Properties

Label 18.3.d.a.5.2
Level $18$
Weight $3$
Character 18.5
Analytic conductor $0.490$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 18 = 2 \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 18.d (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.490464475849\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 5.2
Root \(1.22474 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 18.5
Dual form 18.3.d.a.11.2

$q$-expansion

\(f(q)\) \(=\) \(q+(1.22474 - 0.707107i) q^{2} +(-2.44949 + 1.73205i) q^{3} +(1.00000 - 1.73205i) q^{4} +(-4.50000 - 2.59808i) q^{5} +(-1.77526 + 3.85337i) q^{6} +(4.17423 + 7.22999i) q^{7} -2.82843i q^{8} +(3.00000 - 8.48528i) q^{9} +O(q^{10})\) \(q+(1.22474 - 0.707107i) q^{2} +(-2.44949 + 1.73205i) q^{3} +(1.00000 - 1.73205i) q^{4} +(-4.50000 - 2.59808i) q^{5} +(-1.77526 + 3.85337i) q^{6} +(4.17423 + 7.22999i) q^{7} -2.82843i q^{8} +(3.00000 - 8.48528i) q^{9} -7.34847 q^{10} +(0.825765 - 0.476756i) q^{11} +(0.550510 + 5.97469i) q^{12} +(4.84847 - 8.39780i) q^{13} +(10.2247 + 5.90326i) q^{14} +(15.5227 - 1.43027i) q^{15} +(-2.00000 - 3.46410i) q^{16} +18.8776i q^{17} +(-2.32577 - 12.5136i) q^{18} -24.6969 q^{19} +(-9.00000 + 5.19615i) q^{20} +(-22.7474 - 10.4798i) q^{21} +(0.674235 - 1.16781i) q^{22} +(0.825765 + 0.476756i) q^{23} +(4.89898 + 6.92820i) q^{24} +(1.00000 + 1.73205i) q^{25} -13.7135i q^{26} +(7.34847 + 25.9808i) q^{27} +16.6969 q^{28} +(11.8485 - 6.84072i) q^{29} +(18.0000 - 12.7279i) q^{30} +(-1.52270 + 2.63740i) q^{31} +(-4.89898 - 2.82843i) q^{32} +(-1.19694 + 2.59808i) q^{33} +(13.3485 + 23.1202i) q^{34} -43.3799i q^{35} +(-11.6969 - 13.6814i) q^{36} +46.6969 q^{37} +(-30.2474 + 17.4634i) q^{38} +(2.66913 + 28.9681i) q^{39} +(-7.34847 + 12.7279i) q^{40} +(-9.45459 - 5.45861i) q^{41} +(-35.2702 + 3.24980i) q^{42} +(-22.5227 - 39.0105i) q^{43} -1.90702i q^{44} +(-35.5454 + 30.3895i) q^{45} +1.34847 q^{46} +(39.2196 - 22.6435i) q^{47} +(10.8990 + 5.02118i) q^{48} +(-10.3485 + 17.9241i) q^{49} +(2.44949 + 1.41421i) q^{50} +(-32.6969 - 46.2405i) q^{51} +(-9.69694 - 16.7956i) q^{52} +94.3879i q^{53} +(27.3712 + 26.6237i) q^{54} -4.95459 q^{55} +(20.4495 - 11.8065i) q^{56} +(60.4949 - 42.7764i) q^{57} +(9.67423 - 16.7563i) q^{58} +(-16.2650 - 9.39063i) q^{59} +(13.0454 - 28.3164i) q^{60} +(-6.54541 - 11.3370i) q^{61} +4.30686i q^{62} +(73.8712 - 13.7296i) q^{63} -8.00000 q^{64} +(-43.6362 + 25.1934i) q^{65} +(0.371173 + 4.02834i) q^{66} +(-37.5227 + 64.9912i) q^{67} +(32.6969 + 18.8776i) q^{68} +(-2.84847 + 0.262459i) q^{69} +(-30.6742 - 53.1293i) q^{70} -18.0204i q^{71} +(-24.0000 - 8.48528i) q^{72} -7.90918 q^{73} +(57.1918 - 33.0197i) q^{74} +(-5.44949 - 2.51059i) q^{75} +(-24.6969 + 42.7764i) q^{76} +(6.89388 + 3.98018i) q^{77} +(23.7526 + 33.5912i) q^{78} +(21.8712 + 37.8820i) q^{79} +20.7846i q^{80} +(-63.0000 - 50.9117i) q^{81} -15.4393 q^{82} +(-112.871 + 65.1662i) q^{83} +(-40.8990 + 28.9199i) q^{84} +(49.0454 - 84.9491i) q^{85} +(-55.1691 - 31.8519i) q^{86} +(-17.1742 + 37.2784i) q^{87} +(-1.34847 - 2.33562i) q^{88} -145.300i q^{89} +(-22.0454 + 62.3538i) q^{90} +80.9546 q^{91} +(1.65153 - 0.953512i) q^{92} +(-0.838264 - 9.09769i) q^{93} +(32.0227 - 55.4650i) q^{94} +(111.136 + 64.1645i) q^{95} +(16.8990 - 1.55708i) q^{96} +(54.9393 + 95.1576i) q^{97} +29.2699i q^{98} +(-1.56811 - 8.43712i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{4} - 18 q^{5} - 12 q^{6} + 2 q^{7} + 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{4} - 18 q^{5} - 12 q^{6} + 2 q^{7} + 12 q^{9} + 18 q^{11} + 12 q^{12} - 10 q^{13} + 36 q^{14} + 18 q^{15} - 8 q^{16} - 24 q^{18} - 40 q^{19} - 36 q^{20} - 42 q^{21} - 12 q^{22} + 18 q^{23} + 4 q^{25} + 8 q^{28} + 18 q^{29} + 72 q^{30} + 38 q^{31} + 54 q^{33} + 24 q^{34} + 12 q^{36} + 128 q^{37} - 72 q^{38} - 102 q^{39} - 126 q^{41} - 48 q^{42} - 46 q^{43} - 54 q^{45} - 24 q^{46} + 54 q^{47} + 24 q^{48} - 12 q^{49} - 72 q^{51} + 20 q^{52} + 36 q^{54} - 108 q^{55} + 72 q^{56} + 144 q^{57} + 24 q^{58} + 126 q^{59} - 36 q^{60} + 62 q^{61} + 222 q^{63} - 32 q^{64} + 90 q^{65} - 72 q^{66} - 106 q^{67} + 72 q^{68} + 18 q^{69} - 108 q^{70} - 96 q^{72} - 208 q^{73} + 72 q^{74} - 12 q^{75} - 40 q^{76} - 90 q^{77} + 144 q^{78} + 14 q^{79} - 252 q^{81} + 144 q^{82} - 378 q^{83} - 144 q^{84} + 108 q^{85} - 108 q^{86} - 54 q^{87} + 24 q^{88} + 412 q^{91} + 36 q^{92} + 222 q^{93} + 84 q^{94} + 180 q^{95} + 48 q^{96} + 14 q^{97} + 126 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/18\mathbb{Z}\right)^\times\).

