# Properties

 Label 18.3.d.a.5.1 Level $18$ Weight $3$ Character 18.5 Analytic conductor $0.490$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$18 = 2 \cdot 3^{2}$$ Weight: $$k$$ $$=$$ $$3$$ Character orbit: $$[\chi]$$ $$=$$ 18.d (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$0.490464475849$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(\zeta_{6})$$ Coefficient field: $$\Q(\sqrt{-2}, \sqrt{-3})$$ Defining polynomial: $$x^{4} - 2x^{2} + 4$$ x^4 - 2*x^2 + 4 Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## Embedding invariants

 Embedding label 5.1 Root $$-1.22474 + 0.707107i$$ of defining polynomial Character $$\chi$$ $$=$$ 18.5 Dual form 18.3.d.a.11.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-1.22474 + 0.707107i) q^{2} +(2.44949 + 1.73205i) q^{3} +(1.00000 - 1.73205i) q^{4} +(-4.50000 - 2.59808i) q^{5} +(-4.22474 - 0.389270i) q^{6} +(-3.17423 - 5.49794i) q^{7} +2.82843i q^{8} +(3.00000 + 8.48528i) q^{9} +O(q^{10})$$ $$q+(-1.22474 + 0.707107i) q^{2} +(2.44949 + 1.73205i) q^{3} +(1.00000 - 1.73205i) q^{4} +(-4.50000 - 2.59808i) q^{5} +(-4.22474 - 0.389270i) q^{6} +(-3.17423 - 5.49794i) q^{7} +2.82843i q^{8} +(3.00000 + 8.48528i) q^{9} +7.34847 q^{10} +(8.17423 - 4.71940i) q^{11} +(5.44949 - 2.51059i) q^{12} +(-9.84847 + 17.0580i) q^{13} +(7.77526 + 4.48905i) q^{14} +(-6.52270 - 14.1582i) q^{15} +(-2.00000 - 3.46410i) q^{16} +1.90702i q^{17} +(-9.67423 - 8.27098i) q^{18} +4.69694 q^{19} +(-9.00000 + 5.19615i) q^{20} +(1.74745 - 18.9651i) q^{21} +(-6.67423 + 11.5601i) q^{22} +(8.17423 + 4.71940i) q^{23} +(-4.89898 + 6.92820i) q^{24} +(1.00000 + 1.73205i) q^{25} -27.8557i q^{26} +(-7.34847 + 25.9808i) q^{27} -12.6969 q^{28} +(-2.84847 + 1.64456i) q^{29} +(18.0000 + 12.7279i) q^{30} +(20.5227 - 35.5464i) q^{31} +(4.89898 + 2.82843i) q^{32} +(28.1969 + 2.59808i) q^{33} +(-1.34847 - 2.33562i) q^{34} +32.9876i q^{35} +(17.6969 + 3.28913i) q^{36} +17.3031 q^{37} +(-5.75255 + 3.32124i) q^{38} +(-53.6691 + 24.7255i) q^{39} +(7.34847 - 12.7279i) q^{40} +(-53.5454 - 30.9145i) q^{41} +(11.2702 + 24.4630i) q^{42} +(-0.477296 - 0.826701i) q^{43} -18.8776i q^{44} +(8.54541 - 45.9780i) q^{45} -13.3485 q^{46} +(-12.2196 + 7.05501i) q^{47} +(1.10102 - 11.9494i) q^{48} +(4.34847 - 7.53177i) q^{49} +(-2.44949 - 1.41421i) q^{50} +(-3.30306 + 4.67123i) q^{51} +(19.6969 + 34.1161i) q^{52} +9.53512i q^{53} +(-9.37117 - 37.0160i) q^{54} -49.0454 q^{55} +(15.5505 - 8.97809i) q^{56} +(11.5051 + 8.13534i) q^{57} +(2.32577 - 4.02834i) q^{58} +(79.2650 + 45.7637i) q^{59} +(-31.0454 - 2.86054i) q^{60} +(37.5454 + 65.0306i) q^{61} +58.0470i q^{62} +(37.1288 - 43.4281i) q^{63} -8.00000 q^{64} +(88.6362 - 51.1741i) q^{65} +(-36.3712 + 16.7563i) q^{66} +(-15.4773 + 26.8075i) q^{67} +(3.30306 + 1.90702i) q^{68} +(11.8485 + 25.7183i) q^{69} +(-23.3258 - 40.4014i) q^{70} -85.9026i q^{71} +(-24.0000 + 8.48528i) q^{72} -96.0908 q^{73} +(-21.1918 + 12.2351i) q^{74} +(-0.550510 + 5.97469i) q^{75} +(4.69694 - 8.13534i) q^{76} +(-51.8939 - 29.9609i) q^{77} +(48.2474 - 68.2322i) q^{78} +(-14.8712 - 25.7576i) q^{79} +20.7846i q^{80} +(-63.0000 + 50.9117i) q^{81} +87.4393 q^{82} +(-76.1288 + 43.9530i) q^{83} +(-31.1010 - 21.9917i) q^{84} +(4.95459 - 8.58161i) q^{85} +(1.16913 + 0.674999i) q^{86} +(-9.82577 - 0.905350i) q^{87} +(13.3485 + 23.1202i) q^{88} +41.3766i q^{89} +(22.0454 + 62.3538i) q^{90} +125.045 q^{91} +(16.3485 - 9.43879i) q^{92} +(111.838 - 51.5241i) q^{93} +(9.97730 - 17.2812i) q^{94} +(-21.1362 - 12.2030i) q^{95} +(7.10102 + 15.4135i) q^{96} +(-47.9393 - 83.0333i) q^{97} +12.2993i q^{98} +(64.5681 + 55.2025i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q + 4 q^{4} - 18 q^{5} - 12 q^{6} + 2 q^{7} + 12 q^{9}+O(q^{10})$$ 4 * q + 4 * q^4 - 18 * q^5 - 12 * q^6 + 2 * q^7 + 12 * q^9 $$4 q + 4 q^{4} - 18 q^{5} - 12 q^{6} + 2 q^{7} + 12 q^{9} + 18 q^{11} + 12 q^{12} - 10 q^{13} + 36 q^{14} + 18 q^{15} - 8 q^{16} - 24 q^{18} - 40 q^{19} - 36 q^{20} - 42 q^{21} - 12 q^{22} + 18 q^{23} + 4 q^{25} + 8 q^{28} + 18 q^{29} + 72 q^{30} + 38 q^{31} + 54 q^{33} + 24 q^{34} + 12 q^{36} + 128 q^{37} - 72 q^{38} - 102 q^{39} - 126 q^{41} - 48 q^{42} - 46 q^{43} - 54 q^{45} - 24 q^{46} + 54 q^{47} + 24 q^{48} - 12 q^{49} - 72 q^{51} + 20 q^{52} + 36 q^{54} - 108 q^{55} + 72 q^{56} + 144 q^{57} + 24 q^{58} + 126 q^{59} - 36 q^{60} + 62 q^{61} + 222 q^{63} - 32 q^{64} + 90 q^{65} - 72 q^{66} - 106 q^{67} + 72 q^{68} + 18 q^{69} - 108 q^{70} - 96 q^{72} - 208 q^{73} + 72 q^{74} - 12 q^{75} - 40 q^{76} - 90 q^{77} + 144 q^{78} + 14 q^{79} - 252 q^{81} + 144 q^{82} - 378 q^{83} - 144 q^{84} + 108 q^{85} - 108 q^{86} - 54 q^{87} + 24 q^{88} + 412 q^{91} + 36 q^{92} + 222 q^{93} + 84 q^{94} + 180 q^{95} + 48 q^{96} + 14 q^{97} + 126 q^{99}+O(q^{100})$$ 4 * q + 4 * q^4 - 18 * q^5 - 12 * q^6 + 2 * q^7 + 12 * q^9 + 18 * q^11 + 12 * q^12 - 10 * q^13 + 36 * q^14 + 18 * q^15 - 8 * q^16 - 24 * q^18 - 40 * q^19 - 36 * q^20 - 42 * q^21 - 12 * q^22 + 18 * q^23 + 4 * q^25 + 8 * q^28 + 18 * q^29 + 72 * q^30 + 38 * q^31 + 54 * q^33 + 24 * q^34 + 12 * q^36 + 128 * q^37 - 72 * q^38 - 102 * q^39 - 126 * q^41 - 48 * q^42 - 46 * q^43 - 54 * q^45 - 24 * q^46 + 54 * q^47 + 24 * q^48 - 12 * q^49 - 72 * q^51 + 20 * q^52 + 36 * q^54 - 108 * q^55 + 72 * q^56 + 144 * q^57 + 24 * q^58 + 126 * q^59 - 36 * q^60 + 62 * q^61 + 222 * q^63 - 32 * q^64 + 90 * q^65 - 72 * q^66 - 106 * q^67 + 72 * q^68 + 18 * q^69 - 108 * q^70 - 96 * q^72 - 208 * q^73 + 72 * q^74 - 12 * q^75 - 40 * q^76 - 90 * q^77 + 144 * q^78 + 14 * q^79 - 252 * q^81 + 144 * q^82 - 378 * q^83 - 144 * q^84 + 108 * q^85 - 108 * q^86 - 54 * q^87 + 24 * q^88 + 412 * q^91 + 36 * q^92 + 222 * q^93 + 84 * q^94 + 180 * q^95 + 48 * q^96 + 14 * q^97 + 126 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/18\mathbb{Z}\right)^\times$$.

