−0.725934 + 0.687765i \(0.758592\pi\)
\(278\) 787.195 0.169830
\(279\) 3866.09 1345.42i 0.829594 0.288702i
\(280\) −933.183 −0.199173
\(281\) 2754.88 + 4771.60i 0.584849 + 1.01299i 0.994894 + 0.100923i \(0.0321797\pi\)
−0.410045 + 0.912065i \(0.634487\pi\)
\(282\) 3126.65 + 3780.27i 0.660247 + 0.798269i
\(283\) −2003.92 + 3470.89i −0.420921 + 0.729056i −0.996030 0.0890206i \(-0.971626\pi\)
0.575109 + 0.818077i \(0.304960\pi\)
\(284\) 1295.71 2244.23i 0.270726 0.468911i
\(285\) −681.229 823.637i −0.141588 0.171186i
\(286\) 859.651 + 1488.96i 0.177735 + 0.307846i
\(287\) −1554.14 −0.319645
\(288\) −816.000 + 283.972i −0.166956 + 0.0581014i
\(289\) −4628.39 −0.942070
\(290\) −216.727 375.382i −0.0438850 0.0760111i
\(291\) 1404.60 237.420i 0.282952 0.0478276i
\(292\) 956.558 1656.81i 0.191707 0.332046i
\(293\) 2904.62 5030.95i 0.579146 1.00311i −0.416432 0.909167i \(-0.636720\pi\)
0.995578 0.0939429i \(-0.0299471\pi\)
\(294\) −1117.98 + 3005.21i −0.221775 + 0.596147i
\(295\) 529.141 + 916.499i 0.104433 + 0.180884i
\(296\) −2769.49 −0.543828
\(297\) −2248.56 1362.73i −0.439309 0.266241i
\(298\) −3014.42 −0.585976
\(299\) −1143.79 1981.10i −0.221227 0.383177i
\(300\) −1955.47 + 5256.44i −0.376331 + 1.01160i
\(301\) −1208.99 + 2094.02i −0.231511 + 0.400989i
\(302\) 3161.40 5475.70i 0.602377 1.04335i
\(303\) −49.0402 + 8.28931i −0.00929798 + 0.00157165i
\(304\) 82.8170 + 143.443i 0.0156246 + 0.0270626i
\(305\) 5840.78 1.09653
\(306\) 170.890 894.831i 0.0319253 0.167170i
\(307\) 8688.30 1.61520 0.807602 0.589728i \(-0.200765\pi\)
0.807602 + 0.589728i \(0.200765\pi\)
\(308\) 220.034 + 381.109i 0.0407064 + 0.0705056i
\(309\) −6529.11 7894.00i −1.20203 1.45331i
\(310\) −3012.58 + 5217.94i −0.551945 + 0.955998i
\(311\) −716.005 + 1240.16i −0.130550 + 0.226119i −0.923889 0.382662i \(-0.875008\pi\)
0.793339 + 0.608780i \(0.208341\pi\)
\(312\) 1215.29 + 1469.34i 0.220519 + 0.266618i
\(313\) −3307.26 5728.34i −0.597244 1.03446i −0.993226 0.116199i \(-0.962929\pi\)
0.395982 0.918258i \(-0.370404\pi\)
\(314\) −2751.22 −0.494460
\(315\) −2383.72 2058.44i −0.426373 0.368190i
\(316\) 1497.26 0.266543
\(317\) −712.045 1233.30i −0.126159 0.218514i 0.796026 0.605262i \(-0.206932\pi\)
−0.922185 + 0.386748i \(0.873598\pi\)
\(318\) −2973.52 + 502.617i −0.524361 + 0.0886332i
\(319\) −102.203 + 177.021i −0.0179382 + 0.0310699i
\(320\) 635.854 1101.33i 0.111079 0.192395i
\(321\) −2610.95 + 7018.41i −0.453984 + 1.22034i
\(322\) −292.761 507.076i −0.0506674 0.0877586i
\(323\) −174.645 −0.0300851
\(324\) −2710.78 1074.57i −0.464812 0.184255i
\(325\) 12377.4 2.11254
\(326\) 542.073 + 938.898i 0.0920940 + 0.159512i
\(327\) 163.658 439.925i 0.0276769 0.0743973i
\(328\) 1058.96 1834.18i 0.178267 0.308767i
\(329\) 1385.59 2399.91i 0.232188 0.402161i
\(330\) 3815.85 644.996i 0.636532 0.107594i
\(331\) −1768.83 3063.70i −0.293726 0.508749i 0.680961 0.732319i \(-0.261562\pi\)
−0.974688 + 0.223570i \(0.928229\pi\)
\(332\) 3733.12 0.617112
\(333\) −7074.38 6109.00i −1.16419 1.00532i
\(334\) −6259.23 −1.02542
\(335\) −3959.73 6858.45i −0.645800 1.11856i
\(336\) 311.061 + 376.087i 0.0505053 + 0.0610632i
\(337\) 880.140 1524.45i 0.142268 0.246415i −0.786082 0.618122i \(-0.787894\pi\)
0.928350 + 0.371706i \(0.121227\pi\)
\(338\) −92.9040 + 160.914i −0.0149506 + 0.0258952i
\(339\) 5466.78 + 6609.59i 0.875854 + 1.05895i