\(n\) \(11\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.22474 0.707107i 0.612372 0.353553i
\(3\) −2.44949 + 1.73205i −0.816497 + 0.577350i
\(4\) 1.00000 1.73205i 0.250000 0.433013i
\(5\) −4.50000 2.59808i −0.900000 0.519615i −0.0227998 0.999740i \(-0.507258\pi\)
−0.877200 + 0.480125i \(0.840591\pi\)
\(6\) −1.77526 + 3.85337i −0.295876 + 0.642229i
\(7\) 4.17423 + 7.22999i 0.596319 + 1.03286i 0.993359 + 0.115054i \(0.0367041\pi\)
−0.397040 + 0.917801i \(0.629963\pi\)
\(8\) 2.82843i 0.353553i
\(9\) 3.00000 8.48528i 0.333333 0.942809i
\(10\) −7.34847 −0.734847
\(11\) 0.825765 0.476756i 0.0750696 0.0433414i −0.461995 0.886882i \(-0.652866\pi\)
0.537065 + 0.843541i \(0.319533\pi\)
\(12\) 0.550510 + 5.97469i 0.0458759 + 0.497891i
\(13\) 4.84847 8.39780i 0.372959 0.645984i −0.617060 0.786916i \(-0.711676\pi\)
0.990019 + 0.140932i \(0.0450098\pi\)
\(14\) 10.2247 + 5.90326i 0.730339 + 0.421661i
\(15\) 15.5227 1.43027i 1.03485 0.0953512i
\(16\) −2.00000 3.46410i −0.125000 0.216506i
\(17\) 18.8776i 1.11045i 0.831701 + 0.555223i \(0.187367\pi\)
−0.831701 + 0.555223i \(0.812633\pi\)
\(18\) −2.32577 12.5136i −0.129209 0.695201i
\(19\) −24.6969 −1.29984 −0.649919 0.760003i \(-0.725197\pi\)
−0.649919 + 0.760003i \(0.725197\pi\)
\(20\) −9.00000 + 5.19615i −0.450000 + 0.259808i
\(21\) −22.7474 10.4798i −1.08321 0.499038i
\(22\) 0.674235 1.16781i 0.0306470 0.0530822i
\(23\) 0.825765 + 0.476756i 0.0359028 + 0.0207285i 0.517844 0.855475i \(-0.326735\pi\)
−0.481941 + 0.876204i \(0.660068\pi\)
\(24\) 4.89898 + 6.92820i 0.204124 + 0.288675i
\(25\) 1.00000 + 1.73205i 0.0400000 + 0.0692820i
\(26\) 13.7135i 0.527444i
\(27\) 7.34847 + 25.9808i 0.272166 + 0.962250i
\(28\) 16.6969 0.596319
\(29\) 11.8485 6.84072i 0.408568 0.235887i −0.281606 0.959530i \(-0.590867\pi\)
0.690174 + 0.723643i \(0.257534\pi\)
\(30\) 18.0000 12.7279i 0.600000 0.424264i
\(31\) −1.52270 + 2.63740i −0.0491195 + 0.0850774i −0.889540 0.456858i \(-0.848975\pi\)
0.840420 + 0.541935i \(0.182308\pi\)
\(32\) −4.89898 2.82843i −0.153093 0.0883883i
\(33\) −1.19694 + 2.59808i −0.0362709 + 0.0787296i
\(34\) 13.3485 + 23.1202i 0.392602 + 0.680007i
\(35\) 43.3799i 1.23943i
\(36\) −11.6969 13.6814i −0.324915 0.380040i
\(37\) 46.6969 1.26208 0.631040 0.775751i \(-0.282628\pi\)
0.631040 + 0.775751i \(0.282628\pi\)
\(38\) −30.2474 + 17.4634i −0.795985 + 0.459562i
\(39\) 2.66913 + 28.9681i 0.0684393 + 0.742772i
\(40\) −7.34847 + 12.7279i −0.183712 + 0.318198i
\(41\) −9.45459 5.45861i −0.230600 0.133137i 0.380249 0.924884i \(-0.375838\pi\)
−0.610849 + 0.791747i \(0.709172\pi\)
\(42\) −35.2702 + 3.24980i −0.839766 + 0.0773763i
\(43\) −22.5227 39.0105i −0.523784 0.907220i −0.999617 0.0276845i \(-0.991187\pi\)
0.475833 0.879536i \(-0.342147\pi\)
\(44\) 1.90702i 0.0433414i
\(45\) −35.5454 + 30.3895i −0.789898 + 0.675323i
\(46\) 1.34847 0.0293145
\(47\) 39.2196 22.6435i 0.834460 0.481776i −0.0209170 0.999781i \(-0.506659\pi\)
0.855377 + 0.518005i \(0.173325\pi\)
\(48\) 10.8990 + 5.02118i 0.227062 + 0.104608i
\(49\) −10.3485 + 17.9241i −0.211193 + 0.365797i
\(50\) 2.44949 + 1.41421i 0.0489898 + 0.0282843i
\(51\) −32.6969 46.2405i −0.641116 0.906676i
\(52\) −9.69694 16.7956i −0.186480 0.322992i
\(53\) 94.3879i 1.78090i 0.455077 + 0.890452i \(0.349612\pi\)
−0.455077 + 0.890452i \(0.650388\pi\)
\(54\) 27.3712 + 26.6237i 0.506874 + 0.493031i
\(55\) −4.95459 −0.0900835
\(56\) 20.4495 11.8065i 0.365169 0.210831i
\(57\) 60.4949 42.7764i 1.06131 0.750462i
\(58\) 9.67423 16.7563i 0.166797 0.288901i
\(59\) −16.2650 9.39063i −0.275679 0.159163i 0.355787 0.934567i \(-0.384213\pi\)
−0.631466 + 0.775404i \(0.717546\pi\)
\(60\) 13.0454 28.3164i 0.217423 0.471940i
\(61\) −6.54541 11.3370i −0.107302 0.185852i 0.807375 0.590039i \(-0.200888\pi\)
−0.914676 + 0.404187i \(0.867554\pi\)
\(62\) 4.30686i 0.0694654i
\(63\) 73.8712 13.7296i 1.17256 0.217930i
\(64\) −8.00000 −0.125000
\(65\) −43.6362 + 25.1934i −0.671327 + 0.387591i
\(66\) 0.371173 + 4.02834i 0.00562383 + 0.0610355i
\(67\) −37.5227 + 64.9912i −0.560040 + 0.970018i 0.437452 + 0.899242i \(0.355881\pi\)
−0.997492 + 0.0707765i \(0.977452\pi\)
\(68\) 32.6969 + 18.8776i 0.480837 + 0.277612i
\(69\) −2.84847 + 0.262459i −0.0412822 + 0.00380375i
\(70\) −30.6742 53.1293i −0.438203 0.758990i
\(71\) 18.0204i 0.253808i −0.991915 0.126904i \(-0.959496\pi\)
0.991915 0.126904i \(-0.0405041\pi\)
\(72\) −24.0000 8.48528i −0.333333 0.117851i
\(73\) −7.90918 −0.108345 −0.0541725 0.998532i \(-0.517252\pi\)
−0.0541725 + 0.998532i \(0.517252\pi\)
\(74\) 57.1918 33.0197i 0.772863 0.446212i
\(75\) −5.44949 2.51059i −0.0726599 0.0334745i
\(76\) −24.6969 + 42.7764i −0.324960 + 0.562847i
\(77\) 6.89388 + 3.98018i 0.0895309 + 0.0516907i
\(78\) 23.7526 + 33.5912i 0.304520 + 0.430656i
\(79\) 21.8712 + 37.8820i 0.276850 + 0.479519i 0.970600 0.240697i \(-0.0773761\pi\)
−0.693750 + 0.720216i \(0.744043\pi\)
\(80\) 20.7846i 0.259808i
\(81\) −63.0000 50.9117i −0.777778 0.628539i
\(82\) −15.4393 −0.188284
\(83\) −112.871 + 65.1662i −1.35989 + 0.785135i −0.989609 0.143783i \(-0.954073\pi\)
−0.370284 + 0.928918i \(0.620740\pi\)
\(84\) −40.8990 + 28.9199i −0.486893 + 0.344285i
\(85\) 49.0454 84.9491i 0.577005 0.999402i
\(86\) −55.1691 31.8519i −0.641502 0.370371i
\(87\) −17.1742 + 37.2784i −0.197405 + 0.428488i
\(88\) −1.34847 2.33562i −0.0153235 0.0265411i
\(89\) 145.300i 1.63258i −0.577642 0.816290i \(-0.696027\pi\)
0.577642 0.816290i \(-0.303973\pi\)
\(90\) −22.0454 + 62.3538i −0.244949 + 0.692820i
\(91\) 80.9546 0.889611
\(92\) 1.65153 0.953512i 0.0179514 0.0103643i
\(93\) −0.838264 9.09769i −0.00901359 0.0978246i
\(94\) 32.0227 55.4650i 0.340667 0.590053i
\(95\) 111.136 + 64.1645i 1.16985 + 0.675416i
\(96\) 16.8990 1.55708i 0.176031 0.0162196i
\(97\) 54.9393 + 95.1576i 0.566384 + 0.981007i 0.996919 + 0.0784327i \(0.0249916\pi\)
−0.430535 + 0.902574i \(0.641675\pi\)
\(98\) 29.2699i 0.298672i
\(99\) −1.56811 8.43712i −0.0158395 0.0852234i
\(100\) 4.00000 0.0400000
\(101\) 127.772 73.7695i 1.26507 0.730391i 0.291022 0.956716i \(-0.406005\pi\)
0.974052 + 0.226326i \(0.0726714\pi\)
\(102\) −72.7423 33.5125i −0.713160 0.328554i
\(103\) 51.5681 89.3186i 0.500661 0.867171i −0.499338 0.866407i \(-0.666424\pi\)