 $$n$$ $$11$$ $$\chi(n)$$ $$e\left(\frac{5}{6}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −1.22474 + 0.707107i −0.612372 + 0.353553i
$$3$$ 2.44949 + 1.73205i 0.816497 + 0.577350i
$$4$$ 1.00000 1.73205i 0.250000 0.433013i
$$5$$ −4.50000 2.59808i −0.900000 0.519615i −0.0227998 0.999740i $$-0.507258\pi$$
−0.877200 + 0.480125i $$0.840591\pi$$
$$6$$ −4.22474 0.389270i −0.704124 0.0648783i
$$7$$ −3.17423 5.49794i −0.453462 0.785419i 0.545136 0.838347i $$-0.316478\pi$$
−0.998598 + 0.0529281i $$0.983145\pi$$
$$8$$ 2.82843i 0.353553i
$$9$$ 3.00000 + 8.48528i 0.333333 + 0.942809i
$$10$$ 7.34847 0.734847
$$11$$ 8.17423 4.71940i 0.743112 0.429036i −0.0800876 0.996788i $$-0.525520\pi$$
0.823200 + 0.567752i $$0.192187\pi$$
$$12$$ 5.44949 2.51059i 0.454124 0.209216i
$$13$$ −9.84847 + 17.0580i −0.757575 + 1.31216i 0.186510 + 0.982453i $$0.440282\pi$$
−0.944084 + 0.329704i $$0.893051\pi$$
$$14$$ 7.77526 + 4.48905i 0.555375 + 0.320646i
$$15$$ −6.52270 14.1582i −0.434847 0.943879i
$$16$$ −2.00000 3.46410i −0.125000 0.216506i
$$17$$ 1.90702i 0.112178i 0.998426 + 0.0560889i $$0.0178630\pi$$
−0.998426 + 0.0560889i $$0.982137\pi$$
$$18$$ −9.67423 8.27098i −0.537457 0.459499i
$$19$$ 4.69694 0.247207 0.123604 0.992332i $$-0.460555\pi$$
0.123604 + 0.992332i $$0.460555\pi$$
$$20$$ −9.00000 + 5.19615i −0.450000 + 0.259808i
$$21$$ 1.74745 18.9651i 0.0832118 0.903099i
$$22$$ −6.67423 + 11.5601i −0.303374 + 0.525460i
$$23$$ 8.17423 + 4.71940i 0.355402 + 0.205191i 0.667062 0.745002i $$-0.267552\pi$$
−0.311660 + 0.950194i $$0.600885\pi$$
$$24$$ −4.89898 + 6.92820i −0.204124 + 0.288675i
$$25$$ 1.00000 + 1.73205i 0.0400000 + 0.0692820i
$$26$$ 27.8557i 1.07137i
$$27$$ −7.34847 + 25.9808i −0.272166 + 0.962250i
$$28$$ −12.6969 −0.453462
$$29$$ −2.84847 + 1.64456i −0.0982231 + 0.0567091i −0.548307 0.836277i $$-0.684727\pi$$
0.450084 + 0.892986i $$0.351394\pi$$
$$30$$ 18.0000 + 12.7279i 0.600000 + 0.424264i
$$31$$ 20.5227 35.5464i 0.662023 1.14666i −0.318061 0.948070i $$-0.603032\pi$$
0.980083 0.198587i $$-0.0636351\pi$$
$$32$$ 4.89898 + 2.82843i 0.153093 + 0.0883883i
$$33$$ 28.1969 + 2.59808i 0.854453 + 0.0787296i
$$34$$ −1.34847 2.33562i −0.0396609 0.0686946i
$$35$$ 32.9876i 0.942503i
$$36$$ 17.6969 + 3.28913i 0.491582 + 0.0913647i
$$37$$ 17.3031 0.467650 0.233825 0.972279i $$-0.424876\pi$$
0.233825 + 0.972279i $$0.424876\pi$$
$$38$$ −5.75255 + 3.32124i −0.151383 + 0.0874010i
$$39$$ −53.6691 + 24.7255i −1.37613 + 0.633986i
$$40$$ 7.34847 12.7279i 0.183712 0.318198i
$$41$$ −53.5454 30.9145i −1.30599 0.754011i −0.324562 0.945864i $$-0.605217\pi$$
−0.981424 + 0.191853i $$0.938550\pi$$
$$42$$ 11.2702 + 24.4630i 0.268337 + 0.582453i
$$43$$ −0.477296 0.826701i −0.0110999 0.0192256i 0.860422 0.509582i $$-0.170200\pi$$
−0.871522 + 0.490356i $$0.836867\pi$$
$$44$$ 18.8776i 0.429036i
$$45$$ 8.54541 45.9780i 0.189898 1.02173i
$$46$$ −13.3485 −0.290184
$$47$$ −12.2196 + 7.05501i −0.259992 + 0.150107i −0.624331 0.781160i $$-0.714628\pi$$
0.364339 + 0.931267i $$0.381295\pi$$
$$48$$ 1.10102 11.9494i 0.0229379 0.248945i
$$49$$ 4.34847 7.53177i 0.0887443 0.153710i
$$50$$ −2.44949 1.41421i −0.0489898 0.0282843i
$$51$$ −3.30306 + 4.67123i −0.0647659 + 0.0915928i
$$52$$ 19.6969 + 34.1161i 0.378787 + 0.656079i
$$53$$ 9.53512i 0.179908i 0.995946 + 0.0899539i $$0.0286720\pi$$
−0.995946 + 0.0899539i $$0.971328\pi$$
$$54$$ −9.37117 37.0160i −0.173540 0.685481i
$$55$$ −49.0454 −0.891735
$$56$$ 15.5505 8.97809i 0.277688 0.160323i
$$57$$ 11.5051 + 8.13534i 0.201844 + 0.142725i
$$58$$ 2.32577 4.02834i 0.0400994 0.0694542i
$$59$$ 79.2650 + 45.7637i 1.34348 + 0.775656i 0.987316 0.158769i $$-0.0507526\pi$$
0.356160 + 0.934425i $$0.384086\pi$$
$$60$$ −31.0454 2.86054i −0.517423 0.0476756i
$$61$$ 37.5454 + 65.0306i 0.615498 + 1.06607i 0.990297 + 0.138968i $$0.0443786\pi$$
−0.374798 + 0.927106i $$0.622288\pi$$
$$62$$ 58.0470i 0.936241i
$$63$$ 37.1288 43.4281i 0.589346 0.689335i
$$64$$ −8.00000 −0.125000
$$65$$ 88.6362 51.1741i 1.36363 0.787295i
$$66$$ −36.3712 + 16.7563i −0.551078 + 0.253883i
$$67$$ −15.4773 + 26.8075i −0.231004 + 0.400111i −0.958104 0.286421i $$-0.907535\pi$$
0.727100 + 0.686532i $$0.240868\pi$$
$$68$$ 3.30306 + 1.90702i 0.0485744 + 0.0280445i
$$69$$ 11.8485 + 25.7183i 0.171717 + 0.372729i
$$70$$ −23.3258 40.4014i −0.333225 0.577163i
$$71$$ 85.9026i 1.20990i −0.796265 0.604948i $$-0.793194\pi$$
0.796265 0.604948i $$-0.206806\pi$$
$$72$$ −24.0000 + 8.48528i −0.333333 + 0.117851i
$$73$$ −96.0908 −1.31631 −0.658156 0.752881i $$-0.728663\pi$$
−0.658156 + 0.752881i $$0.728663\pi$$
$$74$$ −21.1918 + 12.2351i −0.286376 + 0.165339i
$$75$$ −0.550510 + 5.97469i −0.00734014 + 0.0796626i
$$76$$ 4.69694 8.13534i 0.0618018 0.107044i
$$77$$ −51.8939 29.9609i −0.673946 0.389103i
$$78$$ 48.2474 68.2322i 0.618557 0.874772i
$$79$$ −14.8712 25.7576i −0.188243 0.326046i 0.756422 0.654084i $$-0.226946\pi$$
−0.944664 + 0.328038i $$0.893612\pi$$
$$80$$ 20.7846i 0.259808i
$$81$$ −63.0000 + 50.9117i −0.777778 + 0.628539i
$$82$$ 87.4393 1.06633
$$83$$ −76.1288 + 43.9530i −0.917215 + 0.529554i −0.882745 0.469852i $$-0.844307\pi$$
−0.0344693 + 0.999406i $$0.510974\pi$$
$$84$$ −31.1010 21.9917i −0.370250 0.261806i
$$85$$ 4.95459 8.58161i 0.0582893 0.100960i
$$86$$ 1.16913 + 0.674999i 0.0135946 + 0.00784882i
$$87$$ −9.82577 0.905350i −0.112940 0.0104063i
$$88$$ 13.3485 + 23.1202i 0.151687 + 0.262730i
$$89$$ 41.3766i 0.464905i 0.972608 + 0.232453i $$0.0746751\pi$$
−0.972608 + 0.232453i $$0.925325\pi$$
$$90$$ 22.0454 + 62.3538i 0.244949 + 0.692820i
$$91$$ 125.045 1.37413
$$92$$ 16.3485 9.43879i 0.177701 0.102596i
$$93$$ 111.838 51.5241i 1.20256 0.554023i
$$94$$ 9.97730 17.2812i 0.106141 0.183842i
$$95$$ −21.1362 12.2030i −0.222487 0.128453i
$$96$$ 7.10102 + 15.4135i 0.0739690 + 0.160557i
$$97$$ −47.9393 83.0333i −0.494219 0.856013i 0.505758 0.862675i $$-0.331213\pi$$
−0.999978 + 0.00666202i $$0.997879\pi$$
$$98$$ 12.2993i 0.125503i
$$99$$ 64.5681 + 55.2025i 0.652203 + 0.557601i
$$100$$ 4.00000 0.0400000
$$101$$ −136.772 + 78.9656i −1.35418 + 0.781838i −0.988832 0.149032i $$-0.952384\pi$$
−0.365350 + 0.930870i $$0.619051\pi$$
$$102$$ 0.742346 8.05669i 0.00727790 0.0789871i
