Defining parameters
Level: | \( N \) | \(=\) | \( 18 = 2 \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 18.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(12\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(18))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 13 | 1 | 12 |
Cusp forms | 5 | 1 | 4 |
Eisenstein series | 8 | 0 | 8 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | Fricke | Dim |
---|---|---|---|
\(-\) | \(-\) | \(+\) | \(1\) |
Plus space | \(+\) | \(1\) | |
Minus space | \(-\) | \(0\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(18))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | |||||||
18.4.a.a | $1$ | $1.062$ | \(\Q\) | None | \(2\) | \(0\) | \(-6\) | \(-16\) | $-$ | $-$ | \(q+2q^{2}+4q^{4}-6q^{5}-2^{4}q^{7}+8q^{8}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(18))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(18)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 2}\)