1.00000 0.000763745i \(-0.000243108\pi\)
\(104\) −23.7526 13.7135i −0.228390 0.131861i
\(105\) 75.1362 + 106.259i 0.715583 + 1.01199i
\(106\) 66.7423 + 115.601i 0.629645 + 1.09058i
\(107\) 36.0408i 0.336830i −0.985716 0.168415i \(-0.946135\pi\)
0.985716 0.168415i \(-0.0538649\pi\)
\(108\) 52.3485 + 13.2528i 0.484708 + 0.122711i
\(109\) −148.272 −1.36030 −0.680149 0.733074i \(-0.738085\pi\)
−0.680149 + 0.733074i \(0.738085\pi\)
\(110\) −6.06811 + 3.50343i −0.0551647 + 0.0318493i
\(111\) −114.384 + 80.8815i −1.03048 + 0.728662i
\(112\) 16.6969 28.9199i 0.149080 0.258214i
\(113\) −148.166 85.5439i −1.31121 0.757025i −0.328910 0.944361i \(-0.606681\pi\)
−0.982296 + 0.187336i \(0.940015\pi\)
\(114\) 43.8434 95.1665i 0.384591 0.834794i
\(115\) −2.47730 4.29080i −0.0215417 0.0373113i
\(116\) 27.3629i 0.235887i
\(117\) −56.7122 66.3340i −0.484720 0.566957i
\(118\) −26.5607 −0.225091
\(119\) −136.485 + 78.7995i −1.14693 + 0.662180i
\(120\) −4.04541 43.9048i −0.0337117 0.365874i
\(121\) −60.0454 + 104.002i −0.496243 + 0.859518i
\(122\) −16.0329 9.25660i −0.131417 0.0758738i
\(123\) 32.6135 3.00502i 0.265151 0.0244311i
\(124\) 3.04541 + 5.27480i 0.0245597 + 0.0425387i
\(125\) 119.512i 0.956092i
\(126\) 80.7650 69.0501i 0.640992 0.548016i
\(127\) −78.0908 −0.614888 −0.307444 0.951566i \(-0.599474\pi\)
−0.307444 + 0.951566i \(0.599474\pi\)
\(128\) −9.79796 + 5.65685i −0.0765466 + 0.0441942i
\(129\) 122.737 + 56.5453i 0.951452 + 0.438335i
\(130\) −35.6288 + 61.7109i −0.274068 + 0.474700i
\(131\) 202.704 + 117.031i 1.54736 + 0.893369i 0.998342 + 0.0575598i \(0.0183320\pi\)
0.549019 + 0.835810i \(0.315001\pi\)
\(132\) 3.30306 + 4.67123i 0.0250232 + 0.0353881i
\(133\) −103.091 178.559i −0.775119 1.34255i
\(134\) 106.130i 0.792017i
\(135\) 34.4319 136.005i 0.255051 1.00745i
\(136\) 53.3939 0.392602
\(137\) 129.758 74.9156i 0.947136 0.546829i 0.0549460 0.998489i \(-0.482501\pi\)
0.892190 + 0.451660i \(0.149168\pi\)
\(138\) −3.30306 + 2.33562i −0.0239352 + 0.0169248i
\(139\) 42.2650 73.2052i 0.304065 0.526656i −0.672988 0.739654i \(-0.734989\pi\)
0.977053 + 0.212998i \(0.0683226\pi\)
\(140\) −75.1362 43.3799i −0.536687 0.309857i
\(141\) −56.8485 + 123.395i −0.403181 + 0.875144i
\(142\) −12.7423 22.0704i −0.0897348 0.155425i
\(143\) 9.24614i 0.0646584i
\(144\) −35.3939 + 6.57826i −0.245791 + 0.0456823i
\(145\) −71.0908 −0.490281
\(146\) −9.68673 + 5.59264i −0.0663475 + 0.0383057i
\(147\) −5.69694 61.8289i −0.0387547 0.420605i
\(148\) 46.6969 80.8815i 0.315520 0.546496i
\(149\) 100.030 + 57.7524i 0.671343 + 0.387600i 0.796585 0.604526i \(-0.206638\pi\)
−0.125242 + 0.992126i \(0.539971\pi\)
\(150\) −8.44949 + 0.778539i −0.0563299 + 0.00519026i
\(151\) 32.3865 + 56.0950i 0.214480 + 0.371490i 0.953112 0.302619i \(-0.0978610\pi\)
−0.738632 + 0.674109i \(0.764528\pi\)
\(152\) 69.8535i 0.459562i
\(153\) 160.182 + 56.6328i 1.04694 + 0.370149i
\(154\) 11.2577 0.0731016
\(155\) 13.7043 7.91220i 0.0884151 0.0510465i
\(156\) 52.8434 + 24.3450i 0.338740 + 0.156058i
\(157\) 10.4092 18.0292i 0.0663005 0.114836i −0.830970 0.556318i \(-0.812214\pi\)
0.897270 + 0.441482i \(0.145547\pi\)
\(158\) 53.5732 + 30.9305i 0.339071 + 0.195763i
\(159\) −163.485 231.202i −1.02821 1.45410i
\(160\) 14.6969 + 25.4558i 0.0918559 + 0.159099i
\(161\) 7.96036i 0.0494433i
\(162\) −113.159 17.8061i −0.698512 0.109914i
\(163\) 133.060 0.816320 0.408160 0.912910i \(-0.366171\pi\)
0.408160 + 0.912910i \(0.366171\pi\)
\(164\) −18.9092 + 10.9172i −0.115300 + 0.0665684i
\(165\) 12.1362 8.58161i 0.0735529 0.0520097i
\(166\) −92.1589 + 159.624i −0.555174 + 0.961590i
\(167\) −255.053 147.255i −1.52726 0.881765i −0.999475 0.0323885i \(-0.989689\pi\)
−0.527787 0.849377i \(-0.676978\pi\)
\(168\) −29.6413 + 64.3395i −0.176436 + 0.382973i
\(169\) 37.4847 + 64.9254i 0.221803 + 0.384174i
\(170\) 138.721i 0.816008i
\(171\) −74.0908 + 209.560i −0.433280 + 1.22550i
\(172\) −90.0908 −0.523784
\(173\) −59.9847 + 34.6322i −0.346732 + 0.200186i −0.663245 0.748402i \(-0.730821\pi\)
0.316513 + 0.948588i \(0.397488\pi\)
\(174\) 5.32577 + 57.8006i 0.0306078 + 0.332187i
\(175\) −8.34847 + 14.4600i −0.0477055 + 0.0826284i
\(176\) −3.30306 1.90702i −0.0187674 0.0108354i
\(177\) 56.1061 5.16964i 0.316984 0.0292070i
\(178\) −102.742 177.955i −0.577204 0.999747i
\(179\) 47.4829i 0.265268i −0.991165 0.132634i \(-0.957657\pi\)
0.991165 0.132634i \(-0.0423435\pi\)
\(180\) 17.0908 + 91.9560i 0.0949490 + 0.510867i
\(181\) 242.879 1.34187 0.670935 0.741516i \(-0.265893\pi\)
0.670935 + 0.741516i \(0.265893\pi\)
\(182\) 99.1487 57.2435i 0.544773 0.314525i
\(183\) 35.6691 + 16.4328i 0.194913 + 0.0897969i
\(184\) 1.34847 2.33562i 0.00732864 0.0126936i
\(185\) −210.136 121.322i −1.13587 0.655796i
\(186\) −7.45969 10.5496i −0.0401059 0.0567183i
\(187\) 9.00000 + 15.5885i 0.0481283 + 0.0833607i
\(188\) 90.5739i 0.481776i
\(189\) −157.166 + 161.579i −0.831568 + 0.854916i
\(190\) 181.485 0.955183
\(191\) 6.52270 3.76588i 0.0341503 0.0197167i −0.482828 0.875715i \(-0.660390\pi\)
0.516978 + 0.855999i \(0.327057\pi\)
\(192\) 19.5959 13.8564i 0.102062 0.0721688i
\(193\) −172.727 + 299.172i −0.894959 + 1.55011i −0.0611031 + 0.998131i \(0.519462\pi\)
−0.833856 + 0.551983i \(0.813871\pi\)
\(194\) 134.573 + 77.6959i 0.693676 + 0.400494i
\(195\) 63.2503 137.291i 0.324360 0.704057i
\(196\) 20.6969 + 35.8481i 0.105597 + 0.182899i
\(197\) 77.2247i 0.392004i −0.980604 0.196002i \(-0.937204\pi\)
0.980604 0.196002i \(-0.0627959\pi\)
\(198\) −7.88648 9.22450i −0.0398307 0.0465884i
\(199\) 153.485 0.771280 0.385640 0.922649i \(-0.373981\pi\)
0.385640 + 0.922649i \(0.373981\pi\)
\(200\) 4.89898 2.82843i 0.0244949 0.0141421i
\(201\) −20.6566 224.187i −0.102769 1.11536i
\(202\) 104.326 180.698i 0.516464 0.894542i
\(203\) 98.9166 + 57.1095i 0.487274 + 0.281328i
\(204\) −112.788 + 10.3923i −0.552881 + 0.0509427i
\(205\) 28.3638 + 49.1275i 0.138360 + 0.239646i
\(206\) 145.857i 0.708042i
\(207\) 6.52270 5.57658i 0.0315106 0.0269400i
\(208\) −38.7878 −0.186480
\(209\) −20.3939 + 11.7744i −0.0975784 + 0.0563369i
\(210\) 167.159 + 77.0104i 0.795995 + 0.366716i