$$103$$ −14.5681 + 25.2327i −0.141438 + 0.244978i −0.928038 0.372485i $$-0.878506\pi$$
0.786600 + 0.617462i $$0.211839\pi$$
$$104$$ −48.2474 27.8557i −0.463918 0.267843i
$$105$$ −57.1362 + 80.8028i −0.544155 + 0.769551i
$$106$$ −6.74235 11.6781i −0.0636070 0.110171i
$$107$$ 171.805i 1.60566i −0.596210 0.802829i $$-0.703327\pi$$
0.596210 0.802829i $$-0.296673\pi$$
$$108$$ 37.6515 + 38.7087i 0.348625 + 0.358414i
$$109$$ 116.272 1.06672 0.533360 0.845888i $$-0.320929\pi$$
0.533360 + 0.845888i $$0.320929\pi$$
$$110$$ 60.0681 34.6803i 0.546074 0.315276i
$$111$$ 42.3837 + 29.9698i 0.381835 + 0.269998i
$$112$$ −12.6969 + 21.9917i −0.113366 + 0.196355i
$$113$$ 175.166 + 101.132i 1.55014 + 0.894976i 0.998129 + 0.0611424i $$0.0194744\pi$$
0.552015 + 0.833834i $$0.313859\pi$$
$$114$$ −19.8434 1.82838i −0.174065 0.0160384i
$$115$$ −24.5227 42.4746i −0.213241 0.369344i
$$116$$ 6.57826i 0.0567091i
$$117$$ −174.288 32.3929i −1.48964 0.276862i
$$118$$ −129.439 −1.09694
$$119$$ 10.4847 6.05334i 0.0881067 0.0508684i
$$120$$ 40.0454 18.4490i 0.333712 0.153742i
$$121$$ −15.9546 + 27.6342i −0.131856 + 0.228382i
$$122$$ −91.9671 53.0972i −0.753829 0.435223i
$$123$$ −77.6135 168.468i −0.631004 1.36966i
$$124$$ −41.0454 71.0927i −0.331011 0.573328i
$$125$$ 119.512i 0.956092i
$$126$$ −14.7650 + 79.4424i −0.117183 + 0.630495i
$$127$$ 10.0908 0.0794552 0.0397276 0.999211i $$-0.487351\pi$$
0.0397276 + 0.999211i $$0.487351\pi$$
$$128$$ 9.79796 5.65685i 0.0765466 0.0441942i
$$129$$ 0.262756 2.85170i 0.00203687 0.0221062i
$$130$$ −72.3712 + 125.351i −0.556701 + 0.964235i
$$131$$ 4.29567 + 2.48010i 0.0327913 + 0.0189321i 0.516306 0.856404i $$-0.327307\pi$$
−0.483515 + 0.875336i $$0.660640\pi$$
$$132$$ 32.6969 46.2405i 0.247704 0.350306i
$$133$$ −14.9092 25.8235i −0.112099 0.194161i
$$134$$ 43.7764i 0.326690i
$$135$$ 100.568 97.8215i 0.744949 0.724604i
$$136$$ −5.39388 −0.0396609
$$137$$ 203.242 117.342i 1.48352 0.856511i 0.483696 0.875236i $$-0.339294\pi$$
0.999825 + 0.0187249i $$0.00596067\pi$$
$$138$$ −32.6969 23.1202i −0.236934 0.167538i
$$139$$ −53.2650 + 92.2578i −0.383202 + 0.663725i −0.991518 0.129970i $$-0.958512\pi$$
0.608316 + 0.793695i $$0.291845\pi$$
$$140$$ 57.1362 + 32.9876i 0.408116 + 0.235626i
$$141$$ −42.1515 3.88386i −0.298947 0.0275451i
$$142$$ 60.7423 + 105.209i 0.427763 + 0.740907i
$$143$$ 185.915i 1.30011i
$$144$$ 23.3939 27.3629i 0.162457 0.190020i
$$145$$ 17.0908 0.117868
$$146$$ 117.687 67.9465i 0.806074 0.465387i
$$147$$ 23.6969 10.9172i 0.161204 0.0742668i
$$148$$ 17.3031 29.9698i 0.116913 0.202499i
$$149$$ −91.0301 52.5563i −0.610940 0.352727i 0.162393 0.986726i $$-0.448079\pi$$
−0.773333 + 0.634000i $$0.781412\pi$$
$$150$$ −3.55051 7.70674i −0.0236701 0.0513783i
$$151$$ 142.614 + 247.014i 0.944460 + 1.63585i 0.756828 + 0.653614i $$0.226748\pi$$
0.187632 + 0.982239i $$0.439919\pi$$
$$152$$ 13.2849i 0.0874010i
$$153$$ −16.1816 + 5.72107i −0.105762 + 0.0373926i
$$154$$ 84.7423 0.550275
$$155$$ −184.704 + 106.639i −1.19164 + 0.687994i
$$156$$ −10.8434 + 117.683i −0.0695088 + 0.754379i
$$157$$ 98.5908 170.764i 0.627967 1.08767i −0.359992 0.932955i $$-0.617221\pi$$
0.987959 0.154715i $$-0.0494460\pi$$
$$158$$ 36.4268 + 21.0310i 0.230549 + 0.133108i
$$159$$ −16.5153 + 23.3562i −0.103870 + 0.146894i
$$160$$ −14.6969 25.4558i −0.0918559 0.159099i
$$161$$ 59.9219i 0.372186i
$$162$$ 41.1589 106.902i 0.254067 0.659886i
$$163$$ −249.060 −1.52798 −0.763988 0.645230i $$-0.776762\pi$$
−0.763988 + 0.645230i $$0.776762\pi$$
$$164$$ −107.091 + 61.8289i −0.652993 + 0.377006i
$$165$$ −120.136 84.9491i −0.728098 0.514843i
$$166$$ 62.1589 107.662i 0.374451 0.648569i
$$167$$ −41.9472 24.2182i −0.251181 0.145019i 0.369124 0.929380i $$-0.379658\pi$$
−0.620305 + 0.784361i $$0.712991\pi$$
$$168$$ 53.6413 + 4.94253i 0.319294 + 0.0294198i
$$169$$ −109.485 189.633i −0.647838 1.12209i
$$170$$ 14.0137i 0.0824335i
$$171$$ 14.0908 + 39.8548i 0.0824024 + 0.233069i
$$172$$ −1.90918 −0.0110999
$$173$$ 86.9847 50.2206i 0.502802 0.290293i −0.227068 0.973879i $$-0.572914\pi$$
0.729870 + 0.683586i $$0.239581\pi$$
$$174$$ 12.6742 5.83904i 0.0728404 0.0335577i
$$175$$ 6.34847 10.9959i 0.0362770 0.0628336i
$$176$$ −32.6969 18.8776i −0.185778 0.107259i
$$177$$ 114.894 + 249.389i 0.649118 + 1.40898i
$$178$$ −29.2577 50.6757i −0.164369 0.284695i
$$179$$ 285.071i 1.59257i −0.604919 0.796287i $$-0.706794\pi$$
0.604919 0.796287i $$-0.293206\pi$$
$$180$$ −71.0908 60.7791i −0.394949 0.337662i
$$181$$ 37.1214 0.205091 0.102545 0.994728i $$-0.467301\pi$$
0.102545 + 0.994728i $$0.467301\pi$$
$$182$$ −153.149 + 88.4205i −0.841476 + 0.485827i
$$183$$ −20.6691 + 224.322i −0.112946 + 1.22580i
$$184$$ −13.3485 + 23.1202i −0.0725460 + 0.125653i
$$185$$ −77.8638 44.9547i −0.420885 0.242998i
$$186$$ −100.540 + 142.185i −0.540539 + 0.764438i
$$187$$ 9.00000 + 15.5885i 0.0481283 + 0.0833607i
$$188$$ 28.2201i 0.150107i
$$189$$ 166.166 42.0676i 0.879187 0.222580i
$$190$$ 34.5153 0.181660
$$191$$ −15.5227 + 8.96204i −0.0812707 + 0.0469217i −0.540085 0.841611i $$-0.681608\pi$$
0.458814 + 0.888532i $$0.348274\pi$$
$$192$$ −19.5959 13.8564i −0.102062 0.0721688i
$$193$$ 47.7270 82.6657i 0.247290 0.428319i −0.715483 0.698630i $$-0.753793\pi$$
0.962773 + 0.270311i $$0.0871265\pi$$
$$194$$ 117.427 + 67.7964i 0.605293 + 0.349466i
$$195$$ 305.750 + 28.1719i 1.56795 + 0.144471i
$$196$$ −8.69694 15.0635i −0.0443721 0.0768548i
$$197$$ 160.363i 0.814026i 0.913422 + 0.407013i $$0.133430\pi$$
−0.913422 + 0.407013i $$0.866570\pi$$
$$198$$ −118.114 21.9524i −0.596533 0.110871i
$$199$$ 6.51531 0.0327402 0.0163701 0.999866i $$-0.494789\pi$$
0.0163701 + 0.999866i $$0.494789\pi$$
$$200$$ −4.89898 + 2.82843i −0.0244949 + 0.0141421i
$$201$$ −84.3434 + 38.8571i −0.419619 + 0.193319i
$$202$$ 111.674 193.425i 0.552843 0.957552i
$$203$$ 18.0834 + 10.4405i 0.0890809 + 0.0514309i
$$204$$ 4.78775 + 10.3923i 0.0234694 + 0.0509427i
$$205$$ 160.636 + 278.230i 0.783591 + 1.35722i
$$206$$ 41.2048i 0.200024i
$$207$$ −15.5227 + 83.5189i −0.0749889 + 0.403473i
$$208$$ 78.7878 0.378787
$$209$$ 38.3939 22.1667i 0.183703 0.106061i
$$210$$ 12.8411 139.364i 0.0611480 0.663639i
$$211$$ 77.2196 133.748i 0.365970 0.633878i −0.622961 0.782253i $$-0.714071\pi$$