\(340\) 670.445 + 1161.25i 0.106941 + 0.185228i
\(341\) 2841.32 0.451221
\(342\) −104.863 + 549.092i −0.0165799 + 0.0868172i
\(343\) 3824.81 0.602099
\(344\) −1647.56 2853.66i −0.258228 0.447265i
\(345\) −5077.09 + 858.185i −0.792294 + 0.133922i
\(346\) −2518.28 + 4361.78i −0.391281 + 0.677719i
\(347\) 802.720 1390.35i 0.124185 0.215095i −0.797229 0.603677i \(-0.793702\pi\)
0.921414 + 0.388582i \(0.127035\pi\)
\(348\) −79.0426 + 212.472i −0.0121757 + 0.0327290i
\(349\) 3320.94 + 5752.04i 0.509358 + 0.882235i 0.999941 + 0.0108400i \(0.00345056\pi\)
−0.490583 + 0.871395i \(0.663216\pi\)
\(350\) 3168.08 0.483831
\(351\) −136.772 + 6433.99i −0.0207987 + 0.978407i
\(352\) −599.707 −0.0908083
\(353\) 1528.13 + 2646.81i 0.230409 + 0.399080i 0.957929 0.287007i \(-0.0926603\pi\)
−0.727520 + 0.686087i \(0.759327\pi\)
\(354\) 192.983 518.752i 0.0289744 0.0778852i
\(355\) −6436.56 + 11148.5i −0.962302 + 1.66676i
\(356\) −737.634 + 1277.62i −0.109816 + 0.190207i
\(357\) −507.412 + 85.7682i −0.0752243 + 0.0127152i
\(358\) −2331.26 4037.85i −0.344164 0.596110i
\(359\) −2489.46 −0.365985 −0.182993 0.983114i \(-0.558578\pi\)
−0.182993 + 0.983114i \(0.558578\pi\)
\(360\) 4053.57 1410.66i 0.593449 0.206523i
\(361\) −6751.83 −0.984376
\(362\) 734.969 + 1273.00i 0.106710 + 0.184828i
\(363\) 3244.78 + 3923.09i 0.469164 + 0.567242i
\(364\) 538.558 932.810i 0.0775497 0.134320i
\(365\) −4751.80 + 8230.36i −0.681427 + 1.18027i
\(366\) −1946.93 2353.93i −0.278053 0.336180i
\(367\) −1177.52 2039.53i −0.167483 0.290089i 0.770051 0.637982i \(-0.220231\pi\)
−0.937534 + 0.347893i \(0.886897\pi\)
\(368\) 797.927 0.113029
\(369\) 6750.89 2349.34i 0.952405 0.331441i
\(370\) 13757.7 1.93305
\(371\) 851.758 + 1475.29i 0.119194 + 0.206450i
\(372\) 3107.11 525.197i 0.433054 0.0731994i
\(373\) 1378.51 2387.65i 0.191358 0.331443i −0.754342 0.656481i \(-0.772044\pi\)
0.945701 + 0.325039i \(0.105377\pi\)
\(374\) 316.166 547.616i 0.0437127 0.0757127i
\(375\) 5214.02 14015.6i 0.718002 1.93004i
\(376\) 1888.23 + 3270.50i 0.258984 + 0.448573i
\(377\) 500.310 0.0683481
\(378\) −35.0078 + 1646.82i −0.00476350 + 0.224083i
\(379\) 246.459 0.0334030 0.0167015 0.999861i \(-0.494683\pi\)
0.0167015 + 0.999861i \(0.494683\pi\)
\(380\) −411.402 712.570i −0.0555382 0.0961949i
\(381\) −3618.85 + 9727.72i −0.486613 + 1.30805i
\(382\) 3617.76 6266.14i 0.484557 0.839276i
\(383\) −325.287 + 563.414i −0.0433979 + 0.0751674i −0.886908 0.461945i \(-0.847152\pi\)
0.843511 + 0.537113i \(0.180485\pi\)
\(384\) −655.805 + 110.851i −0.0871521 + 0.0147314i
\(385\) −1093.04 1893.20i −0.144692 0.250614i
\(386\) −8682.25 −1.14486
\(387\) 2086.14 10923.6i 0.274016 1.43483i
\(388\) 1096.60 0.143483
\(389\) 5123.08 + 8873.44i 0.667739 + 1.15656i 0.978535 + 0.206082i \(0.0660713\pi\)
−0.310795 + 0.950477i \(0.600595\pi\)
\(390\) −6037.07 7299.10i −0.783843 0.947703i
\(391\) −420.668 + 728.618i −0.0544094 + 0.0942399i
\(392\) −1234.15 + 2137.61i −0.159016 + 0.275423i
\(393\) 409.479 + 495.080i 0.0525585 + 0.0635457i
\(394\) −3286.20 5691.86i −0.420194 0.727797i
\(395\) −7437.81 −0.947435
\(396\) −1531.89 1322.85i −0.194395 0.167868i
\(397\) −9453.68 −1.19513 −0.597565 0.801820i \(-0.703865\pi\)
−0.597565 + 0.801820i \(0.703865\pi\)
\(398\) 332.265 + 575.500i 0.0418466 + 0.0724804i
\(399\) 311.361 52.6296i 0.0390665 0.00660345i
\(400\) −2158.67 + 3738.93i −0.269834 + 0.467366i