\(211\) 25.7804 44.6529i 0.122182 0.211625i −0.798446 0.602066i \(-0.794344\pi\)
0.920628 + 0.390441i \(0.127678\pi\)
\(212\) 163.485 + 94.3879i 0.771154 + 0.445226i
\(213\) 31.2122 + 44.1408i 0.146536 + 0.207234i
\(214\) −25.4847 44.1408i −0.119087 0.206265i
\(215\) 234.063i 1.08866i
\(216\) 73.4847 20.7846i 0.340207 0.0962250i
\(217\) −25.4245 −0.117164
\(218\) −181.596 + 104.844i −0.833009 + 0.480938i
\(219\) 19.3735 13.6991i 0.0884633 0.0625530i
\(220\) −4.95459 + 8.58161i −0.0225209 + 0.0390073i
\(221\) 158.530 + 91.5274i 0.717331 + 0.414151i
\(222\) −82.8990 + 179.941i −0.373419 + 0.810543i
\(223\) −156.614 271.263i −0.702303 1.21642i −0.967656 0.252273i \(-0.918822\pi\)
0.265353 0.964151i \(-0.414511\pi\)
\(224\) 47.2261i 0.210831i
\(225\) 17.6969 3.28913i 0.0786531 0.0146184i
\(226\) −241.955 −1.07060
\(227\) −66.0528 + 38.1356i −0.290982 + 0.167998i −0.638384 0.769718i \(-0.720397\pi\)
0.347403 + 0.937716i \(0.387064\pi\)
\(228\) −13.5959 147.557i −0.0596312 0.647178i
\(229\) 60.7724 105.261i 0.265382 0.459655i −0.702282 0.711899i \(-0.747835\pi\)
0.967664 + 0.252244i \(0.0811686\pi\)
\(230\) −6.06811 3.50343i −0.0263831 0.0152323i
\(231\) −23.7804 + 2.19113i −0.102945 + 0.00948541i
\(232\) −19.3485 33.5125i −0.0833986 0.144451i
\(233\) 151.021i 0.648157i 0.946030 + 0.324079i \(0.105054\pi\)
−0.946030 + 0.324079i \(0.894946\pi\)
\(234\) −116.363 41.1406i −0.497279 0.175815i
\(235\) −235.318 −1.00135
\(236\) −32.5301 + 18.7813i −0.137839 + 0.0795816i
\(237\) −119.187 54.9095i −0.502898 0.231686i
\(238\) −111.439 + 193.019i −0.468232 + 0.811002i
\(239\) −75.9620 43.8567i −0.317833 0.183501i 0.332593 0.943070i \(-0.392076\pi\)
−0.650426 + 0.759570i \(0.725410\pi\)
\(240\) −36.0000 50.9117i −0.150000 0.212132i
\(241\) −100.894 174.753i −0.418647 0.725118i 0.577157 0.816633i \(-0.304162\pi\)
−0.995804 + 0.0915158i \(0.970829\pi\)
\(242\) 169.834i 0.701794i
\(243\) 242.499 + 15.5885i 0.997940 + 0.0641500i
\(244\) −26.1816 −0.107302
\(245\) 93.1362 53.7722i 0.380148 0.219478i
\(246\) 37.8184 26.7416i 0.153733 0.108706i
\(247\) −119.742 + 207.400i −0.484787 + 0.839675i
\(248\) 7.45969 + 4.30686i 0.0300794 + 0.0173664i
\(249\) 163.606 355.123i 0.657051 1.42619i
\(250\) 84.5074 + 146.371i 0.338030 + 0.585484i
\(251\) 52.6261i 0.209666i −0.994490 0.104833i \(-0.966569\pi\)
0.994490 0.104833i \(-0.0334307\pi\)
\(252\) 50.0908 141.678i 0.198773 0.562215i
\(253\) 0.909185 0.00359362
\(254\) −95.6413 + 55.2185i −0.376541 + 0.217396i
\(255\) 27.0000 + 293.031i 0.105882 + 1.14914i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −69.8939 40.3532i −0.271961 0.157017i 0.357818 0.933791i \(-0.383521\pi\)
−0.629778 + 0.776775i \(0.716854\pi\)
\(258\) 190.305 17.5348i 0.737618 0.0679644i
\(259\) 194.924 + 337.618i 0.752602 + 1.30355i
\(260\) 100.774i 0.387591i
\(261\) −22.5000 121.060i −0.0862069 0.463830i
\(262\) 331.015 1.26342
\(263\) 401.614 231.872i 1.52705 0.881641i 0.527564 0.849515i \(-0.323106\pi\)
0.999484 0.0321259i \(-0.0102278\pi\)
\(264\) 7.34847 + 3.38545i 0.0278351 + 0.0128237i
\(265\) 245.227 424.746i 0.925385 1.60281i
\(266\) −252.520 145.792i −0.949323 0.548092i
\(267\) 251.666 + 355.910i 0.942570 + 1.33300i
\(268\) 75.0454 + 129.982i 0.280020 + 0.485009i
\(269\) 43.4762i 0.161622i 0.996729 + 0.0808109i \(0.0257510\pi\)
−0.996729 + 0.0808109i \(0.974249\pi\)
\(270\) −54.0000 190.919i −0.200000 0.707107i
\(271\) −342.636 −1.26434 −0.632169 0.774830i \(-0.717835\pi\)
−0.632169 + 0.774830i \(0.717835\pi\)
\(272\) 65.3939 37.7552i 0.240419 0.138806i
\(273\) −198.297 + 140.217i −0.726364 + 0.513617i
\(274\) 105.947 183.505i 0.386667 0.669726i
\(275\) 1.65153 + 0.953512i 0.00600557 + 0.00346732i
\(276\) −2.39388 + 5.19615i −0.00867347 + 0.0188266i
\(277\) 24.5000 + 42.4352i 0.0884477 + 0.153196i 0.906855 0.421442i \(-0.138476\pi\)
−0.818407 + 0.574638i \(0.805143\pi\)
\(278\) 119.544i 0.430013i
\(279\) 17.8110 + 20.8328i 0.0638386 + 0.0746694i
\(280\) −122.697 −0.438203
\(281\) −17.8791 + 10.3225i −0.0636266 + 0.0367349i −0.531476 0.847073i \(-0.678362\pi\)
0.467849 + 0.883808i \(0.345029\pi\)
\(282\) 17.6288 + 191.326i 0.0625136 + 0.678460i
\(283\) −26.7043 + 46.2533i −0.0943616 + 0.163439i −0.909342 0.416049i \(-0.863414\pi\)
0.814980 + 0.579489i \(0.196748\pi\)
\(284\) −31.2122 18.0204i −0.109902 0.0634521i
\(285\) −383.363 + 35.3232i −1.34513 + 0.123941i
\(286\) −6.53801 11.3242i −0.0228602 0.0395950i
\(287\) 91.1421i 0.317568i
\(288\) −38.6969 + 33.0839i −0.134364 + 0.114875i
\(289\) −67.3633 −0.233091
\(290\) −87.0681 + 50.2688i −0.300235 + 0.173341i
\(291\) −299.391 137.930i −1.02884 0.473986i
\(292\) −7.90918 + 13.6991i −0.0270862 + 0.0469148i
\(293\) −12.9245 7.46196i −0.0441109 0.0254674i 0.477782 0.878478i \(-0.341441\pi\)
−0.521893 + 0.853011i \(0.674774\pi\)
\(294\) −50.6969 71.6963i −0.172439 0.243865i
\(295\) 48.7951 + 84.5157i 0.165407 + 0.286494i
\(296\) 132.079i 0.446212i
\(297\) 18.4546 + 17.9506i 0.0621367 + 0.0604397i
\(298\) 163.348 0.548149
\(299\) 8.00740 4.62307i 0.0267806 0.0154618i
\(300\) −9.79796 + 6.92820i −0.0326599 + 0.0230940i
\(301\) 188.030 325.678i 0.624685 1.08199i
\(302\) 79.3304 + 45.8014i 0.262683 + 0.151660i
\(303\) −185.205 + 402.006i −0.611237 + 1.32675i
\(304\) 49.3939 + 85.5527i 0.162480 + 0.281423i
\(305\) 68.0219i 0.223023i
\(306\) 236.227 43.9048i 0.771984 0.143480i
\(307\) 65.9092 0.214688 0.107344 0.994222i \(-0.465765\pi\)
0.107344 + 0.994222i \(0.465765\pi\)
\(308\) 13.7878 7.96036i 0.0447654 0.0258453i
\(309\) 28.3888 + 308.104i 0.0918731 + 0.997099i
\(310\) 11.1895 19.3809i 0.0360953 0.0625189i
\(311\) −216.659 125.088i −0.696652 0.402213i 0.109447 0.993993i \(-0.465092\pi\)
−0.806099 + 0.591780i \(0.798425\pi\)
\(312\) 81.9342 7.54945i 0.262610 0.0241969i
\(313\) 213.197 + 369.268i 0.681140 + 1.17977i 0.974633 + 0.223808i \(0.0718490\pi\)
−0.293493 + 0.955961i \(0.594818\pi\)
\(314\) 29.4416i 0.0937631i
\(315\) −368.091 130.140i −1.16854 0.413142i
\(316\) 87.4847 0.276850
\(317\) −401.818 + 231.990i −1.26756 + 0.731829i −0.974527 0.224272i \(-0.927999\pi\)
−0.293038 + 0.956101i \(0.594666\pi\)
\(318\) −363.712 167.563i −1.14375 0.526927i
\(319\) 6.52270 11.2977i 0.0204473 0.0354158i