0.988931 + 0.148374i $$0.0474040\pi$$
$$212$$ 16.5153 + 9.53512i 0.0779024 + 0.0449770i
$$213$$ 148.788 210.418i 0.698534 0.987876i
$$214$$ 121.485 + 210.418i 0.567685 + 0.983260i
$$215$$ 4.96021i 0.0230707i
$$216$$ −73.4847 20.7846i −0.340207 0.0962250i
$$217$$ −260.576 −1.20081
$$218$$ −142.404 + 82.2170i −0.653230 + 0.377142i
$$219$$ −235.373 166.434i −1.07476 0.759973i
$$220$$ −49.0454 + 84.9491i −0.222934 + 0.386132i
$$221$$ −32.5301 18.7813i −0.147195 0.0849831i
$$222$$ −73.1010 6.73555i −0.329284 0.0303403i
$$223$$ −46.3865 80.3437i −0.208011 0.360286i 0.743077 0.669206i $$-0.233366\pi$$
−0.951088 + 0.308920i $$0.900032\pi$$
$$224$$ 35.9124i 0.160323i
$$225$$ −11.6969 + 13.6814i −0.0519864 + 0.0608064i
$$226$$ −286.045 −1.26569
$$227$$ 147.053 84.9010i 0.647810 0.374013i −0.139807 0.990179i $$-0.544648\pi$$
0.787617 + 0.616166i $$0.211315\pi$$
$$228$$ 25.5959 11.7921i 0.112263 0.0517197i
$$229$$ −203.772 + 352.944i −0.889836 + 1.54124i −0.0497675 + 0.998761i $$0.515848\pi$$
−0.840068 + 0.542480i $$0.817485\pi$$
$$230$$ 60.0681 + 34.6803i 0.261166 + 0.150784i
$$231$$ −75.2196 163.272i −0.325626 0.706805i
$$232$$ −4.65153 8.05669i −0.0200497 0.0347271i
$$233$$ 15.2562i 0.0654772i 0.999464 + 0.0327386i $$0.0104229\pi$$
−0.999464 + 0.0327386i $$0.989577\pi$$
$$234$$ 236.363 83.5670i 1.01010 0.357124i
$$235$$ 73.3179 0.311991
$$236$$ 158.530 91.5274i 0.671738 0.387828i
$$237$$ 8.18673 88.8507i 0.0345432 0.374897i
$$238$$ −8.56072 + 14.8276i −0.0359694 + 0.0623008i
$$239$$ 48.9620 + 28.2682i 0.204862 + 0.118277i 0.598921 0.800808i $$-0.295596\pi$$
−0.394059 + 0.919085i $$0.628930\pi$$
$$240$$ −36.0000 + 50.9117i −0.150000 + 0.212132i
$$241$$ −42.1061 72.9299i −0.174714 0.302614i 0.765348 0.643617i $$-0.222567\pi$$
−0.940062 + 0.341003i $$0.889233\pi$$
$$242$$ 45.1264i 0.186473i
$$243$$ −242.499 + 15.5885i −0.997940 + 0.0641500i
$$244$$ 150.182 0.615498
$$245$$ −39.1362 + 22.5953i −0.159740 + 0.0922258i
$$246$$ 214.182 + 151.449i 0.870657 + 0.615647i
$$247$$ −46.2577 + 80.1206i −0.187278 + 0.324375i
$$248$$ 100.540 + 58.0470i 0.405404 + 0.234060i
$$249$$ −262.606 24.1966i −1.05464 0.0971750i
$$250$$ −84.5074 146.371i −0.338030 0.585484i
$$251$$ 218.903i 0.872123i 0.899917 + 0.436062i $$0.143627\pi$$
−0.899917 + 0.436062i $$0.856373\pi$$
$$252$$ −38.0908 107.737i −0.151154 0.427528i
$$253$$ 89.0908 0.352138
$$254$$ −12.3587 + 7.13528i −0.0486562 + 0.0280917i
$$255$$ 27.0000 12.4389i 0.105882 0.0487802i
$$256$$ −8.00000 + 13.8564i −0.0312500 + 0.0541266i
$$257$$ −11.1061 6.41212i −0.0432145 0.0249499i 0.478237 0.878231i $$-0.341276\pi$$
−0.521452 + 0.853281i $$0.674609\pi$$
$$258$$ 1.69464 + 3.67840i 0.00656839 + 0.0142574i
$$259$$ −54.9240 95.1311i −0.212062 0.367302i
$$260$$ 204.697i 0.787295i
$$261$$ −22.5000 19.2364i −0.0862069 0.0737026i
$$262$$ −7.01479 −0.0267740
$$263$$ 291.386 168.232i 1.10793 0.639666i 0.169640 0.985506i $$-0.445739\pi$$
0.938293 + 0.345840i $$0.112406\pi$$
$$264$$ −7.34847 + 79.7530i −0.0278351 + 0.302095i
$$265$$ 24.7730 42.9080i 0.0934829 0.161917i
$$266$$ 36.5199 + 21.0848i 0.137293 + 0.0792661i
$$267$$ −71.6663 + 101.351i −0.268413 + 0.379594i
$$268$$ 30.9546 + 53.6149i 0.115502 + 0.200056i
$$269$$ 60.4468i 0.224709i 0.993668 + 0.112355i $$0.0358393\pi$$
−0.993668 + 0.112355i $$0.964161\pi$$
$$270$$ −54.0000 + 190.919i −0.200000 + 0.707107i
$$271$$ 274.636 1.01342 0.506708 0.862118i $$-0.330862\pi$$
0.506708 + 0.862118i $$0.330862\pi$$
$$272$$ 6.60612 3.81405i 0.0242872 0.0140222i
$$273$$ 306.297 + 216.585i 1.12197 + 0.793352i
$$274$$ −165.947 + 287.428i −0.605645 + 1.04901i
$$275$$ 16.3485 + 9.43879i 0.0594490 + 0.0343229i
$$276$$ 56.3939 + 5.19615i 0.204326 + 0.0188266i
$$277$$ 24.5000 + 42.4352i 0.0884477 + 0.153196i 0.906855 0.421442i $$-0.138476\pi$$
−0.818407 + 0.574638i $$0.805143\pi$$
$$278$$ 150.656i 0.541929i
$$279$$ 363.189 + 67.5018i 1.30175 + 0.241942i
$$280$$ −93.3031 −0.333225
$$281$$ −297.121 + 171.543i −1.05737 + 0.610473i −0.924704 0.380688i $$-0.875687\pi$$
−0.132666 + 0.991161i $$0.542354\pi$$
$$282$$ 54.3712 25.0489i 0.192806 0.0888259i
$$283$$ 171.704 297.401i 0.606729 1.05089i −0.385047 0.922897i $$-0.625815\pi$$
0.991776 0.127988i $$-0.0408521\pi$$
$$284$$ −148.788 85.9026i −0.523901 0.302474i
$$285$$ −30.6367 66.5001i −0.107497 0.233334i
$$286$$ −131.462 227.699i −0.459657 0.796150i
$$287$$ 392.519i 1.36766i
$$288$$ −9.30306 + 50.0545i −0.0323023 + 0.173800i
$$289$$ 285.363 0.987416
$$290$$ −20.9319 + 12.0850i −0.0721789 + 0.0416725i
$$291$$ 26.3911 286.422i 0.0906910 0.984270i
$$292$$ −96.0908 + 166.434i −0.329078 + 0.569980i
$$293$$ −248.076 143.226i −0.846674 0.488828i 0.0128532 0.999917i $$-0.495909\pi$$
−0.859527 + 0.511090i $$0.829242\pi$$
$$294$$ −21.3031 + 30.1271i −0.0724594 + 0.102473i
$$295$$ −237.795 411.873i −0.806085 1.39618i
$$296$$ 48.9404i 0.165339i
$$297$$ 62.5454 + 247.053i 0.210591 + 0.831829i
$$298$$ 148.652 0.498831
$$299$$ −161.007 + 92.9577i −0.538486 + 0.310895i
$$300$$ 9.79796 + 6.92820i 0.0326599 + 0.0230940i
$$301$$ −3.03010 + 5.24829i −0.0100668 + 0.0174362i
$$302$$ −349.330 201.686i −1.15672 0.667834i
$$303$$ −471.795 43.4714i −1.55708 0.143470i
$$304$$ −9.39388 16.2707i −0.0309009 0.0535219i
$$305$$ 390.183i 1.27929i
$$306$$ 15.7730 18.4490i 0.0515456 0.0602908i
$$307$$ 154.091 0.501924 0.250962 0.967997i $$-0.419253\pi$$
0.250962 + 0.967997i $$0.419253\pi$$
$$308$$ −103.788 + 59.9219i −0.336973 + 0.194552i
$$309$$ −79.3888 + 36.5746i −0.256922 + 0.118364i
$$310$$ 150.810 261.211i 0.486485 0.842617i
$$311$$ −62.3411 35.9926i −0.200454 0.115732i 0.396413 0.918072i $$-0.370255\pi$$
−0.596867 + 0.802340i $$0.703588\pi$$
$$312$$ −69.9342 151.799i −0.224148 0.486536i
$$313$$ 183.803 + 318.356i 0.587230 + 1.01711i 0.994593 + 0.103846i $$0.0331150\pi$$
−0.407363 + 0.913266i $$0.633552\pi$$
$$314$$ 278.857i 0.888079i
$$315$$ −279.909 + 98.9628i −0.888601 + 0.314168i
$$316$$ −59.4847 −0.188243
$$317$$ −93.1821 + 53.7987i −0.293950 + 0.169712i −0.639722 0.768607i $$-0.720950\pi$$
0.345772 + 0.938319i $$0.387617\pi$$
$$318$$ 3.71173 40.2834i 0.0116721 0.126677i
$$319$$ −15.5227 + 26.8861i −0.0486605 + 0.0842825i
