Properties

Label 18.3.d.a.5.1
Level $18$
Weight $3$
Character 18.5
Analytic conductor $0.490$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 18 = 2 \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 18.d (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.490464475849\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 5.1
Root \(-1.22474 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 18.5
Dual form 18.3.d.a.11.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.22474 + 0.707107i) q^{2} +(2.44949 + 1.73205i) q^{3} +(1.00000 - 1.73205i) q^{4} +(-4.50000 - 2.59808i) q^{5} +(-4.22474 - 0.389270i) q^{6} +(-3.17423 - 5.49794i) q^{7} +2.82843i q^{8} +(3.00000 + 8.48528i) q^{9} +O(q^{10})\) \(q+(-1.22474 + 0.707107i) q^{2} +(2.44949 + 1.73205i) q^{3} +(1.00000 - 1.73205i) q^{4} +(-4.50000 - 2.59808i) q^{5} +(-4.22474 - 0.389270i) q^{6} +(-3.17423 - 5.49794i) q^{7} +2.82843i q^{8} +(3.00000 + 8.48528i) q^{9} +7.34847 q^{10} +(8.17423 - 4.71940i) q^{11} +(5.44949 - 2.51059i) q^{12} +(-9.84847 + 17.0580i) q^{13} +(7.77526 + 4.48905i) q^{14} +(-6.52270 - 14.1582i) q^{15} +(-2.00000 - 3.46410i) q^{16} +1.90702i q^{17} +(-9.67423 - 8.27098i) q^{18} +4.69694 q^{19} +(-9.00000 + 5.19615i) q^{20} +(1.74745 - 18.9651i) q^{21} +(-6.67423 + 11.5601i) q^{22} +(8.17423 + 4.71940i) q^{23} +(-4.89898 + 6.92820i) q^{24} +(1.00000 + 1.73205i) q^{25} -27.8557i q^{26} +(-7.34847 + 25.9808i) q^{27} -12.6969 q^{28} +(-2.84847 + 1.64456i) q^{29} +(18.0000 + 12.7279i) q^{30} +(20.5227 - 35.5464i) q^{31} +(4.89898 + 2.82843i) q^{32} +(28.1969 + 2.59808i) q^{33} +(-1.34847 - 2.33562i) q^{34} +32.9876i q^{35} +(17.6969 + 3.28913i) q^{36} +17.3031 q^{37} +(-5.75255 + 3.32124i) q^{38} +(-53.6691 + 24.7255i) q^{39} +(7.34847 - 12.7279i) q^{40} +(-53.5454 - 30.9145i) q^{41} +(11.2702 + 24.4630i) q^{42} +(-0.477296 - 0.826701i) q^{43} -18.8776i q^{44} +(8.54541 - 45.9780i) q^{45} -13.3485 q^{46} +(-12.2196 + 7.05501i) q^{47} +(1.10102 - 11.9494i) q^{48} +(4.34847 - 7.53177i) q^{49} +(-2.44949 - 1.41421i) q^{50} +(-3.30306 + 4.67123i) q^{51} +(19.6969 + 34.1161i) q^{52} +9.53512i q^{53} +(-9.37117 - 37.0160i) q^{54} -49.0454 q^{55} +(15.5505 - 8.97809i) q^{56} +(11.5051 + 8.13534i) q^{57} +(2.32577 - 4.02834i) q^{58} +(79.2650 + 45.7637i) q^{59} +(-31.0454 - 2.86054i) q^{60} +(37.5454 + 65.0306i) q^{61} +58.0470i q^{62} +(37.1288 - 43.4281i) q^{63} -8.00000 q^{64} +(88.6362 - 51.1741i) q^{65} +(-36.3712 + 16.7563i) q^{66} +(-15.4773 + 26.8075i) q^{67} +(3.30306 + 1.90702i) q^{68} +(11.8485 + 25.7183i) q^{69} +(-23.3258 - 40.4014i) q^{70} -85.9026i q^{71} +(-24.0000 + 8.48528i) q^{72} -96.0908 q^{73} +(-21.1918 + 12.2351i) q^{74} +(-0.550510 + 5.97469i) q^{75} +(4.69694 - 8.13534i) q^{76} +(-51.8939 - 29.9609i) q^{77} +(48.2474 - 68.2322i) q^{78} +(-14.8712 - 25.7576i) q^{79} +20.7846i q^{80} +(-63.0000 + 50.9117i) q^{81} +87.4393 q^{82} +(-76.1288 + 43.9530i) q^{83} +(-31.1010 - 21.9917i) q^{84} +(4.95459 - 8.58161i) q^{85} +(1.16913 + 0.674999i) q^{86} +(-9.82577 - 0.905350i) q^{87} +(13.3485 + 23.1202i) q^{88} +41.3766i q^{89} +(22.0454 + 62.3538i) q^{90} +125.045 q^{91} +(16.3485 - 9.43879i) q^{92} +(111.838 - 51.5241i) q^{93} +(9.97730 - 17.2812i) q^{94} +(-21.1362 - 12.2030i) q^{95} +(7.10102 + 15.4135i) q^{96} +(-47.9393 - 83.0333i) q^{97} +12.2993i q^{98} +(64.5681 + 55.2025i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{4} - 18 q^{5} - 12 q^{6} + 2 q^{7} + 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{4} - 18 q^{5} - 12 q^{6} + 2 q^{7} + 12 q^{9} + 18 q^{11} + 12 q^{12} - 10 q^{13} + 36 q^{14} + 18 q^{15} - 8 q^{16} - 24 q^{18} - 40 q^{19} - 36 q^{20} - 42 q^{21} - 12 q^{22} + 18 q^{23} + 4 q^{25} + 8 q^{28} + 18 q^{29} + 72 q^{30} + 38 q^{31} + 54 q^{33} + 24 q^{34} + 12 q^{36} + 128 q^{37} - 72 q^{38} - 102 q^{39} - 126 q^{41} - 48 q^{42} - 46 q^{43} - 54 q^{45} - 24 q^{46} + 54 q^{47} + 24 q^{48} - 12 q^{49} - 72 q^{51} + 20 q^{52} + 36 q^{54} - 108 q^{55} + 72 q^{56} + 144 q^{57} + 24 q^{58} + 126 q^{59} - 36 q^{60} + 62 q^{61} + 222 q^{63} - 32 q^{64} + 90 q^{65} - 72 q^{66} - 106 q^{67} + 72 q^{68} + 18 q^{69} - 108 q^{70} - 96 q^{72} - 208 q^{73} + 72 q^{74} - 12 q^{75} - 40 q^{76} - 90 q^{77} + 144 q^{78} + 14 q^{79} - 252 q^{81} + 144 q^{82} - 378 q^{83} - 144 q^{84} + 108 q^{85} - 108 q^{86} - 54 q^{87} + 24 q^{88} + 412 q^{91} + 36 q^{92} + 222 q^{93} + 84 q^{94} + 180 q^{95} + 48 q^{96} + 14 q^{97} + 126 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/18\mathbb{Z}\right)^\times\).

\(n\) \(11\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.22474 + 0.707107i −0.612372 + 0.353553i
\(3\) 2.44949 + 1.73205i 0.816497 + 0.577350i
\(4\) 1.00000 1.73205i 0.250000 0.433013i
\(5\) −4.50000 2.59808i −0.900000 0.519615i −0.0227998 0.999740i \(-0.507258\pi\)
−0.877200 + 0.480125i \(0.840591\pi\)
\(6\) −4.22474 0.389270i −0.704124 0.0648783i
\(7\) −3.17423 5.49794i −0.453462 0.785419i 0.545136 0.838347i \(-0.316478\pi\)
−0.998598 + 0.0529281i \(0.983145\pi\)
\(8\) 2.82843i 0.353553i
\(9\) 3.00000 + 8.48528i 0.333333 + 0.942809i
\(10\) 7.34847 0.734847
\(11\) 8.17423 4.71940i 0.743112 0.429036i −0.0800876 0.996788i \(-0.525520\pi\)
0.823200 + 0.567752i \(0.192187\pi\)
\(12\) 5.44949 2.51059i 0.454124 0.209216i
\(13\) −9.84847 + 17.0580i −0.757575 + 1.31216i 0.186510 + 0.982453i \(0.440282\pi\)
−0.944084 + 0.329704i \(0.893051\pi\)
\(14\) 7.77526 + 4.48905i 0.555375 + 0.320646i
\(15\) −6.52270 14.1582i −0.434847 0.943879i
\(16\) −2.00000 3.46410i −0.125000 0.216506i
\(17\) 1.90702i 0.112178i 0.998426 + 0.0560889i \(0.0178630\pi\)
−0.998426 + 0.0560889i \(0.982137\pi\)
\(18\) −9.67423 8.27098i −0.537457 0.459499i
\(19\) 4.69694 0.247207 0.123604 0.992332i \(-0.460555\pi\)
0.123604 + 0.992332i \(0.460555\pi\)
\(20\) −9.00000 + 5.19615i −0.450000 + 0.259808i
\(21\) 1.74745 18.9651i 0.0832118 0.903099i
\(22\) −6.67423 + 11.5601i −0.303374 + 0.525460i
\(23\) 8.17423 + 4.71940i 0.355402 + 0.205191i 0.667062 0.745002i \(-0.267552\pi\)
−0.311660 + 0.950194i \(0.600885\pi\)
\(24\) −4.89898 + 6.92820i −0.204124 + 0.288675i
\(25\) 1.00000 + 1.73205i 0.0400000 + 0.0692820i
\(26\) 27.8557i 1.07137i
\(27\) −7.34847 + 25.9808i −0.272166 + 0.962250i
\(28\) −12.6969 −0.453462
\(29\) −2.84847 + 1.64456i −0.0982231 + 0.0567091i −0.548307 0.836277i \(-0.684727\pi\)
0.450084 + 0.892986i \(0.351394\pi\)
\(30\) 18.0000 + 12.7279i 0.600000 + 0.424264i
\(31\) 20.5227 35.5464i 0.662023 1.14666i −0.318061 0.948070i \(-0.603032\pi\)
0.980083 0.198587i \(-0.0636351\pi\)
\(32\) 4.89898 + 2.82843i 0.153093 + 0.0883883i
\(33\) 28.1969 + 2.59808i 0.854453 + 0.0787296i
\(34\) −1.34847 2.33562i −0.0396609 0.0686946i