\(320\) 36.0000 + 20.7846i 0.112500 + 0.0649519i
\(321\) 62.4245 + 88.2816i 0.194469 + 0.275020i
\(322\) 5.62883 + 9.74941i 0.0174808 + 0.0302777i
\(323\) 466.219i 1.44340i
\(324\) −151.182 + 58.2075i −0.466610 + 0.179653i
\(325\) 19.3939 0.0596735
\(326\) 162.965 94.0878i 0.499892 0.288613i
\(327\) 363.192 256.815i 1.11068 0.785368i
\(328\) −15.4393 + 26.7416i −0.0470710 + 0.0815293i
\(329\) 327.424 + 189.038i 0.995210 + 0.574585i
\(330\) 8.79567 19.0919i 0.0266535 0.0578542i
\(331\) −236.401 409.459i −0.714203 1.23704i −0.963266 0.268549i \(-0.913456\pi\)
0.249063 0.968487i \(-0.419877\pi\)
\(332\) 260.665i 0.785135i
\(333\) 140.091 396.237i 0.420693 1.18990i
\(334\) −416.499 −1.24700
\(335\) 337.704 194.974i 1.00807 0.582011i
\(336\) 9.19184 + 99.7591i 0.0273567 + 0.296902i
\(337\) −152.803 + 264.663i −0.453422 + 0.785349i −0.998596 0.0529735i \(-0.983130\pi\)
0.545174 + 0.838323i \(0.316463\pi\)
\(338\) 91.8184 + 53.0114i 0.271652 + 0.156838i
\(339\) 511.098 47.0928i 1.50766 0.138917i
\(340\) −98.0908 169.898i −0.288502 0.499701i
\(341\) 2.90383i 0.00851564i
\(342\) 57.4393 + 309.048i 0.167951 + 0.903650i
\(343\) 236.287 0.688884
\(344\) −110.338 + 63.7038i −0.320751 + 0.185186i
\(345\) 13.5000 + 6.21947i 0.0391304 + 0.0180275i
\(346\) −48.9773 + 84.8312i −0.141553 + 0.245177i
\(347\) 115.766 + 66.8373i 0.333618 + 0.192615i 0.657446 0.753501i \(-0.271637\pi\)
−0.323828 + 0.946116i \(0.604970\pi\)
\(348\) 47.3939 + 67.0251i 0.136189 + 0.192601i
\(349\) 49.3786 + 85.5262i 0.141486 + 0.245061i 0.928056 0.372440i \(-0.121479\pi\)
−0.786570 + 0.617500i \(0.788145\pi\)
\(350\) 23.6130i 0.0674658i
\(351\) 253.810 + 64.2560i 0.723105 + 0.183065i
\(352\) −5.39388 −0.0153235
\(353\) −282.424 + 163.058i −0.800068 + 0.461919i −0.843495 0.537137i \(-0.819506\pi\)
0.0434270 + 0.999057i \(0.486172\pi\)
\(354\) 65.0602 46.0045i 0.183786 0.129956i
\(355\) −46.8184 + 81.0918i −0.131883 + 0.228428i
\(356\) −251.666 145.300i −0.706928 0.408145i
\(357\) 197.833 429.417i 0.554155 1.20285i
\(358\) −33.5755 58.1545i −0.0937863 0.162443i
\(359\) 418.736i 1.16639i 0.812331 + 0.583197i \(0.198199\pi\)
−0.812331 + 0.583197i \(0.801801\pi\)
\(360\) 85.9546 + 100.538i 0.238763 + 0.279271i
\(361\) 248.939 0.689581
\(362\) 297.464 171.741i 0.821725 0.474423i
\(363\) −33.0556 358.753i −0.0910623 0.988300i
\(364\) 80.9546 140.217i 0.222403 0.385213i
\(365\) 35.5913 + 20.5487i 0.0975105 + 0.0562977i
\(366\) 55.3054 5.09586i 0.151108 0.0139231i
\(367\) −93.6135 162.143i −0.255078 0.441808i 0.709839 0.704364i \(-0.248768\pi\)
−0.964917 + 0.262557i \(0.915434\pi\)
\(368\) 3.81405i 0.0103643i
\(369\) −74.6816 + 63.8490i −0.202389 + 0.173033i
\(370\) −343.151 −0.927435
\(371\) −682.423 + 393.997i −1.83942 + 1.06199i
\(372\) −16.5959 7.64577i −0.0446127 0.0205531i
\(373\) −225.515 + 390.603i −0.604597 + 1.04719i 0.387518 + 0.921862i \(0.373333\pi\)
−0.992115 + 0.125331i \(0.960001\pi\)
\(374\) 22.0454 + 12.7279i 0.0589449 + 0.0340319i
\(375\) −207.000 292.742i −0.552000 0.780646i
\(376\) −64.0454 110.930i −0.170334 0.295026i
\(377\) 132.668i 0.351905i
\(378\) −78.2350 + 309.027i −0.206971 + 0.817531i
\(379\) −489.666 −1.29200 −0.645998 0.763339i \(-0.723558\pi\)
−0.645998 + 0.763339i \(0.723558\pi\)
\(380\) 222.272 128.329i 0.584927 0.337708i
\(381\) 191.283 135.257i 0.502054 0.355006i
\(382\) 5.32577 9.22450i 0.0139418 0.0241479i
\(383\) 89.2492 + 51.5281i 0.233027 + 0.134538i 0.611968 0.790883i \(-0.290378\pi\)
−0.378941 + 0.925421i \(0.623712\pi\)
\(384\) 14.2020 30.8270i 0.0369845 0.0802786i
\(385\) −20.6816 35.8216i −0.0537185 0.0930432i
\(386\) 488.546i 1.26566i
\(387\) −398.583 + 74.0801i −1.02993 + 0.191421i
\(388\) 219.757 0.566384
\(389\) 29.6816 17.1367i 0.0763024 0.0440532i −0.461363 0.887211i \(-0.652640\pi\)
0.537666 + 0.843158i \(0.319306\pi\)
\(390\) −19.6140 212.871i −0.0502924 0.545824i
\(391\) −9.00000 + 15.5885i −0.0230179 + 0.0398682i
\(392\) 50.6969 + 29.2699i 0.129329 + 0.0746681i
\(393\) −699.227 + 64.4270i −1.77920 + 0.163936i
\(394\) −54.6061 94.5806i −0.138594 0.240052i
\(395\) 227.292i 0.575423i
\(396\) −16.1816 5.72107i −0.0408627 0.0144471i
\(397\) 8.27245 0.0208374 0.0104187 0.999946i \(-0.496684\pi\)
0.0104187 + 0.999946i \(0.496684\pi\)
\(398\) 187.980 108.530i 0.472311 0.272689i
\(399\) 561.792 + 258.819i 1.40800 + 0.648669i
\(400\) 4.00000 6.92820i 0.0100000 0.0173205i
\(401\) 358.636 + 207.059i 0.894355 + 0.516356i 0.875364 0.483464i \(-0.160622\pi\)
0.0189903 + 0.999820i \(0.493955\pi\)
\(402\) −183.823 259.965i −0.457271 0.646679i
\(403\) 14.7656 + 25.5747i 0.0366391 + 0.0634608i
\(404\) 295.078i 0.730391i
\(405\) 151.228 + 392.781i 0.373401 + 0.969831i
\(406\) 161.530 0.397857
\(407\) 38.5607 22.2630i 0.0947438 0.0547003i
\(408\) −130.788 + 92.4809i −0.320558 + 0.226669i
\(409\) 163.106 282.508i 0.398792 0.690729i −0.594785 0.803885i \(-0.702763\pi\)
0.993577 + 0.113156i \(0.0360960\pi\)
\(410\) 69.4768 + 40.1124i 0.169456 + 0.0978352i
\(411\) −188.082 + 408.252i −0.457621 + 0.993314i
\(412\) −103.136 178.637i −0.250331 0.433585i
\(413\) 156.795i 0.379648i
\(414\) 4.04541 11.4421i 0.00977152 0.0276380i
\(415\) 677.227 1.63187
\(416\) −47.5051 + 27.4271i −0.114195 + 0.0659305i
\(417\) 23.2673 + 252.521i 0.0557970 + 0.605565i
\(418\) −16.6515 + 28.8413i −0.0398362 + 0.0689983i
\(419\) −468.325 270.388i −1.11772 0.645317i −0.176903 0.984228i \(-0.556608\pi\)
−0.940818 + 0.338912i \(0.889941\pi\)
\(420\) 259.182 23.8811i 0.617099 0.0568597i
\(421\) −141.848 245.689i −0.336932 0.583584i 0.646922 0.762556i \(-0.276056\pi\)
−0.983854 + 0.178973i \(0.942723\pi\)
\(422\) 72.9179i 0.172791i
\(423\) −74.4773 400.720i −0.176069 0.947329i
\(424\) 266.969 0.629645
\(425\) −32.6969 + 18.8776i −0.0769340 + 0.0444178i
\(426\) 69.4393 + 31.9908i 0.163003 + 0.0750958i
\(427\) 54.6441 94.6464i 0.127972 0.221654i
\(428\) −62.4245 36.0408i −0.145852 0.0842075i
\(429\) 16.0148 + 22.6483i 0.0373305 + 0.0527933i
\(430\) 165.507 + 286.667i 0.384901 + 0.666668i
\(431\) 257.429i 0.597282i 0.954365 + 0.298641i \(0.0965334\pi\)
−0.954365 + 0.298641i \(0.903467\pi\)
\(432\) 75.3031 77.4174i 0.174313 0.179207i
