Properties

Label 18.4
Level 18
Weight 4
Dimension 7
Nonzero newspaces 2
Newform subspaces 3
Sturm bound 72
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 18 = 2 \cdot 3^{2} \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 3 \)
Sturm bound: \(72\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(18))\).

Total New Old
Modular forms 35 7 28
Cusp forms 19 7 12
Eisenstein series 16 0 16

Trace form

\( 7 q + 4 q^{2} + 3 q^{3} - 8 q^{4} + 12 q^{5} - 18 q^{6} - 4 q^{7} - 8 q^{8} - 105 q^{9} - 12 q^{10} + 27 q^{11} + 24 q^{12} + 14 q^{13} + 68 q^{14} + 90 q^{15} - 32 q^{16} + 48 q^{17} + 156 q^{18} + 230 q^{19}+ \cdots + 1152 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(18))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
18.4.a \(\chi_{18}(1, \cdot)\) 18.4.a.a 1 1
18.4.c \(\chi_{18}(7, \cdot)\) 18.4.c.a 2 2
18.4.c.b 4

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(18))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(18)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 2}\)