$$320$$ 36.0000 + 20.7846i 0.112500 + 0.0649519i
$$321$$ 297.576 420.835i 0.927027 1.31101i
$$322$$ 42.3712 + 73.3890i 0.131587 + 0.227916i
$$323$$ 8.95717i 0.0277312i
$$324$$ 25.1816 + 160.031i 0.0777211 + 0.493922i
$$325$$ −39.3939 −0.121212
$$326$$ 305.035 176.112i 0.935691 0.540221i
$$327$$ 284.808 + 201.390i 0.870973 + 0.615871i
$$328$$ 87.4393 151.449i 0.266583 0.461736i
$$329$$ 77.5760 + 44.7885i 0.235793 + 0.136135i
$$330$$ 207.204 + 19.0919i 0.627892 + 0.0578542i
$$331$$ −8.59873 14.8934i −0.0259780 0.0449953i 0.852744 0.522329i $$-0.174937\pi$$
−0.878722 + 0.477334i $$0.841603\pi$$
$$332$$ 175.812i 0.529554i
$$333$$ 51.9092 + 146.821i 0.155883 + 0.440905i
$$334$$ 68.4995 0.205088
$$335$$ 139.296 80.4224i 0.415808 0.240067i
$$336$$ −69.1918 + 31.8768i −0.205928 + 0.0948714i
$$337$$ −182.197 + 315.574i −0.540644 + 0.936422i 0.458223 + 0.888837i $$0.348486\pi$$
−0.998867 + 0.0475854i $$0.984847\pi$$
$$338$$ 268.182 + 154.835i 0.793437 + 0.458091i
$$339$$ 253.902 + 551.120i 0.748973 + 1.62572i
$$340$$ −9.90918 17.1632i −0.0291447 0.0504800i
$$341$$ 387.419i 1.13613i
$$342$$ −45.4393 38.8483i −0.132863 0.113592i
$$343$$ −366.287 −1.06789
$$344$$ 2.33826 1.35000i 0.00679728 0.00392441i
$$345$$ 13.5000 146.516i 0.0391304 0.424683i
$$346$$ −71.0227 + 123.015i −0.205268 + 0.355534i
$$347$$ 505.234 + 291.697i 1.45601 + 0.840626i 0.998811 0.0487402i $$-0.0155206\pi$$
0.457196 + 0.889366i $$0.348854\pi$$
$$348$$ −11.3939 + 16.1134i −0.0327410 + 0.0463028i
$$349$$ −156.379 270.856i −0.448076 0.776091i 0.550185 0.835043i $$-0.314557\pi$$
−0.998261 + 0.0589524i $$0.981224\pi$$
$$350$$ 17.9562i 0.0513034i
$$351$$ −370.810 381.221i −1.05644 1.08610i
$$352$$ 53.3939 0.151687
$$353$$ −32.5760 + 18.8078i −0.0922834 + 0.0532798i −0.545431 0.838155i $$-0.683634\pi$$
0.453148 + 0.891435i $$0.350301\pi$$
$$354$$ −317.060 224.195i −0.895650 0.633320i
$$355$$ −223.182 + 386.562i −0.628681 + 1.08891i
$$356$$ 71.6663 + 41.3766i 0.201310 + 0.116226i
$$357$$ 36.1668 + 3.33243i 0.101308 + 0.00933453i
$$358$$ 201.576 + 349.139i 0.563060 + 0.975249i
$$359$$ 294.028i 0.819019i −0.912306 0.409510i $$-0.865700\pi$$
0.912306 0.409510i $$-0.134300\pi$$
$$360$$ 130.045 + 24.1701i 0.361237 + 0.0671391i
$$361$$ −338.939 −0.938889
$$362$$ −45.4643 + 26.2488i −0.125592 + 0.0725105i
$$363$$ −86.9444 + 40.0554i −0.239516 + 0.110346i
$$364$$ 125.045 216.585i 0.343531 0.595014i
$$365$$ 432.409 + 249.651i 1.18468 + 0.683976i
$$366$$ −133.305 289.353i −0.364222 0.790581i
$$367$$ 16.6135 + 28.7755i 0.0452684 + 0.0784072i 0.887772 0.460284i $$-0.152252\pi$$
−0.842503 + 0.538691i $$0.818919\pi$$
$$368$$ 37.7552i 0.102596i
$$369$$ 101.682 547.091i 0.275560 1.48263i
$$370$$ 127.151 0.343651
$$371$$ 52.4235 30.2667i 0.141303 0.0815814i
$$372$$ 22.5959 245.234i 0.0607417 0.659230i
$$373$$ 112.515 194.881i 0.301648 0.522470i −0.674861 0.737945i $$-0.735797\pi$$
0.976509 + 0.215475i $$0.0691299\pi$$
$$374$$ −22.0454 12.7279i −0.0589449 0.0340319i
$$375$$ −207.000 + 292.742i −0.552000 + 0.780646i
$$376$$ −19.9546 34.5624i −0.0530707 0.0919212i
$$377$$ 64.7858i 0.171846i
$$378$$ −173.765 + 169.019i −0.459696 + 0.447141i
$$379$$ −166.334 −0.438875 −0.219438 0.975627i $$-0.570422\pi$$
−0.219438 + 0.975627i $$0.570422\pi$$
$$380$$ −42.2724 + 24.4060i −0.111243 + 0.0642263i
$$381$$ 24.7173 + 17.4778i 0.0648749 + 0.0458735i
$$382$$ 12.6742 21.9524i 0.0331786 0.0574671i
$$383$$ −638.249 368.493i −1.66645 0.962124i −0.969530 0.244972i $$-0.921221\pi$$
−0.696917 0.717152i $$-0.745445\pi$$
$$384$$ 33.7980 + 3.11416i 0.0880155 + 0.00810978i
$$385$$ 155.682 + 269.648i 0.404368 + 0.700386i
$$386$$ 134.992i 0.349721i
$$387$$ 5.58290 6.53010i 0.0144261 0.0168736i
$$388$$ −191.757 −0.494219
$$389$$ −146.682 + 84.6867i −0.377074 + 0.217704i −0.676544 0.736402i $$-0.736523\pi$$
0.299471 + 0.954106i $$0.403190\pi$$
$$390$$ −394.386 + 181.694i −1.01125 + 0.465883i
$$391$$ −9.00000 + 15.5885i −0.0230179 + 0.0398682i
$$392$$ 21.3031 + 12.2993i 0.0543445 + 0.0313758i
$$393$$ 6.22652 + 13.5153i 0.0158436 + 0.0343901i
$$394$$ −113.394 196.404i −0.287802 0.498487i
$$395$$ 154.546i 0.391255i
$$396$$ 160.182 56.6328i 0.404499 0.143012i
$$397$$ −256.272 −0.645523 −0.322761 0.946480i $$-0.604611\pi$$
−0.322761 + 0.946480i $$0.604611\pi$$
$$398$$ −7.97959 + 4.60702i −0.0200492 + 0.0115754i
$$399$$ 8.20766 89.0778i 0.0205706 0.223253i
$$400$$ 4.00000 6.92820i 0.0100000 0.0173205i
$$401$$ 226.364 + 130.691i 0.564498 + 0.325913i 0.754949 0.655784i $$-0.227662\pi$$
−0.190451 + 0.981697i $$0.560995\pi$$
$$402$$ 75.8230 107.230i 0.188614 0.266741i
$$403$$ 404.234 + 700.155i 1.00306 + 1.73736i
$$404$$ 315.862i 0.781838i
$$405$$ 415.772 65.4238i 1.02660 0.161540i
$$406$$ −29.5301 −0.0727342
$$407$$ 141.439 81.6600i 0.347517 0.200639i
$$408$$ −13.2122 9.34247i −0.0323830 0.0228982i
$$409$$ 221.894 384.331i 0.542528 0.939686i −0.456230 0.889862i $$-0.650801\pi$$
0.998758 0.0498240i $$-0.0158660\pi$$
$$410$$ −393.477 227.174i −0.959699 0.554083i
$$411$$ 701.082 + 64.5980i 1.70580 + 0.157173i
$$412$$ 29.1362 + 50.4654i 0.0707190 + 0.122489i
$$413$$ 581.059i 1.40692i
$$414$$ −40.0454 113.266i −0.0967280 0.273588i
$$415$$ 456.773 1.10066
$$416$$ −96.4949 + 55.7114i −0.231959 + 0.133922i
$$417$$ −290.267 + 133.727i −0.696085 + 0.320688i
$$418$$ −31.3485 + 54.2971i −0.0749963 + 0.129897i
$$419$$ 9.32525 + 5.38394i 0.0222560 + 0.0128495i 0.511087 0.859529i $$-0.329243\pi$$
−0.488831 + 0.872379i $$0.662576\pi$$
$$420$$ 82.8184 + 179.766i 0.197187 + 0.428013i
$$421$$ −127.152 220.233i −0.302023 0.523119i 0.674571 0.738210i $$-0.264328\pi$$
−0.976594 + 0.215091i $$0.930995\pi$$
$$422$$ 218.410i 0.517560i
$$423$$ −96.5227 82.5221i −0.228186 0.195088i
$$424$$ −26.9694 −0.0636070
$$425$$ −3.30306 + 1.90702i −0.00777191 + 0.00448711i
$$426$$ −33.4393 + 362.917i −0.0784960 + 0.851917i
$$427$$ 238.356 412.844i 0.558210 0.966849i
$$428$$ −297.576 171.805i −0.695270 0.401414i
$$429$$ −322.015 + 455.398i −0.750617 + 1.06153i
$$430$$ −3.50740 6.07499i −0.00815674 0.0141279i
$$431$$ 698.663i 1.62103i 0.585719 + 0.810514i $$0.300812\pi$$
−0.585719 + 0.810514i $$0.699188\pi$$