\(433\) 476.272 1.09994 0.549968 0.835186i \(-0.314640\pi\)
0.549968 + 0.835186i \(0.314640\pi\)
\(434\) −31.1385 + 17.9778i −0.0717477 + 0.0414236i
\(435\) 174.136 123.133i 0.400313 0.283064i
\(436\) −148.272 + 256.815i −0.340074 + 0.589026i
\(437\) −20.3939 11.7744i −0.0466679 0.0269437i
\(438\) 14.0408 30.4770i 0.0320567 0.0695822i
\(439\) 278.931 + 483.123i 0.635379 + 1.10051i 0.986435 + 0.164154i \(0.0524894\pi\)
−0.351056 + 0.936355i \(0.614177\pi\)
\(440\) 14.0137i 0.0318493i
\(441\) 121.045 + 141.582i 0.274479 + 0.321047i
\(442\) 258.879 0.585698
\(443\) 720.400 415.923i 1.62619 0.938879i 0.640969 0.767567i \(-0.278533\pi\)
0.985217 0.171312i \(-0.0548005\pi\)
\(444\) 25.7071 + 279.000i 0.0578990 + 0.628378i
\(445\) −377.499 + 653.848i −0.848313 + 1.46932i
\(446\) −383.623 221.485i −0.860142 0.496603i
\(447\) −345.053 + 31.7933i −0.771930 + 0.0711259i
\(448\) −33.3939 57.8399i −0.0745399 0.129107i
\(449\) 729.927i 1.62567i −0.582492 0.812836i \(-0.697922\pi\)
0.582492 0.812836i \(-0.302078\pi\)
\(450\) 19.3485 16.5420i 0.0429966 0.0367599i
\(451\) −10.4097 −0.0230814
\(452\) −296.333 + 171.088i −0.655603 + 0.378513i
\(453\) −176.490 81.3092i −0.389602 0.179490i
\(454\) −53.9319 + 93.4128i −0.118793 + 0.205755i
\(455\) −364.296 210.326i −0.800650 0.462255i
\(456\) −120.990 171.105i −0.265328 0.375231i
\(457\) −354.818 614.563i −0.776407 1.34478i −0.934000 0.357272i \(-0.883707\pi\)
0.157594 0.987504i \(-0.449626\pi\)
\(458\) 171.890i 0.375307i
\(459\) −490.454 + 138.721i −1.06853 + 0.302225i
\(460\) −9.90918 −0.0215417
\(461\) −7.96990 + 4.60142i −0.0172883 + 0.00998140i −0.508619 0.860992i \(-0.669844\pi\)
0.491331 + 0.870973i \(0.336511\pi\)
\(462\) −27.5755 + 19.4988i −0.0596872 + 0.0422053i
\(463\) 27.5987 47.8024i 0.0596085 0.103245i −0.834681 0.550733i \(-0.814348\pi\)
0.894290 + 0.447488i \(0.147681\pi\)
\(464\) −47.3939 27.3629i −0.102142 0.0589717i
\(465\) −19.8643 + 43.1175i −0.0427189 + 0.0927257i
\(466\) 106.788 + 184.962i 0.229158 + 0.396914i
\(467\) 625.811i 1.34007i 0.742331 + 0.670033i \(0.233720\pi\)
−0.742331 + 0.670033i \(0.766280\pi\)
\(468\) −171.606 + 31.8945i −0.366680 + 0.0681506i
\(469\) −626.514 −1.33585
\(470\) −288.204 + 166.395i −0.613201 + 0.354032i
\(471\) 5.73036 + 62.1917i 0.0121664 + 0.132042i
\(472\) −26.5607 + 46.0045i −0.0562727 + 0.0974672i
\(473\) −37.1969 21.4757i −0.0786405 0.0454031i
\(474\) −184.800 + 17.0276i −0.389874 + 0.0359231i
\(475\) −24.6969 42.7764i −0.0519936 0.0900555i
\(476\) 315.198i 0.662180i
\(477\) 800.908 + 283.164i 1.67905 + 0.593635i
\(478\) −124.045 −0.259509
\(479\) 267.856 154.647i 0.559199 0.322854i −0.193625 0.981076i \(-0.562024\pi\)
0.752824 + 0.658222i \(0.228691\pi\)
\(480\) −80.0908 36.8980i −0.166856 0.0768708i
\(481\) 226.409 392.151i 0.470704 0.815283i
\(482\) −247.139 142.685i −0.512736 0.296028i
\(483\) −13.7878 19.4988i −0.0285461 0.0403702i
\(484\) 120.091 + 208.003i 0.248122 + 0.429759i
\(485\) 570.946i 1.17721i
\(486\) 308.023 152.381i 0.633792 0.313541i
\(487\) −28.3337 −0.0581800 −0.0290900 0.999577i \(-0.509261\pi\)
−0.0290900 + 0.999577i \(0.509261\pi\)
\(488\) −32.0658 + 18.5132i −0.0657086 + 0.0379369i
\(489\) −325.930 + 230.467i −0.666523 + 0.471303i
\(490\) 76.0454 131.715i 0.155195 0.268805i
\(491\) 822.461 + 474.848i 1.67507 + 0.967105i 0.964727 + 0.263254i \(0.0847956\pi\)
0.710348 + 0.703851i \(0.248538\pi\)
\(492\) 27.4087 59.4933i 0.0557087 0.120921i
\(493\) 129.136 + 223.670i 0.261940 + 0.453693i
\(494\) 338.682i 0.685592i
\(495\) −14.8638 + 42.0411i −0.0300278 + 0.0849315i
\(496\) 12.1816 0.0245597
\(497\) 130.287 75.2214i 0.262147 0.151351i
\(498\) −50.7344 550.621i −0.101876 1.10566i
\(499\) 280.113 485.170i 0.561349 0.972284i −0.436030 0.899932i \(-0.643616\pi\)
0.997379 0.0723525i \(-0.0230507\pi\)
\(500\) 207.000 + 119.512i 0.414000 + 0.239023i
\(501\) 879.802 81.0653i 1.75609 0.161807i
\(502\) −37.2122 64.4535i −0.0741280 0.128393i
\(503\) 897.832i 1.78495i 0.451094 + 0.892477i \(0.351034\pi\)
−0.451094 + 0.892477i \(0.648966\pi\)
\(504\) −38.8332 208.939i −0.0770499 0.414562i
\(505\) −766.635 −1.51809
\(506\) 1.11352 0.642891i 0.00220063 0.00127053i
\(507\) −204.272 94.1087i −0.402904 0.185619i
\(508\) −78.0908 + 135.257i −0.153722 + 0.266254i
\(509\) −170.454 98.4114i −0.334879 0.193343i 0.323126 0.946356i \(-0.395266\pi\)
−0.658005 + 0.753013i \(0.728600\pi\)
\(510\) 240.272 + 339.797i 0.471122 + 0.666268i
\(511\) −33.0148 57.1833i −0.0646082 0.111905i
\(512\) 22.6274i 0.0441942i
\(513\) −181.485 641.645i −0.353771 1.25077i
\(514\) −114.136 −0.222055
\(515\) −464.113 + 267.956i −0.901190 + 0.520302i
\(516\) 220.677 156.042i 0.427668 0.302407i
\(517\) 21.5908 37.3964i 0.0417617 0.0723334i
\(518\) 477.464 + 275.664i 0.921746 + 0.532170i
\(519\) 86.9472 188.728i 0.167528 0.363637i
\(520\) 71.2577 + 123.422i 0.137034 + 0.237350i
\(521\) 375.837i 0.721377i 0.932686 + 0.360688i \(0.117458\pi\)
−0.932686 + 0.360688i \(0.882542\pi\)
\(522\) −113.159 132.357i −0.216780 0.253558i
\(523\) 91.1827 0.174345 0.0871727 0.996193i \(-0.472217\pi\)
0.0871727 + 0.996193i \(0.472217\pi\)
\(524\) 405.409 234.063i 0.773681 0.446685i
\(525\) −4.59592 49.8795i −0.00875413 0.0950086i
\(526\) 327.916 567.967i 0.623415 1.07979i
\(527\) −49.7878 28.7450i −0.0944739 0.0545445i
\(528\) 11.3939 1.04984i 0.0215793 0.00198833i
\(529\) −264.045 457.340i −0.499141 0.864537i
\(530\) 693.607i 1.30869i
\(531\) −128.477 + 109.842i −0.241953 + 0.206858i
\(532\) −412.363 −0.775119
\(533\) −91.6806 + 52.9318i −0.172009 + 0.0993092i
\(534\) 559.893 + 257.944i 1.04849 + 0.483041i
\(535\) −93.6367 + 162.184i −0.175022 + 0.303147i
\(536\) 183.823 + 106.130i 0.342953 + 0.198004i
\(537\) 82.2429 + 116.309i 0.153152 + 0.216590i
\(538\) 30.7423 + 53.2473i 0.0571419 + 0.0989727i
\(539\) 19.7348i 0.0366137i
\(540\) −201.136 195.643i −0.372474 0.362302i
\(541\) −38.8490 −0.0718096 −0.0359048 0.999355i \(-0.511431\pi\)
−0.0359048 + 0.999355i \(0.511431\pi\)
\(542\) −419.641 + 242.280i −0.774246 + 0.447011i
\(543\) −594.929 + 420.678i −1.09563 + 0.774729i
\(544\) 53.3939 92.4809i 0.0981505 0.170002i
\(545\) 667.226 + 385.223i 1.22427 + 0.706831i