\(401\) −135.361 + 234.453i −0.0168569 + 0.0291970i −0.874331 0.485330i \(-0.838699\pi\)
0.857474 + 0.514527i \(0.172033\pi\)
\(402\) −1444.15 + 3881.98i −0.179174 + 0.481631i
\(403\) −3477.24 6022.75i −0.429810 0.744453i
\(404\) −38.2867 −0.00471494
\(405\) 13466.1 + 5338.06i 1.65219 + 0.654939i
\(406\) 128.058 0.0156537
\(407\) −3243.91 5618.62i −0.395073 0.684286i
\(408\) 244.518 657.282i 0.0296702 0.0797556i
\(409\) 5793.08 10033.9i 0.700366 1.21307i −0.267972 0.963427i \(-0.586354\pi\)
0.968338 0.249642i \(-0.0803130\pi\)
\(410\) −5260.51 + 9111.48i −0.633654 + 1.09752i
\(411\) 581.030 98.2121i 0.0697326 0.0117870i
\(412\) −3943.01 6829.49i −0.471500 0.816662i
\(413\) −312.654 −0.0372511
\(414\) 2038.23 + 1760.09i 0.241965 + 0.208946i
\(415\) −18544.7 −2.19354
\(416\) 733.927 + 1271.20i 0.0864993 + 0.149821i
\(417\) 1303.49 + 1575.98i 0.153075 + 0.185075i
\(418\) −194.008 + 336.031i −0.0227015 + 0.0393202i
\(419\) 8066.87 13972.2i 0.940554 1.62909i 0.176137 0.984366i \(-0.443640\pi\)
0.764417 0.644722i \(-0.223027\pi\)
\(420\) −1545.23 1868.25i −0.179522 0.217051i
\(421\) −2495.96 4323.14i −0.288945 0.500467i 0.684613 0.728907i \(-0.259971\pi\)
−0.973558 + 0.228439i \(0.926638\pi\)
\(422\) 11484.9 1.32483
\(423\) −2390.87 + 12519.3i −0.274818 + 1.43903i
\(424\) −2321.49 −0.265900
\(425\) −2276.11 3942.33i −0.259782 0.449956i
\(426\) 6638.52 1122.12i 0.755018 0.127621i
\(427\) −862.787 + 1494.39i −0.0977827 + 0.169365i
\(428\) −2882.26 + 4992.22i −0.325512 + 0.563804i
\(429\) −1557.46 + 4186.56i −0.175280 + 0.471163i
\(430\) 8184.43 + 14175.9i 0.917880 + 1.58982i
\(431\) 8184.74 0.914722 0.457361 0.889281i \(-0.348795\pi\)
0.457361 + 0.889281i \(0.348795\pi\)
\(432\) −1919.71 1163.43i −0.213801 0.129573i
\(433\) 8663.17 0.961490 0.480745 0.876860i \(-0.340366\pi\)
0.480745 + 0.876860i \(0.340366\pi\)
\(434\) −890.023 1541.56i −0.0984389 0.170501i
\(435\) 392.653 1055.48i 0.0432787 0.116336i
\(436\) 180.665 312.920i 0.0198447 0.0343719i
\(437\) 258.133 447.099i 0.0282567 0.0489420i
\(438\) 4900.90 828.403i 0.534644 0.0903713i
\(439\) 7932.15 + 13738.9i 0.862371 + 1.49367i 0.869634 + 0.493697i \(0.164355\pi\)
−0.00726314 + 0.999974i \(0.502312\pi\)
\(440\) 2979.11 0.322781
\(441\) −7867.72 + 2738.00i −0.849554 + 0.295649i
\(442\) −1547.71 −0.166554
\(443\) 199.820 + 346.099i 0.0214306 + 0.0371189i 0.876542 0.481326i \(-0.159845\pi\)
−0.855111 + 0.518445i \(0.826511\pi\)
\(444\) −4585.91 5544.58i −0.490175 0.592644i
\(445\) 3664.28 6346.71i 0.390345 0.676097i
\(446\) −2462.61 + 4265.37i −0.261453 + 0.452850i
\(447\) −4991.49 6034.95i −0.528164 0.638575i
\(448\) 187.854 + 325.372i 0.0198108 + 0.0343134i
\(449\) 5924.51 0.622706 0.311353 0.950294i \(-0.399218\pi\)
0.311353 + 0.950294i \(0.399218\pi\)
\(450\) −13761.5 + 4789.08i −1.44161 + 0.501687i
\(451\) 4961.47 0.518019
\(452\) 3301.45 + 5718.29i 0.343556 + 0.595057i
\(453\) 16197.3 2737.85i 1.67995 0.283963i
\(454\) 2799.34 4848.60i 0.289382 0.501224i
\(455\) −2675.34 + 4633.83i −0.275653 + 0.477445i
\(456\) −150.043 + 403.325i −0.0154088 + 0.0414198i
\(457\) 3945.57 + 6833.93i 0.403864 + 0.699513i 0.994189 0.107653i \(-0.0343335\pi\)
−0.590324 + 0.807166i \(0.701000\pi\)
\(458\) −2825.69 −0.288288
\(459\) 2074.45 1139.60i 0.210952 0.115886i
\(460\) −3963.79 −0.401766
\(461\) 1631.09 + 2825.13i 0.164789 + 0.285422i 0.936580 0.350453i \(-0.113972\pi\)