\(35\) 32.9876i 0.942503i
\(36\) 17.6969 + 3.28913i 0.491582 + 0.0913647i
\(37\) 17.3031 0.467650 0.233825 0.972279i \(-0.424876\pi\)
0.233825 + 0.972279i \(0.424876\pi\)
\(38\) −5.75255 + 3.32124i −0.151383 + 0.0874010i
\(39\) −53.6691 + 24.7255i −1.37613 + 0.633986i
\(40\) 7.34847 12.7279i 0.183712 0.318198i
\(41\) −53.5454 30.9145i −1.30599 0.754011i −0.324562 0.945864i \(-0.605217\pi\)
−0.981424 + 0.191853i \(0.938550\pi\)
\(42\) 11.2702 + 24.4630i 0.268337 + 0.582453i
\(43\) −0.477296 0.826701i −0.0110999 0.0192256i 0.860422 0.509582i \(-0.170200\pi\)
−0.871522 + 0.490356i \(0.836867\pi\)
\(44\) 18.8776i 0.429036i
\(45\) 8.54541 45.9780i 0.189898 1.02173i
\(46\) −13.3485 −0.290184
\(47\) −12.2196 + 7.05501i −0.259992 + 0.150107i −0.624331 0.781160i \(-0.714628\pi\)
0.364339 + 0.931267i \(0.381295\pi\)
\(48\) 1.10102 11.9494i 0.0229379 0.248945i
\(49\) 4.34847 7.53177i 0.0887443 0.153710i
\(50\) −2.44949 1.41421i −0.0489898 0.0282843i
\(51\) −3.30306 + 4.67123i −0.0647659 + 0.0915928i
\(52\) 19.6969 + 34.1161i 0.378787 + 0.656079i
\(53\) 9.53512i 0.179908i 0.995946 + 0.0899539i \(0.0286720\pi\)
−0.995946 + 0.0899539i \(0.971328\pi\)
\(54\) −9.37117 37.0160i −0.173540 0.685481i
\(55\) −49.0454 −0.891735
\(56\) 15.5505 8.97809i 0.277688 0.160323i
\(57\) 11.5051 + 8.13534i 0.201844 + 0.142725i
\(58\) 2.32577 4.02834i 0.0400994 0.0694542i
\(59\) 79.2650 + 45.7637i 1.34348 + 0.775656i 0.987316 0.158769i \(-0.0507526\pi\)
0.356160 + 0.934425i \(0.384086\pi\)
\(60\) −31.0454 2.86054i −0.517423 0.0476756i
\(61\) 37.5454 + 65.0306i 0.615498 + 1.06607i 0.990297 + 0.138968i \(0.0443786\pi\)
−0.374798 + 0.927106i \(0.622288\pi\)
\(62\) 58.0470i 0.936241i
\(63\) 37.1288 43.4281i 0.589346 0.689335i
\(64\) −8.00000 −0.125000
\(65\) 88.6362 51.1741i 1.36363 0.787295i
\(66\) −36.3712 + 16.7563i −0.551078 + 0.253883i
\(67\) −15.4773 + 26.8075i −0.231004 + 0.400111i −0.958104 0.286421i \(-0.907535\pi\)
0.727100 + 0.686532i \(0.240868\pi\)
\(68\) 3.30306 + 1.90702i 0.0485744 + 0.0280445i
\(69\) 11.8485 + 25.7183i 0.171717 + 0.372729i
\(70\) −23.3258 40.4014i −0.333225 0.577163i
\(71\) 85.9026i 1.20990i −0.796265 0.604948i \(-0.793194\pi\)
0.796265 0.604948i \(-0.206806\pi\)
\(72\) −24.0000 + 8.48528i −0.333333 + 0.117851i
\(73\) −96.0908 −1.31631 −0.658156 0.752881i \(-0.728663\pi\)
−0.658156 + 0.752881i \(0.728663\pi\)
\(74\) −21.1918 + 12.2351i −0.286376 + 0.165339i
\(75\) −0.550510 + 5.97469i −0.00734014 + 0.0796626i
\(76\) 4.69694 8.13534i 0.0618018 0.107044i
\(77\) −51.8939 29.9609i −0.673946 0.389103i
\(78\) 48.2474 68.2322i 0.618557 0.874772i
\(79\) −14.8712 25.7576i −0.188243 0.326046i 0.756422 0.654084i \(-0.226946\pi\)
−0.944664 + 0.328038i \(0.893612\pi\)
\(80\) 20.7846i 0.259808i
\(81\) −63.0000 + 50.9117i −0.777778 + 0.628539i
\(82\) 87.4393 1.06633
\(83\) −76.1288 + 43.9530i −0.917215 + 0.529554i −0.882745 0.469852i \(-0.844307\pi\)
−0.0344693 + 0.999406i \(0.510974\pi\)
\(84\) −31.1010 21.9917i −0.370250 0.261806i
\(85\) 4.95459 8.58161i 0.0582893 0.100960i
\(86\) 1.16913 + 0.674999i 0.0135946 + 0.00784882i
\(87\) −9.82577 0.905350i −0.112940 0.0104063i
\(88\) 13.3485 + 23.1202i 0.151687 + 0.262730i
\(89\) 41.3766i 0.464905i 0.972608 + 0.232453i \(0.0746751\pi\)
−0.972608 + 0.232453i \(0.925325\pi\)
\(90\) 22.0454 + 62.3538i 0.244949 + 0.692820i
\(91\) 125.045 1.37413