\(546\) −143.715 + 311.948i −0.263214 + 0.571333i
\(547\) 233.022 + 403.606i 0.426000 + 0.737854i 0.996513 0.0834344i \(-0.0265889\pi\)
−0.570513 + 0.821289i \(0.693256\pi\)
\(548\) 299.662i 0.546829i
\(549\) −115.834 + 21.5287i −0.210990 + 0.0392144i
\(550\) 2.69694 0.00490352
\(551\) −292.621 + 168.945i −0.531072 + 0.306615i
\(552\) 0.742346 + 8.05669i 0.00134483 + 0.0145954i
\(553\) −182.591 + 316.257i −0.330182 + 0.571893i
\(554\) 60.0125 + 34.6482i 0.108326 + 0.0625419i
\(555\) 724.863 66.7891i 1.30606 0.120341i
\(556\) −84.5301 146.410i −0.152033 0.263328i
\(557\) 695.042i 1.24783i −0.781492 0.623916i \(-0.785541\pi\)
0.781492 0.623916i \(-0.214459\pi\)
\(558\) 36.5449 + 12.9206i 0.0654926 + 0.0231551i
\(559\) −436.803 −0.781400
\(560\) −150.272 + 86.7598i −0.268344 + 0.154928i
\(561\) −49.0454 22.5953i −0.0874250 0.0402768i
\(562\) −14.5982 + 25.2848i −0.0259755 + 0.0449908i
\(563\) −473.780 273.537i −0.841528 0.485857i 0.0162552 0.999868i \(-0.494826\pi\)
−0.857783 + 0.514011i \(0.828159\pi\)
\(564\) 156.879 + 221.860i 0.278153 + 0.393368i
\(565\) 444.499 + 769.895i 0.786724 + 1.36265i
\(566\) 75.5313i 0.133447i
\(567\) 105.114 668.006i 0.185386 1.17814i
\(568\) −50.9694 −0.0897348
\(569\) 215.954 124.681i 0.379533 0.219123i −0.298082 0.954540i \(-0.596347\pi\)
0.677615 + 0.735417i \(0.263014\pi\)
\(570\) −444.545 + 314.341i −0.779903 + 0.551475i
\(571\) −36.9166 + 63.9414i −0.0646525 + 0.111981i −0.896540 0.442963i \(-0.853927\pi\)
0.831887 + 0.554945i \(0.187261\pi\)
\(572\) −16.0148 9.24614i −0.0279979 0.0161646i
\(573\) −9.45459 + 20.5222i −0.0165002 + 0.0358153i
\(574\) −64.4472 111.626i −0.112277 0.194470i
\(575\) 1.90702i 0.00331656i
\(576\) −24.0000 + 67.8823i −0.0416667 + 0.117851i
\(577\) −43.9092 −0.0760991 −0.0380496 0.999276i \(-0.512114\pi\)
−0.0380496 + 0.999276i \(0.512114\pi\)
\(578\) −82.5028 + 47.6330i −0.142738 + 0.0824101i
\(579\) −95.0880 1031.99i −0.164228 1.78237i
\(580\) −71.0908 + 123.133i −0.122570 + 0.212298i
\(581\) −942.302 544.038i −1.62186 0.936382i
\(582\) −464.209 + 42.7724i −0.797610 + 0.0734921i
\(583\) 45.0000 + 77.9423i 0.0771870 + 0.133692i
\(584\) 22.3706i 0.0383057i
\(585\) 82.8643 + 445.846i 0.141648 + 0.762130i
\(586\) −21.1056 −0.0360164
\(587\) −381.386 + 220.194i −0.649721 + 0.375117i −0.788349 0.615228i \(-0.789064\pi\)
0.138628 + 0.990345i \(0.455731\pi\)
\(588\) −112.788 51.9615i −0.191816 0.0883699i
\(589\) 37.6061 65.1357i 0.0638474 0.110587i
\(590\) 119.523 + 69.0068i 0.202582 + 0.116961i
\(591\) 133.757 + 189.161i 0.226323 + 0.320070i
\(592\) −93.3939 161.763i −0.157760 0.273248i
\(593\) 347.232i 0.585551i 0.956181 + 0.292776i \(0.0945789\pi\)
−0.956181 + 0.292776i \(0.905421\pi\)
\(594\) 35.2951 + 8.93552i 0.0594194 + 0.0150430i
\(595\) 818.908 1.37632
\(596\) 200.060 115.505i 0.335671 0.193800i
\(597\) −375.959 + 265.843i −0.629747 + 0.445299i
\(598\) 6.53801 11.3242i 0.0109331 0.0189367i
\(599\) −684.083 394.956i −1.14204 0.659359i −0.195107 0.980782i \(-0.562505\pi\)
−0.946936 + 0.321423i \(0.895839\pi\)
\(600\) −7.10102 + 15.4135i −0.0118350 + 0.0256891i
\(601\) 353.455 + 612.201i 0.588111 + 1.01864i 0.994480 + 0.104929i \(0.0334614\pi\)
−0.406369 + 0.913709i \(0.633205\pi\)
\(602\) 531.829i 0.883438i
\(603\) 438.901 + 513.364i 0.727862 + 0.851351i
\(604\) 129.546 0.214480
\(605\) 540.409 312.005i 0.893237 0.515711i
\(606\) 57.4324 + 623.314i 0.0947729 + 1.02857i
\(607\) 596.628 1033.39i 0.982913 1.70246i 0.332048 0.943263i \(-0.392261\pi\)
0.650866 0.759193i \(-0.274406\pi\)
\(608\) 120.990 + 69.8535i 0.198996 + 0.114891i
\(609\) −341.212 + 31.4394i −0.560282 + 0.0516246i
\(610\) 48.0987 + 83.3094i 0.0788504 + 0.136573i
\(611\) 439.145i 0.718731i
\(612\) 258.272 220.810i 0.422014 0.360801i
\(613\) 629.181 1.02640 0.513198 0.858270i \(-0.328461\pi\)
0.513198 + 0.858270i \(0.328461\pi\)
\(614\) 80.7219 46.6048i 0.131469 0.0759036i
\(615\) −154.568 71.2098i −0.251330 0.115788i
\(616\) 11.2577 19.4988i 0.0182754 0.0316539i
\(617\) 166.909 + 96.3648i 0.270516 + 0.156183i 0.629122 0.777306i \(-0.283414\pi\)
−0.358606 + 0.933489i \(0.616748\pi\)
\(618\) 252.631 + 357.274i 0.408788 + 0.578114i
\(619\) 76.4773 + 132.463i 0.123550 + 0.213994i 0.921165 0.389172i \(-0.127239\pi\)
−0.797615 + 0.603166i \(0.793905\pi\)
\(620\) 31.6488i 0.0510465i
\(621\) −6.31837 + 24.9574i −0.0101745 + 0.0401891i
\(622\) −353.803 −0.568814
\(623\) 1050.51 606.515i 1.68622 0.973539i
\(624\) 95.0102 67.1824i 0.152260 0.107664i
\(625\) 335.500 581.103i 0.536800 0.929765i
\(626\) 522.224 + 301.506i 0.834223 + 0.481639i
\(627\) 29.5607 64.1645i 0.0471463 0.102336i
\(628\) −20.8184 36.0585i −0.0331503 0.0574180i
\(629\) 881.525i 1.40147i
\(630\) −542.840 + 100.892i −0.861651 + 0.160145i
\(631\) 44.8786 0.0711229 0.0355615 0.999367i \(-0.488678\pi\)
0.0355615 + 0.999367i \(0.488678\pi\)
\(632\) 107.146 61.8610i 0.169535 0.0978814i
\(633\) 14.1924 + 154.030i 0.0224208 + 0.243333i
\(634\) −328.083 + 568.256i −0.517481 + 0.896303i
\(635\) 351.409 + 202.886i 0.553399 + 0.319505i
\(636\) −563.939 + 51.9615i −0.886696 + 0.0817005i
\(637\) 100.348 + 173.809i 0.157533 + 0.272855i
\(638\) 18.4490i 0.0289169i
\(639\) −152.908 54.0612i −0.239293 0.0846028i
\(640\) 58.7878 0.0918559
\(641\) −209.106 + 120.727i −0.326219 + 0.188342i −0.654161 0.756355i \(-0.726978\pi\)
0.327942 + 0.944698i \(0.393645\pi\)
\(642\) 138.879 + 63.9816i 0.216322 + 0.0996598i
\(643\) −395.704 + 685.380i −0.615403 + 1.06591i 0.374910 + 0.927061i \(0.377674\pi\)
−0.990314 + 0.138849i \(0.955660\pi\)
\(644\) 13.7878 + 7.96036i 0.0214096 + 0.0123608i
\(645\) −405.409 573.334i −0.628541 0.888891i
\(646\) −329.666 570.999i −0.510319 0.883899i
\(647\) 294.028i 0.454448i −0.973842 0.227224i \(-0.927035\pi\)
0.973842 0.227224i \(-0.0729650\pi\)
\(648\) −144.000 + 178.191i −0.222222 + 0.274986i
\(649\) −17.9082 −0.0275935
\(650\) 23.7526 13.7135i 0.0365424 0.0210978i
\(651\) 62.2770 44.0365i 0.0956636 0.0676444i
\(652\) 133.060 230.467i 0.204080 0.353477i
\(653\) −665.379 384.156i −1.01896 0.588295i −0.105155 0.994456i \(-0.533534\pi\)
−0.913802 + 0.406161i \(0.866867\pi\)
\(654\) 263.221 571.349i 0.402479 0.873622i