$$432$$ 104.697 26.5057i 0.242354 0.0613557i
$$433$$ 211.728 0.488978 0.244489 0.969652i $$-0.421380\pi$$
0.244489 + 0.969652i $$0.421380\pi$$
$$434$$ 319.139 184.255i 0.735342 0.424550i
$$435$$ 41.8638 + 29.6022i 0.0962386 + 0.0680509i
$$436$$ 116.272 201.390i 0.266680 0.461903i
$$437$$ 38.3939 + 22.1667i 0.0878578 + 0.0507247i
$$438$$ 405.959 + 37.4052i 0.926847 + 0.0854001i
$$439$$ −139.931 242.368i −0.318750 0.552092i 0.661477 0.749965i $$-0.269930\pi$$
−0.980228 + 0.197874i $$0.936596\pi$$
$$440$$ 138.721i 0.315276i
$$441$$ 76.9546 + 14.3027i 0.174500 + 0.0324324i
$$442$$ 53.1214 0.120184
$$443$$ −477.400 + 275.627i −1.07765 + 0.622183i −0.930262 0.366895i $$-0.880421\pi$$
−0.147391 + 0.989078i $$0.547087\pi$$
$$444$$ 94.2929 43.4409i 0.212371 0.0978398i
$$445$$ 107.499 186.195i 0.241572 0.418415i
$$446$$ 113.623 + 65.6004i 0.254761 + 0.147086i
$$447$$ −131.947 286.405i −0.295184 0.640727i
$$448$$ 25.3939 + 43.9835i 0.0566828 + 0.0981774i
$$449$$ 542.865i 1.20905i 0.796585 + 0.604527i $$0.206638\pi$$
−0.796585 + 0.604527i $$0.793362\pi$$
$$450$$ 4.65153 25.0273i 0.0103367 0.0556161i
$$451$$ −583.590 −1.29399
$$452$$ 350.333 202.265i 0.775072 0.447488i
$$453$$ −78.5102 + 852.072i −0.173312 + 1.88095i
$$454$$ −120.068 + 207.964i −0.264467 + 0.458071i
$$455$$ −562.704 324.877i −1.23671 0.714016i
$$456$$ −23.0102 + 32.5413i −0.0504610 + 0.0713626i
$$457$$ −46.1821 79.9898i −0.101055 0.175032i 0.811065 0.584957i $$-0.198888\pi$$
−0.912120 + 0.409924i $$0.865555\pi$$
$$458$$ 576.356i 1.25842i
$$459$$ −49.5459 14.0137i −0.107943 0.0305309i
$$460$$ −98.0908 −0.213241
$$461$$ −199.030 + 114.910i −0.431736 + 0.249263i −0.700086 0.714059i $$-0.746855\pi$$
0.268350 + 0.963321i $$0.413522\pi$$
$$462$$ 207.576 + 146.778i 0.449298 + 0.317701i
$$463$$ 255.401 442.368i 0.551623 0.955438i −0.446535 0.894766i $$-0.647342\pi$$
0.998158 0.0606723i $$-0.0193245\pi$$
$$464$$ 11.3939 + 6.57826i 0.0245558 + 0.0141773i
$$465$$ −637.136 58.7059i −1.37018 0.126249i
$$466$$ −10.7878 18.6849i −0.0231497 0.0400964i
$$467$$ 833.657i 1.78513i −0.450915 0.892567i $$-0.648902\pi$$
0.450915 0.892567i $$-0.351098\pi$$
$$468$$ −230.394 + 269.482i −0.492295 + 0.575817i
$$469$$ 196.514 0.419007
$$470$$ −89.7957 + 51.8436i −0.191055 + 0.110305i
$$471$$ 537.270 247.521i 1.14070 0.525523i
$$472$$ −129.439 + 224.195i −0.274236 + 0.474990i
$$473$$ −7.80306 4.50510i −0.0164970 0.00952452i
$$474$$ 52.8003 + 114.608i 0.111393 + 0.241790i
$$475$$ 4.69694 + 8.13534i 0.00988829 + 0.0171270i
$$476$$ 24.2134i 0.0508684i
$$477$$ −80.9082 + 28.6054i −0.169619 + 0.0599693i
$$478$$ −79.9546 −0.167269
$$479$$ 569.144 328.595i 1.18819 0.686003i 0.230296 0.973121i $$-0.426031\pi$$
0.957895 + 0.287118i $$0.0926972\pi$$
$$480$$ 8.09082 87.8097i 0.0168559 0.182937i
$$481$$ −170.409 + 295.156i −0.354280 + 0.613631i
$$482$$ 103.139 + 59.5471i 0.213980 + 0.123542i
$$483$$ 103.788 146.778i 0.214881 0.303888i
$$484$$ 31.9092 + 55.2683i 0.0659281 + 0.114191i
$$485$$ 498.200i 1.02722i
$$486$$ 285.977 190.565i 0.588431 0.392109i
$$487$$ −351.666 −0.722107 −0.361054 0.932545i $$-0.617583\pi$$
−0.361054 + 0.932545i $$0.617583\pi$$
$$488$$ −183.934 + 106.194i −0.376914 + 0.217612i
$$489$$ −610.070 431.385i −1.24759 0.882178i
$$490$$ 31.9546 55.3470i 0.0652135 0.112953i
$$491$$ 212.539 + 122.709i 0.432869 + 0.249917i 0.700568 0.713586i $$-0.252930\pi$$
−0.267699 + 0.963503i $$0.586263\pi$$
$$492$$ −369.409 34.0374i −0.750831 0.0691818i
$$493$$ −3.13622 5.43210i −0.00636151 0.0110185i
$$494$$ 130.836i 0.264851i
$$495$$ −147.136 416.164i −0.297245 0.840736i
$$496$$ −164.182 −0.331011
$$497$$ −472.287 + 272.675i −0.950276 + 0.548642i
$$498$$ 338.734 156.056i 0.680190 0.313365i
$$499$$ −315.113 + 545.792i −0.631489 + 1.09377i 0.355758 + 0.934578i $$0.384223\pi$$
−0.987247 + 0.159193i $$0.949111\pi$$
$$500$$ 207.000 + 119.512i 0.414000 + 0.239023i
$$501$$ −60.8020 131.977i −0.121361 0.263427i
$$502$$ −154.788 268.100i −0.308342 0.534064i
$$503$$ 286.891i 0.570360i 0.958474 + 0.285180i $$0.0920534\pi$$
−0.958474 + 0.285180i $$0.907947\pi$$
$$504$$ 122.833 + 105.016i 0.243717 + 0.208365i
$$505$$ 820.635 1.62502
$$506$$ −109.114 + 62.9967i −0.215639 + 0.124499i
$$507$$ 60.2724 654.137i 0.118881 1.29021i
$$508$$ 10.0908 17.4778i 0.0198638 0.0344051i
$$509$$ 755.454 + 436.161i 1.48419 + 0.856898i 0.999838 0.0179741i $$-0.00572163\pi$$
0.484353 + 0.874873i $$0.339055\pi$$
$$510$$ −24.2724 + 34.3264i −0.0475930 + 0.0673067i
$$511$$ 305.015 + 528.301i 0.596898 + 1.03386i
$$512$$ 22.6274i 0.0441942i
$$513$$ −34.5153 + 122.030i −0.0672813 + 0.237875i
$$514$$ 18.1362 0.0352845
$$515$$ 131.113 75.6981i 0.254588 0.146987i
$$516$$ −4.67653 3.30680i −0.00906304 0.00640854i
$$517$$ −66.5908 + 115.339i −0.128802 + 0.223092i
$$518$$ 134.536 + 77.6742i 0.259721 + 0.149950i
$$519$$ 300.053 + 27.6470i 0.578136 + 0.0532697i
$$520$$ 144.742 + 250.701i 0.278351 + 0.482117i
$$521$$ 206.132i 0.395646i 0.980238 + 0.197823i $$0.0633872\pi$$
−0.980238 + 0.197823i $$0.936613\pi$$
$$522$$ 41.1589 + 7.64974i 0.0788485 + 0.0146547i
$$523$$ 884.817 1.69181 0.845906 0.533333i $$-0.179061\pi$$
0.845906 + 0.533333i $$0.179061\pi$$
$$524$$ 8.59133 4.96021i 0.0163957 0.00946604i
$$525$$ 34.5959 15.9384i 0.0658970 0.0303589i
$$526$$ −237.916 + 412.083i −0.452312 + 0.783427i
$$527$$ 67.7878 + 39.1373i 0.128630 + 0.0742643i
$$528$$ −47.3939 102.873i −0.0897611 0.194836i
$$529$$ −219.955 380.973i −0.415793 0.720175i
$$530$$ 70.0685i 0.132205i
$$531$$ −150.523 + 809.877i −0.283470 + 1.52519i
$$532$$ −59.6367 −0.112099
$$533$$ 1054.68 608.920i 1.97876 1.14244i
$$534$$ 16.1066 174.805i 0.0301622 0.327351i
$$535$$ −446.363 + 773.124i −0.834324 + 1.44509i
$$536$$ −75.8230 43.7764i −0.141461 0.0816724i
$$537$$ 493.757 698.278i 0.919473 1.30033i
$$538$$ −42.7423 74.0319i −0.0794467 0.137606i
$$539$$ 82.0886i 0.152298i
$$540$$ −68.8638 272.011i −0.127526 0.503723i
$$541$$ −509.151 −0.941129 −0.470565 0.882365i $$-0.655950\pi$$
−0.470565 + 0.882365i $$0.655950\pi$$
$$542$$ −336.359 + 194.197i −0.620588 + 0.358297i
$$543$$ 90.9286 + 64.2962i 0.167456 + 0.118409i
$$544$$ −5.39388 + 9.34247i −0.00991521 + 0.0171737i
$$545$$ −523.226 302.085i −0.960048 0.554284i