\(92\) 16.3485 9.43879i 0.177701 0.102596i
\(93\) 111.838 51.5241i 1.20256 0.554023i
\(94\) 9.97730 17.2812i 0.106141 0.183842i
\(95\) −21.1362 12.2030i −0.222487 0.128453i
\(96\) 7.10102 + 15.4135i 0.0739690 + 0.160557i
\(97\) −47.9393 83.0333i −0.494219 0.856013i 0.505758 0.862675i \(-0.331213\pi\)
−0.999978 + 0.00666202i \(0.997879\pi\)
\(98\) 12.2993i 0.125503i
\(99\) 64.5681 + 55.2025i 0.652203 + 0.557601i
\(100\) 4.00000 0.0400000
\(101\) −136.772 + 78.9656i −1.35418 + 0.781838i −0.988832 0.149032i \(-0.952384\pi\)
−0.365350 + 0.930870i \(0.619051\pi\)
\(102\) 0.742346 8.05669i 0.00727790 0.0789871i
\(103\) −14.5681 + 25.2327i −0.141438 + 0.244978i −0.928038 0.372485i \(-0.878506\pi\)
0.786600 + 0.617462i \(0.211839\pi\)
\(104\) −48.2474 27.8557i −0.463918 0.267843i
\(105\) −57.1362 + 80.8028i −0.544155 + 0.769551i
\(106\) −6.74235 11.6781i −0.0636070 0.110171i
\(107\) 171.805i 1.60566i −0.596210 0.802829i \(-0.703327\pi\)
0.596210 0.802829i \(-0.296673\pi\)
\(108\) 37.6515 + 38.7087i 0.348625 + 0.358414i
\(109\) 116.272 1.06672 0.533360 0.845888i \(-0.320929\pi\)
0.533360 + 0.845888i \(0.320929\pi\)
\(110\) 60.0681 34.6803i 0.546074 0.315276i
\(111\) 42.3837 + 29.9698i 0.381835 + 0.269998i
\(112\) −12.6969 + 21.9917i −0.113366 + 0.196355i
\(113\) 175.166 + 101.132i 1.55014 + 0.894976i 0.998129 + 0.0611424i \(0.0194744\pi\)
0.552015 + 0.833834i \(0.313859\pi\)
\(114\) −19.8434 1.82838i −0.174065 0.0160384i
\(115\) −24.5227 42.4746i −0.213241 0.369344i
\(116\) 6.57826i 0.0567091i
\(117\) −174.288 32.3929i −1.48964 0.276862i
\(118\) −129.439 −1.09694
\(119\) 10.4847 6.05334i 0.0881067 0.0508684i
\(120\) 40.0454 18.4490i 0.333712 0.153742i
\(121\) −15.9546 + 27.6342i −0.131856 + 0.228382i
\(122\) −91.9671 53.0972i −0.753829 0.435223i
\(123\) −77.6135 168.468i −0.631004 1.36966i
\(124\) −41.0454 71.0927i −0.331011 0.573328i
\(125\) 119.512i 0.956092i
\(126\) −14.7650 + 79.4424i −0.117183 + 0.630495i
\(127\) 10.0908 0.0794552 0.0397276 0.999211i \(-0.487351\pi\)
0.0397276 + 0.999211i \(0.487351\pi\)
\(128\) 9.79796 5.65685i 0.0765466 0.0441942i
\(129\) 0.262756 2.85170i 0.00203687 0.0221062i
\(130\) −72.3712 + 125.351i −0.556701 + 0.964235i
\(131\) 4.29567 + 2.48010i 0.0327913 + 0.0189321i 0.516306 0.856404i \(-0.327307\pi\)
−0.483515 + 0.875336i \(0.660640\pi\)
\(132\) 32.6969 46.2405i 0.247704 0.350306i
\(133\) −14.9092 25.8235i −0.112099 0.194161i
\(134\) 43.7764i 0.326690i
\(135\) 100.568 97.8215i 0.744949 0.724604i
\(136\) −5.39388 −0.0396609
\(137\) 203.242 117.342i 1.48352 0.856511i 0.483696 0.875236i \(-0.339294\pi\)
0.999825 + 0.0187249i \(0.00596067\pi\)
\(138\) −32.6969 23.1202i −0.236934 0.167538i
\(139\) −53.2650 + 92.2578i −0.383202 + 0.663725i −0.991518 0.129970i \(-0.958512\pi\)
0.608316 + 0.793695i \(0.291845\pi\)
\(140\) 57.1362 + 32.9876i 0.408116 + 0.235626i
\(141\) −42.1515 3.88386i −0.298947 0.0275451i
\(142\) 60.7423 + 105.209i 0.427763 + 0.740907i
\(143\) 185.915i 1.30011i
\(144\) 23.3939 27.3629i 0.162457 0.190020i
\(145\) 17.0908 0.117868
\(146\) 117.687 67.9465i 0.806074 0.465387i
\(147\) 23.6969 10.9172i 0.161204 0.0742668i
\(148\) 17.3031 29.9698i 0.116913 0.202499i
\(149\) −91.0301 52.5563i −0.610940 0.352727i 0.162393 0.986726i \(-0.448079\pi\)
−0.773333 + 0.634000i \(0.781412\pi\)
\(150\) −3.55051 7.70674i −0.0236701 0.0513783i