−0.771792 + 0.635876i \(0.780639\pi\)
\(462\) −398.643 + 1071.58i −0.0401441 + 0.107910i
\(463\) −1845.20 + 3195.98i −0.185213 + 0.320799i −0.943648 0.330950i \(-0.892631\pi\)
0.758435 + 0.651749i \(0.225964\pi\)
\(464\) −87.2561 + 151.132i −0.00873010 + 0.0151210i
\(465\) −15434.9 + 2608.97i −1.53930 + 0.260190i
\(466\) 2033.81 + 3522.67i 0.202177 + 0.350181i
\(467\) −10193.2 −1.01003 −0.505017 0.863110i \(-0.668514\pi\)
−0.505017 + 0.863110i \(0.668514\pi\)
\(468\) −929.296 + 4866.06i −0.0917878 + 0.480628i
\(469\) 2339.69 0.230355
\(470\) −9379.96 16246.6i −0.920565 1.59446i
\(471\) −4555.66 5508.01i −0.445677 0.538845i
\(472\) 213.037 368.990i 0.0207750 0.0359834i
\(473\) 3859.59 6685.00i 0.375188 0.649845i
\(474\) 2479.27 + 2997.55i 0.240246 + 0.290469i
\(475\) 1396.68 + 2419.12i 0.134914 + 0.233677i
\(476\) −396.146 −0.0381457
\(477\) −5930.01 5120.79i −0.569217 0.491541i
\(478\) 1043.22 0.0998240
\(479\) −420.034 727.521i −0.0400665 0.0693972i 0.845297 0.534297i \(-0.179424\pi\)
−0.885363 + 0.464900i \(0.846090\pi\)
\(480\) 3257.78 550.665i 0.309785 0.0523632i
\(481\) −7939.85 + 13752.2i −0.752653 + 1.30363i
\(482\) 5915.65 10246.2i 0.559026 0.968261i
\(483\) 530.406 1425.77i 0.0499675 0.134316i
\(484\) 1959.56 + 3394.06i 0.184031 + 0.318751i
\(485\) −5447.46 −0.510014
\(486\) −2337.38 7206.41i −0.218160 0.672612i
\(487\) −3367.28 −0.313319 −0.156659 0.987653i \(-0.550072\pi\)
−0.156659 + 0.987653i \(0.550072\pi\)
\(488\) −1175.77 2036.50i −0.109067 0.188910i
\(489\) −982.094 + 2639.94i −0.0908218 + 0.244135i
\(490\) 6130.78 10618.8i 0.565226 0.979000i
\(491\) 9434.55 16341.1i 0.867160 1.50196i 0.00227283 0.999997i \(-0.499277\pi\)
0.864887 0.501967i \(-0.167390\pi\)
\(492\) 5425.57 917.089i 0.497162 0.0840357i
\(493\) −92.0030 159.354i −0.00840488 0.0145577i
\(494\) 949.713 0.0864972
\(495\) 7609.84 + 6571.39i 0.690984 + 0.596691i
\(496\) 2425.78 0.219598
\(497\) −1901.59 3293.65i −0.171626 0.297264i
\(498\) 6181.55 + 7473.79i 0.556229 + 0.672507i
\(499\) 7283.00 12614.5i 0.653371 1.13167i −0.328929 0.944355i \(-0.606688\pi\)
0.982300 0.187317i \(-0.0599791\pi\)
\(500\) 5755.82 9969.37i 0.514816 0.891688i
\(501\) −10364.5 12531.1i −0.924252 1.11746i
\(502\) 710.127 + 1229.98i 0.0631365 + 0.109356i
\(503\) −17361.6 −1.53900 −0.769499 0.638648i \(-0.779494\pi\)
−0.769499 + 0.638648i \(0.779494\pi\)
\(504\) −237.860 + 1245.50i −0.0210220 + 0.110078i
\(505\) 190.193 0.0167594
\(506\) 934.614 + 1618.80i 0.0821120 + 0.142222i
\(507\) −475.991 + 80.4572i −0.0416953 + 0.00704779i
\(508\) −3994.90 + 6919.36i −0.348907 + 0.604325i
\(509\) −6966.63 + 12066.6i −0.606661 + 1.05077i 0.385126 + 0.922864i \(0.374158\pi\)
−0.991787 + 0.127903i \(0.959175\pi\)
\(510\) −1214.67 + 3265.12i −0.105464 + 0.283494i
\(511\) −1403.85 2431.54i −0.121532 0.210499i
\(512\) −512.000 −0.0441942
\(513\) −1272.93 + 699.286i −0.109554 + 0.0601837i
\(514\) −12602.0 −1.08142
\(515\) 19587.3 + 33926.2i 1.67596 + 2.90285i
\(516\) 2984.95 8023.74i 0.254661 0.684546i
\(517\) −4423.37 + 7661.50i −0.376285 + 0.651745i
\(518\) −2032.26 + 3519.98i −0.172379 + 0.298569i
\(519\) −12902.3 + 2180.89i −1.09123 + 0.184452i
\(520\) −3645.86 6314.81i −0.307464 0.532544i
\(521\) 5024.22 0.422486 0.211243 0.977434i \(-0.432249\pi\)
0.211243 + 0.977434i \(0.432249\pi\)
\(522\) −556.258 + 193.580i −0.0466413 + 0.0162314i