$$546$$ −528.285 48.6764i −0.967555 0.0891509i
$$547$$ −274.022 474.620i −0.500955 0.867679i −0.999999 0.00110267i $$-0.999649\pi$$
0.499045 0.866576i $$-0.333684\pi$$
$$548$$ 469.368i 0.856511i
$$549$$ −439.166 + 513.675i −0.799939 + 0.935656i
$$550$$ −26.6969 −0.0485399
$$551$$ −13.3791 + 7.72442i −0.0242815 + 0.0140189i
$$552$$ −72.7423 + 33.5125i −0.131780 + 0.0607111i
$$553$$ −94.4092 + 163.522i −0.170722 + 0.295699i
$$554$$ −60.0125 34.6482i −0.108326 0.0625419i
$$555$$ −112.863 244.980i −0.203356 0.441405i
$$556$$ 106.530 + 184.516i 0.191601 + 0.331862i
$$557$$ 406.542i 0.729879i −0.931031 0.364939i $$-0.881090\pi$$
0.931031 0.364939i $$-0.118910\pi$$
$$558$$ −492.545 + 174.141i −0.882697 + 0.312080i
$$559$$ 18.8025 0.0336360
$$560$$ 114.272 65.9752i 0.204058 0.117813i
$$561$$ −4.95459 + 53.7722i −0.00883172 + 0.0958507i
$$562$$ 242.598 420.192i 0.431669 0.747673i
$$563$$ −525.220 303.236i −0.932895 0.538607i −0.0451687 0.998979i $$-0.514383\pi$$
−0.887726 + 0.460372i $$0.847716\pi$$
$$564$$ −48.8786 + 69.1247i −0.0866641 + 0.122562i
$$565$$ −525.499 910.191i −0.930087 1.61096i
$$566$$ 485.653i 0.858045i
$$567$$ 479.886 + 184.764i 0.846360 + 0.325863i
$$568$$ 242.969 0.427763
$$569$$ −224.954 + 129.877i −0.395350 + 0.228255i −0.684476 0.729036i $$-0.739969\pi$$
0.289126 + 0.957291i $$0.406635\pi$$
$$570$$ 84.5449 + 59.7823i 0.148324 + 0.104881i
$$571$$ 43.9166 76.0657i 0.0769117 0.133215i −0.825004 0.565126i $$-0.808827\pi$$
0.901916 + 0.431911i $$0.142161\pi$$
$$572$$ 322.015 + 185.915i 0.562963 + 0.325027i
$$573$$ −53.5454 4.93369i −0.0934475 0.00861029i
$$574$$ −277.553 480.736i −0.483541 0.837518i
$$575$$ 18.8776i 0.0328306i
$$576$$ −24.0000 67.8823i −0.0416667 0.117851i
$$577$$ −132.091 −0.228927 −0.114463 0.993427i $$-0.536515\pi$$
−0.114463 + 0.993427i $$0.536515\pi$$
$$578$$ −349.497 + 201.782i −0.604666 + 0.349104i
$$579$$ 260.088 119.823i 0.449202 0.206948i
$$580$$ 17.0908 29.6022i 0.0294669 0.0510382i
$$581$$ 483.302 + 279.034i 0.831844 + 0.480266i
$$582$$ 170.209 + 369.456i 0.292455 + 0.634804i
$$583$$ 45.0000 + 77.9423i 0.0771870 + 0.133692i
$$584$$ 271.786i 0.465387i
$$585$$ 700.136 + 598.581i 1.19681 + 1.02322i
$$586$$ 405.106 0.691306
$$587$$ −491.614 + 283.833i −0.837502 + 0.483532i −0.856414 0.516289i $$-0.827313\pi$$
0.0189125 + 0.999821i $$0.493980\pi$$
$$588$$ 4.78775 51.9615i 0.00814244 0.0883699i
$$589$$ 96.3939 166.959i 0.163657 0.283462i
$$590$$ 582.477 + 336.293i 0.987249 + 0.569988i
$$591$$ −277.757 + 392.808i −0.469978 + 0.664650i
$$592$$ −34.6061 59.9396i −0.0584563 0.101249i
$$593$$ 77.0321i 0.129902i −0.997888 0.0649512i $$-0.979311\pi$$
0.997888 0.0649512i $$-0.0206892\pi$$
$$594$$ −251.295 258.351i −0.423056 0.434934i
$$595$$ −62.9082 −0.105728
$$596$$ −182.060 + 105.113i −0.305470 + 0.176363i
$$597$$ 15.9592 + 11.2848i 0.0267323 + 0.0189026i
$$598$$ 131.462 227.699i 0.219836 0.380767i
$$599$$ −764.917 441.625i −1.27699 0.737270i −0.300696 0.953720i $$-0.597219\pi$$
−0.976294 + 0.216450i $$0.930552\pi$$
$$600$$ −16.8990 1.55708i −0.0281650 0.00259513i
$$601$$ 397.545 + 688.569i 0.661473 + 1.14571i 0.980229 + 0.197868i $$0.0634018\pi$$
−0.318755 + 0.947837i $$0.603265\pi$$
$$602$$ 8.57042i 0.0142366i
$$603$$ −273.901 50.9068i −0.454230 0.0844226i
$$604$$ 570.454 0.944460
$$605$$ 143.591 82.9025i 0.237341 0.137029i
$$606$$ 608.568 280.368i 1.00424 0.462654i
$$607$$ 148.372 256.987i 0.244434 0.423373i −0.717538 0.696519i $$-0.754731\pi$$
0.961972 + 0.273147i $$0.0880644\pi$$
$$608$$ 23.0102 + 13.2849i 0.0378457 + 0.0218502i
$$609$$ 26.2117 + 56.8952i 0.0430406 + 0.0934240i
$$610$$ 275.901 + 477.875i 0.452297 + 0.783402i
$$611$$ 277.924i 0.454868i
$$612$$ −6.27245 + 33.7485i −0.0102491 + 0.0551446i
$$613$$ −517.181 −0.843688 −0.421844 0.906668i $$-0.638617\pi$$
−0.421844 + 0.906668i $$0.638617\pi$$
$$614$$ −188.722 + 108.959i −0.307365 + 0.177457i
$$615$$ −88.4319 + 959.752i −0.143792 + 1.56057i
$$616$$ 84.7423 146.778i 0.137569 0.238276i
$$617$$ −229.909 132.738i −0.372623 0.215134i 0.301981 0.953314i $$-0.402352\pi$$
−0.674604 + 0.738180i $$0.735686\pi$$
$$618$$ 71.3689 100.931i 0.115484 0.163319i
$$619$$ 98.5227 + 170.646i 0.159164 + 0.275681i 0.934568 0.355786i $$-0.115787\pi$$
−0.775403 + 0.631466i $$0.782453\pi$$
$$620$$ 426.556i 0.687994i
$$621$$ −182.682 + 177.693i −0.294173 + 0.286139i
$$622$$ 101.803 0.163670
$$623$$ 227.486 131.339i 0.365146 0.210817i
$$624$$ 192.990 + 136.464i 0.309279 + 0.218693i
$$625$$ 335.500 581.103i 0.536800 0.929765i
$$626$$ −450.224 259.937i −0.719207 0.415234i
$$627$$ 132.439 + 12.2030i 0.211227 + 0.0194625i
$$628$$ −197.182 341.529i −0.313983 0.543835i
$$629$$ 32.9973i 0.0524600i
$$630$$ 272.840 319.130i 0.433079 0.506555i
$$631$$ −160.879 −0.254958 −0.127479 0.991841i $$-0.540689\pi$$
−0.127479 + 0.991841i $$0.540689\pi$$
$$632$$ 72.8536 42.0620i 0.115275 0.0665538i
$$633$$ 420.808 193.867i 0.664783 0.306267i
$$634$$ 76.0829 131.779i 0.120005 0.207854i
$$635$$ −45.4087 26.2167i −0.0715097 0.0412862i
$$636$$ 23.9388 + 51.9615i 0.0376396 + 0.0817005i
$$637$$ 85.6515 + 148.353i 0.134461 + 0.232893i
$$638$$ 43.9048i 0.0688164i
$$639$$ 728.908 257.708i 1.14070 0.403299i
$$640$$ −58.7878 −0.0918559
$$641$$ −267.894 + 154.669i −0.417931 + 0.241293i −0.694192 0.719790i $$-0.744238\pi$$
0.276261 + 0.961083i $$0.410905\pi$$
$$642$$ −66.8786 + 725.834i −0.104172 + 1.13058i
$$643$$ −197.296 + 341.726i −0.306836 + 0.531456i −0.977668 0.210153i $$-0.932604\pi$$
0.670832 + 0.741609i $$0.265937\pi$$
$$644$$ −103.788 59.9219i −0.161161 0.0930464i
$$645$$ −8.59133 + 12.1500i −0.0133199 + 0.0188372i
$$646$$ −6.33368 10.9703i −0.00980445 0.0169818i
$$647$$ 418.736i 0.647196i 0.946195 + 0.323598i $$0.104892\pi$$
−0.946195 + 0.323598i $$0.895108\pi$$
$$648$$ −144.000 178.191i −0.222222 0.274986i
$$649$$ 863.908 1.33114
$$650$$ 48.2474 27.8557i 0.0742268 0.0428549i
$$651$$ −638.277 451.330i −0.980456 0.693287i
$$652$$ −249.060 + 431.385i −0.381994 + 0.661633i
$$653$$ −459.621 265.363i −0.703861 0.406375i 0.104923 0.994480i $$-0.466540\pi$$
−0.808784 + 0.588106i $$0.799874\pi$$
$$654$$ −491.221 45.2613i −0.751103 0.0692069i