\(655\) −608.113 1053.28i −0.928417 1.60807i
\(656\) 43.6689i 0.0665684i
\(657\) −23.7276 + 67.1117i −0.0361150 + 0.102149i
\(658\) 534.681 0.812585
\(659\) −373.204 + 215.469i −0.566318 + 0.326964i −0.755678 0.654944i \(-0.772692\pi\)
0.189359 + 0.981908i \(0.439359\pi\)
\(660\) −2.72755 29.6022i −0.00413266 0.0448518i
\(661\) −506.136 + 876.653i −0.765712 + 1.32625i 0.174157 + 0.984718i \(0.444280\pi\)
−0.939869 + 0.341534i \(0.889053\pi\)
\(662\) −579.062 334.322i −0.874717 0.505018i
\(663\) −546.848 + 50.3868i −0.824808 + 0.0759981i
\(664\) 184.318 + 319.248i 0.277587 + 0.480795i
\(665\) 1071.35i 1.61105i
\(666\) −108.606 584.348i −0.163072 0.877399i
\(667\) 13.0454 0.0195583
\(668\) −510.106 + 294.510i −0.763631 + 0.440883i
\(669\) 853.464 + 393.192i 1.27573 + 0.587731i
\(670\) 275.734 477.586i 0.411544 0.712815i
\(671\) −10.8099 6.24112i −0.0161102 0.00930123i
\(672\) 81.7980 + 115.680i 0.121723 + 0.172143i
\(673\) −281.606 487.755i −0.418433 0.724748i 0.577349 0.816498i \(-0.304087\pi\)
−0.995782 + 0.0917499i \(0.970754\pi\)
\(674\) 432.192i 0.641235i
\(675\) −37.6515 + 38.7087i −0.0557800 + 0.0573462i
\(676\) 149.939 0.221803
\(677\) −303.227 + 175.068i −0.447897 + 0.258594i −0.706942 0.707272i \(-0.749926\pi\)
0.259044 + 0.965865i \(0.416592\pi\)
\(678\) 592.665 419.078i 0.874138 0.618109i
\(679\) −458.659 + 794.421i −0.675492 + 1.16999i
\(680\) −240.272 138.721i −0.353342 0.204002i
\(681\) 95.7429 207.820i 0.140592 0.305168i
\(682\) 2.05332 + 3.55645i 0.00301073 + 0.00521474i
\(683\) 502.818i 0.736190i −0.929788 0.368095i \(-0.880010\pi\)
0.929788 0.368095i \(-0.119990\pi\)
\(684\) 288.879 + 337.890i 0.422337 + 0.493991i
\(685\) −778.546 −1.13656
\(686\) 289.392 167.080i 0.421854 0.243557i
\(687\) 33.4559 + 363.097i 0.0486985 + 0.528525i
\(688\) −90.0908 + 156.042i −0.130946 + 0.226805i
\(689\) 792.650 + 457.637i 1.15044 + 0.664205i
\(690\) 20.9319 1.92867i 0.0303361 0.00279518i
\(691\) −188.159 325.902i −0.272300 0.471638i 0.697150 0.716925i \(-0.254451\pi\)
−0.969450 + 0.245287i \(0.921118\pi\)
\(692\) 138.529i 0.200186i
\(693\) 54.4546 46.5559i 0.0785781 0.0671803i
\(694\) 189.044 0.272398
\(695\) −380.385 + 219.616i −0.547317 + 0.315994i
\(696\) 105.439 + 48.5761i 0.151493 + 0.0697932i
\(697\) 103.045 178.480i 0.147841 0.256069i
\(698\) 120.952 + 69.8318i 0.173284 + 0.100046i
\(699\) −261.576 369.924i −0.374214 0.529218i
\(700\) 16.6969 + 28.9199i 0.0238528 + 0.0413142i
\(701\) 489.681i 0.698546i −0.937021 0.349273i \(-0.886429\pi\)
0.937021 0.349273i \(-0.113571\pi\)
\(702\) 356.288 100.774i 0.507533 0.143552i
\(703\) −1153.27 −1.64050
\(704\) −6.60612 + 3.81405i −0.00938370 + 0.00541768i
\(705\) 576.409 407.582i 0.817601 0.578131i
\(706\) −230.598 + 399.408i −0.326626 + 0.565733i
\(707\) 1066.70 + 615.862i 1.50878 + 0.871092i
\(708\) 47.1520 102.348i 0.0665989 0.144560i
\(709\) −237.014 410.521i −0.334294 0.579014i 0.649055 0.760741i \(-0.275164\pi\)
−0.983349 + 0.181728i \(0.941831\pi\)
\(710\) 132.422i 0.186510i
\(711\) 387.053 71.9371i 0.544378 0.101177i
\(712\) −410.969 −0.577204
\(713\) −2.51479 + 1.45192i −0.00352706 + 0.00203635i
\(714\) −61.3485 665.815i −0.0859222 0.932514i
\(715\) −24.0222 + 41.6077i −0.0335975 + 0.0581925i
\(716\) −82.2429 47.4829i −0.114864 0.0663170i
\(717\) 262.030 24.1435i 0.365453 0.0336730i
\(718\) 296.091 + 512.844i 0.412383 + 0.714268i
\(719\) 108.122i 0.150379i 0.997169 + 0.0751894i \(0.0239561\pi\)
−0.997169 + 0.0751894i \(0.976044\pi\)
\(720\) 176.363 + 62.3538i 0.244949 + 0.0866025i
\(721\) 861.030 1.19422
\(722\) 304.886 176.026i 0.422280 0.243804i
\(723\) 549.820 + 253.303i 0.760470 + 0.350350i
\(724\) 242.879 420.678i 0.335468 0.581047i
\(725\) 23.6969 + 13.6814i 0.0326854 + 0.0188709i
\(726\) −294.161 416.007i −0.405181 0.573012i
\(727\) 222.296 + 385.027i 0.305771 + 0.529611i 0.977433 0.211247i \(-0.0677524\pi\)
−0.671662 + 0.740858i \(0.734419\pi\)
\(728\) 228.974i 0.314525i
\(729\) −621.000 + 381.838i −0.851852 + 0.523783i
\(730\) 58.1204 0.0796170
\(731\) 736.423 425.174i 1.00742 0.581634i
\(732\) 64.1316 45.3479i 0.0876115 0.0619507i
\(733\) 358.181 620.388i 0.488651 0.846368i −0.511264 0.859424i \(-0.670823\pi\)
0.999915 + 0.0130556i \(0.00415584\pi\)
\(734\) −229.305 132.390i −0.312405 0.180367i
\(735\) −135.000 + 293.031i −0.183673 + 0.398682i
\(736\) −2.69694 4.67123i −0.00366432 0.00634679i
\(737\) 71.5567i 0.0970918i
\(738\) −46.3179 + 131.007i −0.0627613 + 0.177516i
\(739\) 933.362 1.26301 0.631504 0.775373i \(-0.282438\pi\)
0.631504 + 0.775373i \(0.282438\pi\)
\(740\) −420.272 + 242.644i −0.567936 + 0.327898i
\(741\) −65.9194 715.424i −0.0889600 0.965484i
\(742\) −557.196 + 965.093i −0.750939 + 1.30066i
\(743\) −13.7793 7.95550i −0.0185455 0.0107073i 0.490699 0.871329i \(-0.336742\pi\)
−0.509244 + 0.860622i \(0.670075\pi\)
\(744\) −25.7321 + 2.37097i −0.0345862 + 0.00318679i
\(745\) −300.090 519.772i −0.402806 0.697680i
\(746\) 637.852i 0.855030i
\(747\) 214.340 + 1153.24i 0.286934 + 1.54383i
\(748\) 36.0000 0.0481283
\(749\) 260.574 150.443i 0.347896 0.200858i
\(750\) −460.522 212.163i −0.614030 0.282885i
\(751\) −404.916 + 701.334i −0.539169 + 0.933867i 0.459781 + 0.888033i \(0.347928\pi\)
−0.998949 + 0.0458347i \(0.985405\pi\)
\(752\) −156.879 90.5739i −0.208615 0.120444i
\(753\) 91.1510 + 128.907i 0.121050 + 0.171191i
\(754\) −93.8105 162.484i −0.124417 0.215497i
\(755\) 336.570i 0.445788i
\(756\) 122.697 + 433.799i 0.162298 + 0.573808i
\(757\) 689.637 0.911013 0.455506 0.890232i \(-0.349458\pi\)
0.455506 + 0.890232i \(0.349458\pi\)
\(758\) −599.716 + 346.246i −0.791182 + 0.456789i
\(759\) −2.22704 + 1.57475i −0.00293417 + 0.00207477i
\(760\) 181.485 314.341i 0.238796 0.413606i
\(761\) −825.393 476.541i −1.08462 0.626204i −0.152479 0.988307i \(-0.548726\pi\)
−0.932138 + 0.362103i \(0.882059\pi\)
\(762\) 138.631 300.913i 0.181931 0.394899i
\(763\) −618.924 1072.01i −0.811172 1.40499i
\(764\) 15.0635i 0.0197167i
\(765\) −573.681 671.011i −0.749910 0.877139i
\(766\) 145.743 0.190266
\(767\) −157.721 + 91.0604i −0.205634 + 0.118723i
\(768\) −4.40408 47.7975i −0.00573448 0.0622364i
\(769\) 328.348 568.715i 0.426980 0.739552i −0.5696