\(523\) 16008.7 1.33845 0.669226 0.743059i \(-0.266626\pi\)
0.669226 + 0.743059i \(0.266626\pi\)
\(524\) 247.290 + 428.318i 0.0206162 + 0.0357083i
\(525\) 5245.92 + 6342.57i 0.436097 + 0.527262i
\(526\) −4921.82 + 8524.83i −0.407987 + 0.706655i
\(527\) −1278.87 + 2215.07i −0.105709 + 0.183093i
\(528\) −993.037 1200.63i −0.0818492 0.0989595i
\(529\) 4839.97 + 8383.07i 0.397795 + 0.689001i
\(530\) 11532.2 0.945148
\(531\) 1358.11 472.628i 0.110992 0.0386258i
\(532\) 243.086 0.0198103
\(533\) −6071.89 10516.8i −0.493438 0.854660i
\(534\) −3779.25 + 638.810i −0.306262 + 0.0517678i
\(535\) 14317.9 24799.4i 1.15704 2.00406i
\(536\) −1594.22 + 2761.27i −0.128470 + 0.222516i
\(537\) 4223.62 11353.4i 0.339409 0.912355i
\(538\) −5454.50 9447.48i −0.437101 0.757081i
\(539\) −5782.27 −0.462078
\(540\) 9536.35 + 5779.47i 0.759961 + 0.460572i
\(541\) −10094.1 −0.802179 −0.401089 0.916039i \(-0.631368\pi\)
−0.401089 + 0.916039i \(0.631368\pi\)
\(542\) 2797.10 + 4844.73i 0.221671 + 0.383946i
\(543\) −1331.57 + 3579.35i −0.105236 + 0.282882i
\(544\) 269.927 467.527i 0.0212739 0.0368475i
\(545\) −897.471 + 1554.47i −0.0705384 + 0.122176i
\(546\) 2759.29 466.405i 0.216276 0.0365573i
\(547\) 3030.27 + 5248.58i 0.236865 + 0.410262i 0.959813 0.280640i \(-0.0905468\pi\)
−0.722948 + 0.690902i \(0.757213\pi\)
\(548\) 453.622 0.0353609
\(549\) 1488.76 7795.59i 0.115736 0.606025i
\(550\) −10113.8 −0.784100
\(551\) 56.4554 + 97.7837i 0.00436494 + 0.00756030i
\(552\) 1321.26 + 1597.47i 0.101878 + 0.123175i
\(553\) 1098.70 1903.00i 0.0844870 0.146336i
\(554\) −2145.17 + 3715.55i −0.164512 + 0.284943i
\(555\) 22781.0 + 27543.3i 1.74234 + 2.10657i
\(556\) 787.195 + 1363.46i 0.0600441 + 0.103999i
\(557\) 13688.4 1.04128 0.520642 0.853775i \(-0.325693\pi\)
0.520642 + 0.853775i \(0.325693\pi\)
\(558\) 6196.42 + 5350.84i 0.470099 + 0.405949i
\(559\) −18893.6 −1.42954
\(560\) −933.183 1616.32i −0.0704182 0.121968i
\(561\) 1619.87 273.808i 0.121909 0.0206064i
\(562\) −5509.77 + 9543.20i −0.413551 + 0.716291i
\(563\) −11173.3 + 19352.8i −0.836411 + 1.44871i 0.0564662 + 0.998405i \(0.482017\pi\)
−0.892877 + 0.450301i \(0.851317\pi\)
\(564\) −3420.97 + 9195.80i −0.255406 + 0.686548i
\(565\) −16400.3 28406.2i −1.22118 2.11515i
\(566\) −8015.67 −0.595272
\(567\) −3354.95 + 2656.84i −0.248491 + 0.196784i
\(568\) 5182.83 0.382864
\(569\) −4058.97 7030.34i −0.299052 0.517974i 0.676867 0.736105i \(-0.263337\pi\)
−0.975919 + 0.218131i \(0.930004\pi\)
\(570\) 745.353 2003.56i 0.0547709 0.147228i
\(571\) −3491.49 + 6047.43i −0.255892 + 0.443217i −0.965137 0.261744i \(-0.915702\pi\)
0.709246 + 0.704961i \(0.249036\pi\)
\(572\) −1719.30 + 2977.92i −0.125678 + 0.217680i
\(573\) 18535.5 3133.07i 1.35136 0.228422i
\(574\) −1554.14 2691.85i −0.113012 0.195742i
\(575\) 13456.7 0.975973
\(576\) −1307.85 1129.38i −0.0946075 0.0816972i
\(577\) 13972.4 1.00811 0.504055 0.863671i \(-0.331841\pi\)
0.504055 + 0.863671i \(0.331841\pi\)
\(578\) −4628.39 8016.60i −0.333072 0.576898i
\(579\) −14376.7 17382.1i −1.03191 1.24762i
\(580\) 433.454 750.765i 0.0310314 0.0537479i
\(581\) 2739.37 4744.73i 0.195608 0.338803i
\(582\) 1815.82 + 2195.41i 0.129327 + 0.156362i
\(583\) −2719.17 4709.73i −0.193167 0.334575i
\(584\) 3826.23 0.271114
\(585\) 4616.38 24172.7i 0.326263 1.70841i
\(586\) 11618.5 0.819036
\(587\) 754.756 + 1307.28i 0.0530701 + 0.0919200i 0.891340 0.453335i \(-0.149766\pi\)