$$655$$ −12.8870 22.3209i −0.0196748 0.0340778i
$$656$$ 247.316i 0.377006i
$$657$$ −288.272 815.358i −0.438771 1.24103i
$$658$$ −126.681 −0.192524
$$659$$ 310.204 179.096i 0.470719 0.271770i −0.245822 0.969315i $$-0.579058\pi$$
0.716541 + 0.697545i $$0.245724\pi$$
$$660$$ −267.272 + 123.133i −0.404958 + 0.186565i
$$661$$ 111.136 192.493i 0.168133 0.291214i −0.769631 0.638489i $$-0.779560\pi$$
0.937763 + 0.347275i $$0.112893\pi$$
$$662$$ 21.0625 + 12.1604i 0.0318165 + 0.0183692i
$$663$$ −47.1520 102.348i −0.0711192 0.154371i
$$664$$ −124.318 215.325i −0.187226 0.324284i
$$665$$ 154.941i 0.232994i
$$666$$ −167.394 143.113i −0.251342 0.214885i
$$667$$ −31.0454 −0.0465448
$$668$$ −83.8944 + 48.4365i −0.125590 + 0.0725097i
$$669$$ 25.5362 277.145i 0.0381708 0.414267i
$$670$$ −113.734 + 196.994i −0.169753 + 0.294021i
$$671$$ 613.810 + 354.383i 0.914769 + 0.528142i
$$672$$ 62.2020 87.9670i 0.0925626 0.130903i
$$673$$ 144.606 + 250.464i 0.214867 + 0.372161i 0.953231 0.302241i $$-0.0977348\pi$$
−0.738364 + 0.674402i $$0.764401\pi$$
$$674$$ 515.331i 0.764586i
$$675$$ −52.3485 + 13.2528i −0.0775533 + 0.0196338i
$$676$$ −437.939 −0.647838
$$677$$ 402.227 232.226i 0.594131 0.343022i −0.172598 0.984992i $$-0.555216\pi$$
0.766729 + 0.641971i $$0.221883\pi$$
$$678$$ −700.665 495.445i −1.03343 0.730745i
$$679$$ −304.341 + 527.134i −0.448220 + 0.776339i
$$680$$ 24.2724 + 14.0137i 0.0356948 + 0.0206084i
$$681$$ 507.257 + 46.7389i 0.744871 + 0.0686327i
$$682$$ 273.947 + 474.490i 0.401681 + 0.695733i
$$683$$ 1126.36i 1.64913i 0.565767 + 0.824565i $$0.308580\pi$$
−0.565767 + 0.824565i $$0.691420\pi$$
$$684$$ 83.1214 + 15.4488i 0.121523 + 0.0225860i
$$685$$ −1219.45 −1.78022
$$686$$ 448.608 259.004i 0.653948 0.377557i
$$687$$ −1110.46 + 511.589i −1.61638 + 0.744671i
$$688$$ −1.90918 + 3.30680i −0.00277498 + 0.00480640i
$$689$$ −162.650 93.9063i −0.236067 0.136294i
$$690$$ 87.0681 + 188.990i 0.126186 + 0.273899i
$$691$$ −518.841 898.658i −0.750855 1.30052i −0.947409 0.320025i $$-0.896309\pi$$
0.196554 0.980493i $$-0.437025\pi$$
$$692$$ 200.883i 0.290293i
$$693$$ 98.5454 530.217i 0.142201 0.765104i
$$694$$ −825.044 −1.18882
$$695$$ 479.385 276.773i 0.689763 0.398235i
$$696$$ 2.56072 27.7915i 0.00367919 0.0399303i
$$697$$ 58.9546 102.112i 0.0845833 0.146503i
$$698$$ 383.048 + 221.153i 0.548779 + 0.316838i
$$699$$ −26.4245 + 37.3699i −0.0378033 + 0.0534619i
$$700$$ −12.6969 21.9917i −0.0181385 0.0314168i
$$701$$ 778.180i 1.11010i −0.831817 0.555050i $$-0.812699\pi$$
0.831817 0.555050i $$-0.187301\pi$$
$$702$$ 723.712 + 204.697i 1.03093 + 0.291591i
$$703$$ 81.2714 0.115607
$$704$$ −65.3939 + 37.7552i −0.0928890 + 0.0536295i
$$705$$ 179.591 + 126.990i 0.254739 + 0.180128i
$$706$$ 26.5982 46.0695i 0.0376745 0.0652542i
$$707$$ 868.296 + 501.311i 1.22814 + 0.709068i
$$708$$ 546.848 + 50.3868i 0.772384 + 0.0711678i
$$709$$ 586.014 + 1015.01i 0.826536 + 1.43160i 0.900739 + 0.434360i $$0.143025\pi$$
−0.0742031 + 0.997243i $$0.523641\pi$$
$$710$$ 631.253i 0.889089i
$$711$$ 173.947 203.459i 0.244651 0.286159i
$$712$$ −117.031 −0.164369
$$713$$ 335.515 193.710i 0.470568 0.271682i
$$714$$ −46.6515 + 21.4924i −0.0653383 + 0.0301015i
$$715$$ 483.022 836.619i 0.675556 1.17010i
$$716$$ −493.757 285.071i −0.689605 0.398144i
$$717$$ 70.9699 + 154.047i 0.0989817 + 0.214850i
$$718$$ 207.909 + 360.109i 0.289567 + 0.501545i
$$719$$ 515.416i 0.716851i 0.933558 + 0.358426i $$0.116686\pi$$
−0.933558 + 0.358426i $$0.883314\pi$$
$$720$$ −176.363 + 62.3538i −0.244949 + 0.0866025i
$$721$$ 184.970 0.256547
$$722$$ 415.114 239.666i 0.574949 0.331947i
$$723$$ 23.1799 251.571i 0.0320607 0.347954i
$$724$$ 37.1214 64.2962i 0.0512727 0.0888069i
$$725$$ −5.69694 3.28913i −0.00785785 0.00453673i
$$726$$ 78.1612 110.537i 0.107660 0.152254i
$$727$$ 420.704 + 728.681i 0.578685 + 1.00231i 0.995630 + 0.0933809i $$0.0297674\pi$$
−0.416945 + 0.908932i $$0.636899\pi$$
$$728$$ 353.682i 0.485827i
$$729$$ −621.000 381.838i −0.851852 0.523783i
$$730$$ −706.120 −0.967288
$$731$$ 1.57654 0.910215i 0.00215669 0.00124516i
$$732$$ 367.868 + 260.122i 0.502552 + 0.355358i
$$733$$ −303.181 + 525.125i −0.413617 + 0.716405i −0.995282 0.0970229i $$-0.969068\pi$$
0.581665 + 0.813428i $$0.302401\pi$$
$$734$$ −40.6946 23.4951i −0.0554423 0.0320096i
$$735$$ −135.000 12.4389i −0.183673 0.0169237i
$$736$$ 26.6969 + 46.2405i 0.0362730 + 0.0628267i
$$737$$ 292.174i 0.396437i
$$738$$ 262.318 + 741.947i 0.355444 + 1.00535i
$$739$$ −389.362 −0.526877 −0.263439 0.964676i $$-0.584857\pi$$
−0.263439 + 0.964676i $$0.584857\pi$$
$$740$$ −155.728 + 89.9093i −0.210443 + 0.121499i
$$741$$ −252.081 + 116.134i −0.340190 + 0.156726i
$$742$$ −42.8036 + 74.1380i −0.0576868 + 0.0999164i
$$743$$ 904.779 + 522.375i 1.21774 + 0.703061i 0.964434 0.264325i $$-0.0851492\pi$$
0.253304 + 0.967387i $$0.418483\pi$$
$$744$$ 145.732 + 316.326i 0.195877 + 0.425170i
$$745$$ 273.090 + 473.006i 0.366564 + 0.634908i
$$746$$ 318.240i 0.426595i
$$747$$ −601.340 514.116i −0.805007 0.688240i
$$748$$ 36.0000 0.0481283
$$749$$ −944.574 + 545.350i −1.26111 + 0.728105i
$$750$$ 46.5222 504.906i 0.0620296 0.673207i
$$751$$ 645.916 1118.76i 0.860074 1.48969i −0.0117826 0.999931i $$-0.503751\pi$$
0.871857 0.489761i $$-0.162916\pi$$
$$752$$ 48.8786 + 28.2201i 0.0649981 + 0.0375267i
$$753$$ −379.151 + 536.201i −0.503521 + 0.712086i
$$754$$ 45.8105 + 79.3460i 0.0607566 + 0.105233i
$$755$$ 1482.08i 1.96302i
$$756$$ 93.3031 329.876i 0.123417 0.436344i
$$757$$ 1042.36 1.37697 0.688483 0.725252i $$-0.258277\pi$$
0.688483 + 0.725252i $$0.258277\pi$$
$$758$$ 203.716 117.616i 0.268755 0.155166i
$$759$$ 218.227 + 154.310i 0.287519 + 0.203307i
$$760$$ 34.5153 59.7823i 0.0454149 0.0786609i
$$761$$ −281.607 162.586i −0.370048 0.213647i 0.303431 0.952853i $$-0.401868\pi$$
−0.673479 + 0.739206i $$0.735201\pi$$
$$762$$ −42.6311 3.92805i −0.0559464 0.00515492i
$$763$$ −369.076 639.258i −0.483717 0.837822i
$$764$$ 35.8481i 0.0469217i
$$765$$ 87.6811 + 16.2963i 0.114616 + 0.0213023i
$$766$$ 1042.26 1.36065
$$767$$ −1561.28 + 901.405i −2.03557 + 1.17523i
$$768$$ −43.5959 + 20.0847i −0.0567655 + 0.0261520i
$$769$$ −171.348 + 296.783i −0.222819 + 0.385934i −0.955663