\(151\) 142.614 + 247.014i 0.944460 + 1.63585i 0.756828 + 0.653614i \(0.226748\pi\)
0.187632 + 0.982239i \(0.439919\pi\)
\(152\) 13.2849i 0.0874010i
\(153\) −16.1816 + 5.72107i −0.105762 + 0.0373926i
\(154\) 84.7423 0.550275
\(155\) −184.704 + 106.639i −1.19164 + 0.687994i
\(156\) −10.8434 + 117.683i −0.0695088 + 0.754379i
\(157\) 98.5908 170.764i 0.627967 1.08767i −0.359992 0.932955i \(-0.617221\pi\)
0.987959 0.154715i \(-0.0494460\pi\)
\(158\) 36.4268 + 21.0310i 0.230549 + 0.133108i
\(159\) −16.5153 + 23.3562i −0.103870 + 0.146894i
\(160\) −14.6969 25.4558i −0.0918559 0.159099i
\(161\) 59.9219i 0.372186i
\(162\) 41.1589 106.902i 0.254067 0.659886i
\(163\) −249.060 −1.52798 −0.763988 0.645230i \(-0.776762\pi\)
−0.763988 + 0.645230i \(0.776762\pi\)
\(164\) −107.091 + 61.8289i −0.652993 + 0.377006i
\(165\) −120.136 84.9491i −0.728098 0.514843i
\(166\) 62.1589 107.662i 0.374451 0.648569i
\(167\) −41.9472 24.2182i −0.251181 0.145019i 0.369124 0.929380i \(-0.379658\pi\)
−0.620305 + 0.784361i \(0.712991\pi\)
\(168\) 53.6413 + 4.94253i 0.319294 + 0.0294198i
\(169\) −109.485 189.633i −0.647838 1.12209i
\(170\) 14.0137i 0.0824335i
\(171\) 14.0908 + 39.8548i 0.0824024 + 0.233069i
\(172\) −1.90918 −0.0110999
\(173\) 86.9847 50.2206i 0.502802 0.290293i −0.227068 0.973879i \(-0.572914\pi\)
0.729870 + 0.683586i \(0.239581\pi\)
\(174\) 12.6742 5.83904i 0.0728404 0.0335577i
\(175\) 6.34847 10.9959i 0.0362770 0.0628336i
\(176\) −32.6969 18.8776i −0.185778 0.107259i
\(177\) 114.894 + 249.389i 0.649118 + 1.40898i
\(178\) −29.2577 50.6757i −0.164369 0.284695i
\(179\) 285.071i 1.59257i −0.604919 0.796287i \(-0.706794\pi\)
0.604919 0.796287i \(-0.293206\pi\)
\(180\) −71.0908 60.7791i −0.394949 0.337662i
\(181\) 37.1214 0.205091 0.102545 0.994728i \(-0.467301\pi\)
0.102545 + 0.994728i \(0.467301\pi\)
\(182\) −153.149 + 88.4205i −0.841476 + 0.485827i
\(183\) −20.6691 + 224.322i −0.112946 + 1.22580i
\(184\) −13.3485 + 23.1202i −0.0725460 + 0.125653i
\(185\) −77.8638 44.9547i −0.420885 0.242998i
\(186\) −100.540 + 142.185i −0.540539 + 0.764438i
\(187\) 9.00000 + 15.5885i 0.0481283 + 0.0833607i
\(188\) 28.2201i 0.150107i
\(189\) 166.166 42.0676i 0.879187 0.222580i
\(190\) 34.5153 0.181660
\(191\) −15.5227 + 8.96204i −0.0812707 + 0.0469217i −0.540085 0.841611i \(-0.681608\pi\)
0.458814 + 0.888532i \(0.348274\pi\)
\(192\) −19.5959 13.8564i −0.102062 0.0721688i
\(193\) 47.7270 82.6657i 0.247290 0.428319i −0.715483 0.698630i \(-0.753793\pi\)
0.962773 + 0.270311i \(0.0871265\pi\)
\(194\) 117.427 + 67.7964i 0.605293 + 0.349466i
\(195\) 305.750 + 28.1719i 1.56795 + 0.144471i
\(196\) −8.69694 15.0635i −0.0443721 0.0768548i
\(197\) 160.363i 0.814026i 0.913422 + 0.407013i \(0.133430\pi\)
−0.913422 + 0.407013i \(0.866570\pi\)
\(198\) −118.114 21.9524i −0.596533 0.110871i
\(199\) 6.51531 0.0327402 0.0163701 0.999866i \(-0.494789\pi\)
0.0163701 + 0.999866i \(0.494789\pi\)
\(200\) −4.89898 + 2.82843i −0.0244949 + 0.0141421i
\(201\) −84.3434 + 38.8571i −0.419619 + 0.193319i
\(202\) 111.674 193.425i 0.552843 0.957552i
\(203\) 18.0834 + 10.4405i 0.0890809 + 0.0514309i
\(204\) 4.78775 + 10.3923i 0.0234694 + 0.0509427i
\(205\) 160.636 + 278.230i 0.783591 + 1.35722i
\(206\) 41.2048i 0.200024i
\(207\) −15.5227 + 83.5189i −0.0749889 + 0.403473i
\(208\) 78.7878 0.378787
\(209\) 38.3939 22.1667i 0.183703 0.106061i