−0.838270 + 0.545255i \(0.816433\pi\)
\(588\) −6323.15 + 1068.81i −0.443473 + 0.0749607i
\(589\) 784.750 1359.23i 0.0548982 0.0950865i
\(590\) −1058.28 + 1833.00i −0.0738454 + 0.127904i
\(591\) 5953.73 16004.0i 0.414389 1.11390i
\(592\) −2769.49 4796.89i −0.192272 0.333026i
\(593\) −21495.3 −1.48854 −0.744270 0.667879i \(-0.767202\pi\)
−0.744270 + 0.667879i \(0.767202\pi\)
\(594\) 111.759 5257.35i 0.00771977 0.363151i
\(595\) 1967.90 0.135590
\(596\) −3014.42 5221.13i −0.207174 0.358836i
\(597\) −601.977 + 1618.16i −0.0412685 + 0.110932i
\(598\) 2287.58 3962.20i 0.156431 0.270947i
\(599\) −5052.44 + 8751.08i −0.344636 + 0.596927i −0.985288 0.170905i \(-0.945331\pi\)
0.640652 + 0.767832i \(0.278664\pi\)
\(600\) −11059.9 + 1869.46i −0.752531 + 0.127201i
\(601\) 5504.09 + 9533.37i 0.373572 + 0.647045i 0.990112 0.140278i \(-0.0447997\pi\)
−0.616540 + 0.787323i \(0.711466\pi\)
\(602\) −4835.94 −0.327406
\(603\) −10163.1 + 3536.82i −0.686361 + 0.238857i
\(604\) 12645.6 0.851890
\(605\) −9734.33 16860.3i −0.654143 1.13301i
\(606\) −63.3978 76.6509i −0.00424977 0.00513817i
\(607\) −7340.08 + 12713.4i −0.490815 + 0.850116i −0.999944 0.0105740i \(-0.996634\pi\)
0.509129 + 0.860690i \(0.329967\pi\)
\(608\) −165.634 + 286.887i −0.0110483 + 0.0191362i
\(609\) 212.047 + 256.374i 0.0141093 + 0.0170588i
\(610\) 5840.78 + 10116.5i 0.387683 + 0.671486i
\(611\) 21653.4 1.43372
\(612\) 1720.78 598.841i 0.113658 0.0395534i
\(613\) 235.863 0.0155407 0.00777033 0.999970i \(-0.497527\pi\)
0.00777033 + 0.999970i \(0.497527\pi\)
\(614\) 8688.30 + 15048.6i 0.571061 + 0.989106i
\(615\) −26952.1 + 4555.74i −1.76718 + 0.298707i
\(616\) −440.067 + 762.219i −0.0287838 + 0.0498550i
\(617\) −9156.53 + 15859.6i −0.597452 + 1.03482i 0.395744 + 0.918361i \(0.370487\pi\)
−0.993196 + 0.116457i \(0.962846\pi\)
\(618\) 7143.70 19202.7i 0.464987 1.24992i
\(619\) −3424.73 5931.81i −0.222377 0.385169i 0.733152 0.680065i \(-0.238048\pi\)
−0.955529 + 0.294896i \(0.904715\pi\)
\(620\) −12050.3 −0.780569
\(621\) −148.699 + 6995.05i −0.00960883 + 0.452015i
\(622\) −2864.02 −0.184625
\(623\) 1082.56 + 1875.04i 0.0696175 + 0.120581i
\(624\) −1329.68 + 3574.28i −0.0853044 + 0.229304i
\(625\) −11728.0 + 20313.6i −0.750594 + 1.30007i
\(626\) 6614.52 11456.7i 0.422315 0.731472i
\(627\) −993.994 + 168.016i −0.0633115 + 0.0107016i
\(628\) −2751.22 4765.26i −0.174818 0.302794i
\(629\) 5840.30 0.370220
\(630\) 1181.59 6187.17i 0.0747235 0.391274i
\(631\) 22464.3 1.41726 0.708629 0.705581i \(-0.249314\pi\)
0.708629 + 0.705581i \(0.249314\pi\)
\(632\) 1497.26 + 2593.33i 0.0942372 + 0.163224i
\(633\) 19017.6 + 22993.1i 1.19412 + 1.44375i
\(634\) 1424.09 2466.60i 0.0892079 0.154513i
\(635\) 19845.1 34372.7i 1.24020 2.14809i
\(636\) −3844.08 4647.67i −0.239666 0.289768i
\(637\) 7076.39 + 12256.7i 0.440152 + 0.762365i
\(638\) −408.814 −0.0253685
\(639\) 13239.0 + 11432.4i 0.819605 + 0.707761i
\(640\) 2543.41 0.157090
\(641\) −9444.39 16358.2i −0.581952 1.00797i −0.995248 0.0973730i \(-0.968956\pi\)
0.413296 0.910597i \(-0.364377\pi\)
\(642\) −14767.2 + 2496.11i −0.907810 + 0.153448i
\(643\) −3396.98 + 5883.74i −0.208342 + 0.360858i −0.951192 0.308599i \(-0.900140\pi\)
0.742851 + 0.669457i \(0.233473\pi\)
\(644\) 585.521 1014.15i 0.0358273 0.0620547i
\(645\) −14828.0 + 39858.8i −0.905200 + 2.43324i
