Properties

Label 18.4.a.a
Level 18
Weight 4
Character orbit 18.a
Self dual yes
Analytic conductor 1.062
Analytic rank 0
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 18 = 2 \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 18.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(1.06203438010\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 6)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 2q^{2} + 4q^{4} - 6q^{5} - 16q^{7} + 8q^{8} + O(q^{10}) \) \( q + 2q^{2} + 4q^{4} - 6q^{5} - 16q^{7} + 8q^{8} - 12q^{10} - 12q^{11} + 38q^{13} - 32q^{14} + 16q^{16} + 126q^{17} + 20q^{19} - 24q^{20} - 24q^{22} - 168q^{23} - 89q^{25} + 76q^{26} - 64q^{28} - 30q^{29} - 88q^{31} + 32q^{32} + 252q^{34} + 96q^{35} + 254q^{37} + 40q^{38} - 48q^{40} - 42q^{41} - 52q^{43} - 48q^{44} - 336q^{46} + 96q^{47} - 87q^{49} - 178q^{50} + 152q^{52} - 198q^{53} + 72q^{55} - 128q^{56} - 60q^{58} + 660q^{59} - 538q^{61} - 176q^{62} + 64q^{64} - 228q^{65} + 884q^{67} + 504q^{68} + 192q^{70} - 792q^{71} + 218q^{73} + 508q^{74} + 80q^{76} + 192q^{77} - 520q^{79} - 96q^{80} - 84q^{82} + 492q^{83} - 756q^{85} - 104q^{86} - 96q^{88} - 810q^{89} - 608q^{91} - 672q^{92} + 192q^{94} - 120q^{95} + 1154q^{97} - 174q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
2.00000 0 4.00000 −6.00000 0 −16.0000 8.00000 0 −12.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 18.4.a.a 1
3.b odd 2 1 6.4.a.a 1
4.b odd 2 1 144.4.a.c 1
5.b even 2 1 450.4.a.h 1
5.c odd 4 2 450.4.c.e 2
7.b odd 2 1 882.4.a.n 1
7.c even 3 2 882.4.g.i 2
7.d odd 6 2 882.4.g.f 2
8.b even 2 1 576.4.a.q 1
8.d odd 2 1 576.4.a.r 1
9.c even 3 2 162.4.c.c 2
9.d odd 6 2 162.4.c.f 2
11.b odd 2 1 2178.4.a.e 1
12.b even 2 1 48.4.a.c 1
15.d odd 2 1 150.4.a.i 1
15.e even 4 2 150.4.c.d 2
21.c even 2 1 294.4.a.e 1
21.g even 6 2 294.4.e.g 2
21.h odd 6 2 294.4.e.h 2
24.f even 2 1 192.4.a.c 1
24.h odd 2 1 192.4.a.i 1
33.d even 2 1 726.4.a.f 1
39.d odd 2 1 1014.4.a.g 1
39.f even 4 2 1014.4.b.d 2
48.i odd 4 2 768.4.d.n 2
48.k even 4 2 768.4.d.c 2
51.c odd 2 1 1734.4.a.d 1
57.d even 2 1 2166.4.a.i 1
60.h even 2 1 1200.4.a.b 1
60.l odd 4 2 1200.4.f.j 2
84.h odd 2 1 2352.4.a.e 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6.4.a.a 1 3.b odd 2 1
18.4.a.a 1 1.a even 1 1 trivial
48.4.a.c 1 12.b even 2 1
144.4.a.c 1 4.b odd 2 1
150.4.a.i 1 15.d odd 2 1
150.4.c.d 2 15.e even 4 2
162.4.c.c 2 9.c even 3 2
162.4.c.f 2 9.d odd 6 2
192.4.a.c 1 24.f even 2 1
192.4.a.i 1 24.h odd 2 1
294.4.a.e 1 21.c even 2 1
294.4.e.g 2 21.g even 6 2
294.4.e.h 2 21.h odd 6 2
450.4.a.h 1 5.b even 2 1
450.4.c.e 2 5.c odd 4 2
576.4.a.q 1 8.b even 2 1
576.4.a.r 1 8.d odd 2 1
726.4.a.f 1 33.d even 2 1
768.4.d.c 2 48.k even 4 2
768.4.d.n 2 48.i odd 4 2
882.4.a.n 1 7.b odd 2 1
882.4.g.f 2 7.d odd 6 2
882.4.g.i 2 7.c even 3 2
1014.4.a.g 1 39.d odd 2 1
1014.4.b.d 2 39.f even 4 2
1200.4.a.b 1 60.h even 2 1
1200.4.f.j 2 60.l odd 4 2
1734.4.a.d 1 51.c odd 2 1
2166.4.a.i 1 57.d even 2 1
2178.4.a.e 1 11.b odd 2 1
2352.4.a.e 1 84.h odd 2 1

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)

Hecke kernels

This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(\Gamma_0(18))\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - 2 T \)
$3$ 1
$5$ \( 1 + 6 T + 125 T^{2} \)
$7$ \( 1 + 16 T + 343 T^{2} \)
$11$ \( 1 + 12 T + 1331 T^{2} \)
$13$ \( 1 - 38 T + 2197 T^{2} \)
$17$ \( 1 - 126 T + 4913 T^{2} \)
$19$ \( 1 - 20 T + 6859 T^{2} \)
$23$ \( 1 + 168 T + 12167 T^{2} \)
$29$ \( 1 + 30 T + 24389 T^{2} \)
$31$ \( 1 + 88 T + 29791 T^{2} \)
$37$ \( 1 - 254 T + 50653 T^{2} \)
$41$ \( 1 + 42 T + 68921 T^{2} \)
$43$ \( 1 + 52 T + 79507 T^{2} \)
$47$ \( 1 - 96 T + 103823 T^{2} \)
$53$ \( 1 + 198 T + 148877 T^{2} \)
$59$ \( 1 - 660 T + 205379 T^{2} \)
$61$ \( 1 + 538 T + 226981 T^{2} \)
$67$ \( 1 - 884 T + 300763 T^{2} \)
$71$ \( 1 + 792 T + 357911 T^{2} \)
$73$ \( 1 - 218 T + 389017 T^{2} \)
$79$ \( 1 + 520 T + 493039 T^{2} \)
$83$ \( 1 - 492 T + 571787 T^{2} \)
$89$ \( 1 + 810 T + 704969 T^{2} \)
$97$ \( 1 - 1154 T + 912673 T^{2} \)
show more
show less