\(210\) 12.8411 139.364i 0.0611480 0.663639i
\(211\) 77.2196 133.748i 0.365970 0.633878i −0.622961 0.782253i \(-0.714071\pi\)
0.988931 + 0.148374i \(0.0474040\pi\)
\(212\) 16.5153 + 9.53512i 0.0779024 + 0.0449770i
\(213\) 148.788 210.418i 0.698534 0.987876i
\(214\) 121.485 + 210.418i 0.567685 + 0.983260i
\(215\) 4.96021i 0.0230707i
\(216\) −73.4847 20.7846i −0.340207 0.0962250i
\(217\) −260.576 −1.20081
\(218\) −142.404 + 82.2170i −0.653230 + 0.377142i
\(219\) −235.373 166.434i −1.07476 0.759973i
\(220\) −49.0454 + 84.9491i −0.222934 + 0.386132i
\(221\) −32.5301 18.7813i −0.147195 0.0849831i
\(222\) −73.1010 6.73555i −0.329284 0.0303403i
\(223\) −46.3865 80.3437i −0.208011 0.360286i 0.743077 0.669206i \(-0.233366\pi\)
−0.951088 + 0.308920i \(0.900032\pi\)
\(224\) 35.9124i 0.160323i
\(225\) −11.6969 + 13.6814i −0.0519864 + 0.0608064i
\(226\) −286.045 −1.26569
\(227\) 147.053 84.9010i 0.647810 0.374013i −0.139807 0.990179i \(-0.544648\pi\)
0.787617 + 0.616166i \(0.211315\pi\)
\(228\) 25.5959 11.7921i 0.112263 0.0517197i
\(229\) −203.772 + 352.944i −0.889836 + 1.54124i −0.0497675 + 0.998761i \(0.515848\pi\)
−0.840068 + 0.542480i \(0.817485\pi\)
\(230\) 60.0681 + 34.6803i 0.261166 + 0.150784i
\(231\) −75.2196 163.272i −0.325626 0.706805i
\(232\) −4.65153 8.05669i −0.0200497 0.0347271i
\(233\) 15.2562i 0.0654772i 0.999464 + 0.0327386i \(0.0104229\pi\)
−0.999464 + 0.0327386i \(0.989577\pi\)
\(234\) 236.363 83.5670i 1.01010 0.357124i
\(235\) 73.3179 0.311991
\(236\) 158.530 91.5274i 0.671738 0.387828i
\(237\) 8.18673 88.8507i 0.0345432 0.374897i
\(238\) −8.56072 + 14.8276i −0.0359694 + 0.0623008i
\(239\) 48.9620 + 28.2682i 0.204862 + 0.118277i 0.598921 0.800808i \(-0.295596\pi\)
−0.394059 + 0.919085i \(0.628930\pi\)
\(240\) −36.0000 + 50.9117i −0.150000 + 0.212132i
\(241\) −42.1061 72.9299i −0.174714 0.302614i 0.765348 0.643617i \(-0.222567\pi\)
−0.940062 + 0.341003i \(0.889233\pi\)
\(242\) 45.1264i 0.186473i
\(243\) −242.499 + 15.5885i −0.997940 + 0.0641500i
\(244\) 150.182 0.615498
\(245\) −39.1362 + 22.5953i −0.159740 + 0.0922258i
\(246\) 214.182 + 151.449i 0.870657 + 0.615647i
\(247\) −46.2577 + 80.1206i −0.187278 + 0.324375i
\(248\) 100.540 + 58.0470i 0.405404 + 0.234060i
\(249\) −262.606 24.1966i −1.05464 0.0971750i
\(250\) −84.5074 146.371i −0.338030 0.585484i
\(251\) 218.903i 0.872123i 0.899917 + 0.436062i \(0.143627\pi\)
−0.899917 + 0.436062i \(0.856373\pi\)
\(252\) −38.0908 107.737i −0.151154 0.427528i
\(253\) 89.0908 0.352138
\(254\) −12.3587 + 7.13528i −0.0486562 + 0.0280917i
\(255\) 27.0000 12.4389i 0.105882 0.0487802i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −11.1061 6.41212i −0.0432145 0.0249499i 0.478237 0.878231i \(-0.341276\pi\)
−0.521452 + 0.853281i \(0.674609\pi\)
\(258\) 1.69464 + 3.67840i 0.00656839 + 0.0142574i
\(259\) −54.9240 95.1311i −0.212062 0.367302i
\(260\) 204.697i 0.787295i
\(261\) −22.5000 19.2364i −0.0862069 0.0737026i
\(262\) −7.01479 −0.0267740
\(263\) 291.386 168.232i 1.10793 0.639666i 0.169640 0.985506i \(-0.445739\pi\)
0.938293 + 0.345840i \(0.112406\pi\)
\(264\) −7.34847 + 79.7530i −0.0278351 + 0.302095i
\(265\) 24.7730 42.9080i 0.0934829 0.161917i
\(266\) 36.5199 + 21.0848i 0.137293 + 0.0792661i
\(267\) −71.6663 + 101.351i −0.268413 + 0.379594i
\(268\) 30.9546 + 53.6149i 0.115502 + 0.200056i