\(646\) −174.645 302.494i −0.0106367 0.0184233i
\(647\) 5277.92 0.320706 0.160353 0.987060i \(-0.448737\pi\)
0.160353 + 0.987060i \(0.448737\pi\)
\(648\) −849.567 5769.79i −0.0515033 0.349782i
\(649\) 998.122 0.0603694
\(650\) 12377.4 + 21438.3i 0.746894 + 1.29366i
\(651\) 1612.49 4334.48i 0.0970789 0.260955i
\(652\) −1084.15 + 1877.80i −0.0651203 + 0.112792i
\(653\) 8282.09 14345.0i 0.496330 0.859668i −0.503661 0.863901i \(-0.668014\pi\)
0.999991 + 0.00423291i \(0.00134738\pi\)
\(654\) 925.631 156.460i 0.0553441 0.00935486i
\(655\) −1228.44 2127.72i −0.0732810 0.126926i
\(656\) 4235.85 0.252107
\(657\) 9773.73 + 8439.99i 0.580380 + 0.501180i
\(658\) 5542.34 0.328363
\(659\) 1650.51 + 2858.77i 0.0975641 + 0.168986i 0.910676 0.413122i \(-0.135562\pi\)
−0.813112 + 0.582108i \(0.802228\pi\)
\(660\) 4933.02 + 5964.25i 0.290935 + 0.351755i
\(661\) −6495.17 + 11250.0i −0.382198 + 0.661986i −0.991376 0.131047i \(-0.958166\pi\)
0.609178 + 0.793033i \(0.291499\pi\)
\(662\) 3537.65 6127.39i 0.207696 0.359740i
\(663\) −2562.80 3098.55i −0.150122 0.181505i
\(664\) 3733.12 + 6465.95i 0.218182 + 0.377903i
\(665\) −1207.55 −0.0704164
\(666\) 3506.72 18362.2i 0.204028 1.06835i
\(667\) 543.938 0.0315762
\(668\) −6259.23 10841.3i −0.362541 0.627939i
\(669\) −12617.1 + 2132.69i −0.729158 + 0.123250i
\(670\) 7919.46 13716.9i 0.456650 0.790940i
\(671\) 2754.38 4770.72i 0.158467 0.274473i
\(672\) −340.342 + 914.861i −0.0195371 + 0.0525171i
\(673\) −9257.15 16033.9i −0.530219 0.918365i −0.999378 0.0352522i \(-0.988777\pi\)
0.469160 0.883113i \(-0.344557\pi\)
\(674\) 3520.56 0.201197
\(675\) −32375.1 19620.8i −1.84610 1.11882i
\(676\) −371.616 −0.0211434
\(677\) 3050.00 + 5282.75i 0.173148 + 0.299900i 0.939519 0.342498i \(-0.111273\pi\)
−0.766371 + 0.642398i \(0.777940\pi\)
\(678\) −5981.37 + 16078.3i −0.338810 + 0.910744i
\(679\) 804.687 1393.76i 0.0454802 0.0787740i
\(680\) −1340.89 + 2322.49i −0.0756188 + 0.130976i
\(681\) 14342.3 2424.30i 0.807048 0.136416i
\(682\) 2841.32 + 4921.32i 0.159531 + 0.276315i
\(683\) −22630.0 −1.26781 −0.633905 0.773411i \(-0.718549\pi\)
−0.633905 + 0.773411i \(0.718549\pi\)
\(684\) −1055.92 + 367.464i −0.0590263 + 0.0205414i
\(685\) −2253.42 −0.125691
\(686\) 3824.81 + 6624.76i 0.212874 + 0.368709i
\(687\) −4678.97 5657.10i −0.259846 0.314166i
\(688\) 3295.12 5707.32i 0.182595 0.316264i
\(689\) −6655.48 + 11527.6i −0.368002 + 0.637398i
\(690\) −6563.51 7935.59i −0.362128 0.437830i
\(691\) −11493.4 19907.2i −0.632750 1.09595i −0.986987 0.160799i \(-0.948593\pi\)
0.354237 0.935156i \(-0.384741\pi\)
\(692\) −10073.1 −0.553355
\(693\) −2805.43 + 976.302i −0.153780 + 0.0535161i
\(694\) 3210.88 0.175624
\(695\) −3910.48 6773.14i −0.213428 0.369669i
\(696\) −447.055 + 75.5660i −0.0243471 + 0.00411541i
\(697\) −2233.15 + 3867.92i −0.121358 + 0.210198i
\(698\) −6641.89 + 11504.1i −0.360171 + 0.623834i
\(699\) −3684.73 + 9904.81i −0.199384 + 0.535958i
\(700\) 3168.08 + 5487.27i 0.171060 + 0.296285i
\(701\) 27015.5 1.45558 0.727790 0.685800i \(-0.240548\pi\)
0.727790 + 0.685800i \(0.240548\pi\)
\(702\) −11280.8 + 6197.09i −0.606503 + 0.333183i
\(703\) −3583.76 −0.192268
\(704\) −599.707 1038.72i −0.0321056 0.0556085i
\(705\) 16994.0 45681.1i 0.907847 2.44035i
\(706\) −3056.27 + 5293.61i −0.162924 + 0.282192i
\(707\) −28.0949 + 48.6618i −0.00149451 + 0.00258857i
\(708\) 1091.49 184.495i 0.0579387 0.00979343i