\(269\) 60.4468i 0.224709i 0.993668 + 0.112355i \(0.0358393\pi\)
−0.993668 + 0.112355i \(0.964161\pi\)
\(270\) −54.0000 + 190.919i −0.200000 + 0.707107i
\(271\) 274.636 1.01342 0.506708 0.862118i \(-0.330862\pi\)
0.506708 + 0.862118i \(0.330862\pi\)
\(272\) 6.60612 3.81405i 0.0242872 0.0140222i
\(273\) 306.297 + 216.585i 1.12197 + 0.793352i
\(274\) −165.947 + 287.428i −0.605645 + 1.04901i
\(275\) 16.3485 + 9.43879i 0.0594490 + 0.0343229i
\(276\) 56.3939 + 5.19615i 0.204326 + 0.0188266i
\(277\) 24.5000 + 42.4352i 0.0884477 + 0.153196i 0.906855 0.421442i \(-0.138476\pi\)
−0.818407 + 0.574638i \(0.805143\pi\)
\(278\) 150.656i 0.541929i
\(279\) 363.189 + 67.5018i 1.30175 + 0.241942i
\(280\) −93.3031 −0.333225
\(281\) −297.121 + 171.543i −1.05737 + 0.610473i −0.924704 0.380688i \(-0.875687\pi\)
−0.132666 + 0.991161i \(0.542354\pi\)
\(282\) 54.3712 25.0489i 0.192806 0.0888259i
\(283\) 171.704 297.401i 0.606729 1.05089i −0.385047 0.922897i \(-0.625815\pi\)
0.991776 0.127988i \(-0.0408521\pi\)
\(284\) −148.788 85.9026i −0.523901 0.302474i
\(285\) −30.6367 66.5001i −0.107497 0.233334i
\(286\) −131.462 227.699i −0.459657 0.796150i
\(287\) 392.519i 1.36766i
\(288\) −9.30306 + 50.0545i −0.0323023 + 0.173800i
\(289\) 285.363 0.987416
\(290\) −20.9319 + 12.0850i −0.0721789 + 0.0416725i
\(291\) 26.3911 286.422i 0.0906910 0.984270i
\(292\) −96.0908 + 166.434i −0.329078 + 0.569980i
\(293\) −248.076 143.226i −0.846674 0.488828i 0.0128532 0.999917i \(-0.495909\pi\)
−0.859527 + 0.511090i \(0.829242\pi\)
\(294\) −21.3031 + 30.1271i −0.0724594 + 0.102473i
\(295\) −237.795 411.873i −0.806085 1.39618i
\(296\) 48.9404i 0.165339i
\(297\) 62.5454 + 247.053i 0.210591 + 0.831829i
\(298\) 148.652 0.498831
\(299\) −161.007 + 92.9577i −0.538486 + 0.310895i
\(300\) 9.79796 + 6.92820i 0.0326599 + 0.0230940i
\(301\) −3.03010 + 5.24829i −0.0100668 + 0.0174362i
\(302\) −349.330 201.686i −1.15672 0.667834i
\(303\) −471.795 43.4714i −1.55708 0.143470i
\(304\) −9.39388 16.2707i −0.0309009 0.0535219i
\(305\) 390.183i 1.27929i
\(306\) 15.7730 18.4490i 0.0515456 0.0602908i
\(307\) 154.091 0.501924 0.250962 0.967997i \(-0.419253\pi\)
0.250962 + 0.967997i \(0.419253\pi\)
\(308\) −103.788 + 59.9219i −0.336973 + 0.194552i
\(309\) −79.3888 + 36.5746i −0.256922 + 0.118364i
\(310\) 150.810 261.211i 0.486485 0.842617i
\(311\) −62.3411 35.9926i −0.200454 0.115732i 0.396413 0.918072i \(-0.370255\pi\)
−0.596867 + 0.802340i \(0.703588\pi\)
\(312\) −69.9342 151.799i −0.224148 0.486536i
\(313\) 183.803 + 318.356i 0.587230 + 1.01711i 0.994593 + 0.103846i \(0.0331150\pi\)
−0.407363 + 0.913266i \(0.633552\pi\)
\(314\) 278.857i 0.888079i
\(315\) −279.909 + 98.9628i −0.888601 + 0.314168i
\(316\) −59.4847 −0.188243
\(317\) −93.1821 + 53.7987i −0.293950 + 0.169712i −0.639722 0.768607i \(-0.720950\pi\)
0.345772 + 0.938319i \(0.387617\pi\)
\(318\) 3.71173 40.2834i 0.0116721 0.126677i
\(319\) −15.5227 + 26.8861i −0.0486605 + 0.0842825i
\(320\) 36.0000 + 20.7846i 0.112500 + 0.0649519i
\(321\) 297.576 420.835i 0.927027 1.31101i
\(322\) 42.3712 + 73.3890i 0.131587 + 0.227916i
\(323\) 8.95717i 0.0277312i
\(324\) 25.1816 + 160.031i 0.0777211 + 0.493922i
\(325\) −39.3939 −0.121212
\(326\) 305.035 176.112i 0.935691 0.540221i
\(327\) 284.808 + 201.390i 0.870973 + 0.615871i
\(328\) 87.4393 151.449i 0.266583 0.461736i