\(709\) 9588.67 + 16608.1i 0.507912 + 0.879730i 0.999958 + 0.00916077i \(0.00291601\pi\)
−0.492046 + 0.870569i \(0.663751\pi\)
\(710\) −25746.3 −1.36090
\(711\) −1895.83 + 9927.11i −0.0999988 + 0.523623i
\(712\) −2950.54 −0.155303
\(713\) −3780.46 6547.95i −0.198568 0.343931i
\(714\) −655.966 793.094i −0.0343822 0.0415698i
\(715\) 8540.81 14793.1i 0.446725 0.773750i
\(716\) 4662.51 8075.71i 0.243361 0.421513i
\(717\) 1727.44 + 2088.56i 0.0899755 + 0.108785i
\(718\) −2489.46 4311.87i −0.129395 0.224119i
\(719\) 25931.8 1.34505 0.672526 0.740073i \(-0.265209\pi\)
0.672526 + 0.740073i \(0.265209\pi\)
\(720\) 6496.90 + 5610.32i 0.336285 + 0.290395i
\(721\) −11573.6 −0.597812
\(722\) −6751.83 11694.5i −0.348029 0.602805i
\(723\) 30308.7 5123.10i 1.55905 0.263527i
\(724\) −1469.94 + 2546.01i −0.0754556 + 0.130693i
\(725\) −1471.54 + 2548.78i −0.0753816 + 0.130565i
\(726\) −3550.21 + 9543.20i −0.181489 + 0.487853i
\(727\) −2915.25 5049.36i −0.148722 0.257594i 0.782034 0.623236i \(-0.214183\pi\)
−0.930755 + 0.365643i \(0.880849\pi\)
\(728\) 2154.23 0.109672
\(729\) 10557.0 16612.4i 0.536351 0.843995i
\(730\) −19007.2 −0.963683
\(731\) 3474.38 + 6017.81i 0.175793 + 0.304482i
\(732\) 2130.19 5726.11i 0.107560 0.289130i
\(733\) 11577.3 20052.4i 0.583379 1.01044i −0.411696 0.911321i \(-0.635064\pi\)
0.995075 0.0991211i \(-0.0316031\pi\)
\(734\) 2355.05 4079.06i 0.118428 0.205124i
\(735\) 31410.9 5309.41i 1.57634 0.266450i
\(736\) 797.927 + 1382.05i 0.0399619 + 0.0692161i
\(737\) −7469.26 −0.373316
\(738\) 10820.1 + 9343.55i 0.539692 + 0.466044i
\(739\) −27085.8 −1.34827 −0.674133 0.738610i \(-0.735483\pi\)
−0.674133 + 0.738610i \(0.735483\pi\)
\(740\) 13757.7 + 23829.1i 0.683438 + 1.18375i
\(741\) 1572.60 + 1901.35i 0.0779635 + 0.0942615i
\(742\) −1703.52 + 2950.58i −0.0842830 + 0.145983i
\(743\) −16093.8 + 27875.3i −0.794650 + 1.37637i 0.128412 + 0.991721i \(0.459012\pi\)
−0.923061 + 0.384653i \(0.874321\pi\)
\(744\) 4016.77 + 4856.47i 0.197933 + 0.239310i
\(745\) 14974.5 + 25936.5i 0.736406 + 1.27549i
\(746\) 5514.05 0.270622
\(747\) −4726.86 + 24751.2i −0.231522 + 1.21232i
\(748\) 1264.66 0.0618191
\(749\) 4230.02 + 7326.61i 0.206357 + 0.357421i
\(750\) 29489.8 4984.69i 1.43575 0.242687i
\(751\) 1366.46 2366.78i 0.0663954 0.115000i −0.830917 0.556397i \(-0.812183\pi\)
0.897312 + 0.441397i \(0.145517\pi\)
\(752\) −3776.45 + 6541.01i −0.183129 + 0.317189i
\(753\) −1286.56 + 3458.37i −0.0622642 + 0.167370i
\(754\) 500.310 + 866.562i 0.0241647 + 0.0418545i
\(755\) −62818.3 −3.02807
\(756\) −2887.39 + 1586.19i −0.138907 + 0.0763084i
\(757\) −6315.62 −0.303230 −0.151615 0.988440i \(-0.548447\pi\)
−0.151615 + 0.988440i \(0.548447\pi\)
\(758\) 246.459 + 426.879i 0.0118097 + 0.0204551i
\(759\) −1693.28 + 4551.64i −0.0809776 + 0.217673i
\(760\) 822.805 1425.14i 0.0392714 0.0680201i
\(761\) −15740.7 + 27263.6i −0.749801 + 1.29869i 0.198116 + 0.980179i \(0.436518\pi\)
−0.947918 + 0.318516i \(0.896816\pi\)
\(762\) −20467.8 + 3459.68i −0.973056 + 0.164476i
\(763\) −265.145 459.244i −0.0125804 0.0217900i
\(764\) 14471.0 0.685266
\(765\) −8548.18 + 2974.81i −0.404000 + 0.140594i
\(766\) −1301.15 −0.0613739
\(767\) −1221.51 2115.72i −0.0575048 0.0996012i
\(768\) −847.805 1025.04i −0.0398340 0.0481612i
\(769\) 13648.3 23639.6i 0.640014 1.10854i −0.345415 0.938450i \(-0.612262\pi\)
0.985429 0.170087i