\(329\) 77.5760 + 44.7885i 0.235793 + 0.136135i
\(330\) 207.204 + 19.0919i 0.627892 + 0.0578542i
\(331\) −8.59873 14.8934i −0.0259780 0.0449953i 0.852744 0.522329i \(-0.174937\pi\)
−0.878722 + 0.477334i \(0.841603\pi\)
\(332\) 175.812i 0.529554i
\(333\) 51.9092 + 146.821i 0.155883 + 0.440905i
\(334\) 68.4995 0.205088
\(335\) 139.296 80.4224i 0.415808 0.240067i
\(336\) −69.1918 + 31.8768i −0.205928 + 0.0948714i
\(337\) −182.197 + 315.574i −0.540644 + 0.936422i 0.458223 + 0.888837i \(0.348486\pi\)
−0.998867 + 0.0475854i \(0.984847\pi\)
\(338\) 268.182 + 154.835i 0.793437 + 0.458091i
\(339\) 253.902 + 551.120i 0.748973 + 1.62572i
\(340\) −9.90918 17.1632i −0.0291447 0.0504800i
\(341\) 387.419i 1.13613i
\(342\) −45.4393 38.8483i −0.132863 0.113592i
\(343\) −366.287 −1.06789
\(344\) 2.33826 1.35000i 0.00679728 0.00392441i
\(345\) 13.5000 146.516i 0.0391304 0.424683i
\(346\) −71.0227 + 123.015i −0.205268 + 0.355534i
\(347\) 505.234 + 291.697i 1.45601 + 0.840626i 0.998811 0.0487402i \(-0.0155206\pi\)
0.457196 + 0.889366i \(0.348854\pi\)
\(348\) −11.3939 + 16.1134i −0.0327410 + 0.0463028i
\(349\) −156.379 270.856i −0.448076 0.776091i 0.550185 0.835043i \(-0.314557\pi\)
−0.998261 + 0.0589524i \(0.981224\pi\)
\(350\) 17.9562i 0.0513034i
\(351\) −370.810 381.221i −1.05644 1.08610i
\(352\) 53.3939 0.151687
\(353\) −32.5760 + 18.8078i −0.0922834 + 0.0532798i −0.545431 0.838155i \(-0.683634\pi\)
0.453148 + 0.891435i \(0.350301\pi\)
\(354\) −317.060 224.195i −0.895650 0.633320i
\(355\) −223.182 + 386.562i −0.628681 + 1.08891i
\(356\) 71.6663 + 41.3766i 0.201310 + 0.116226i
\(357\) 36.1668 + 3.33243i 0.101308 + 0.00933453i
\(358\) 201.576 + 349.139i 0.563060 + 0.975249i
\(359\) 294.028i 0.819019i −0.912306 0.409510i \(-0.865700\pi\)
0.912306 0.409510i \(-0.134300\pi\)
\(360\) 130.045 + 24.1701i 0.361237 + 0.0671391i
\(361\) −338.939 −0.938889
\(362\) −45.4643 + 26.2488i −0.125592 + 0.0725105i
\(363\) −86.9444 + 40.0554i −0.239516 + 0.110346i
\(364\) 125.045 216.585i 0.343531 0.595014i
\(365\) 432.409 + 249.651i 1.18468 + 0.683976i
\(366\) −133.305 289.353i −0.364222 0.790581i
\(367\) 16.6135 + 28.7755i 0.0452684 + 0.0784072i 0.887772 0.460284i \(-0.152252\pi\)
−0.842503 + 0.538691i \(0.818919\pi\)
\(368\) 37.7552i 0.102596i
\(369\) 101.682 547.091i 0.275560 1.48263i
\(370\) 127.151 0.343651
\(371\) 52.4235 30.2667i 0.141303 0.0815814i
\(372\) 22.5959 245.234i 0.0607417 0.659230i
\(373\) 112.515 194.881i 0.301648 0.522470i −0.674861 0.737945i \(-0.735797\pi\)
0.976509 + 0.215475i \(0.0691299\pi\)
\(374\) −22.0454 12.7279i −0.0589449 0.0340319i
\(375\) −207.000 + 292.742i −0.552000 + 0.780646i
\(376\) −19.9546 34.5624i −0.0530707 0.0919212i
\(377\) 64.7858i 0.171846i
\(378\) −173.765 + 169.019i −0.459696 + 0.447141i
\(379\) −166.334 −0.438875 −0.219438 0.975627i \(-0.570422\pi\)
−0.219438 + 0.975627i \(0.570422\pi\)
\(380\) −42.2724 + 24.4060i −0.111243 + 0.0642263i
\(381\) 24.7173 + 17.4778i 0.0648749 + 0.0458735i
\(382\) 12.6742 21.9524i 0.0331786 0.0574671i
\(383\) −638.249 368.493i −1.66645 0.962124i −0.969530 0.244972i \(-0.921221\pi\)
−0.696917 0.717152i \(-0.745445\pi\)
\(384\) 33.7980 + 3.11416i 0.0880155 + 0.00810978i
\(385\) 155.682 + 269.648i 0.404368 + 0.700386i
\(386\) 134.992i 0.349721i
\(387\) 5.58290 6.53010i 0.0144261 0.0168736i
\(388\) −191.757 −0.494219
\(389\) −146.682 + 84.6867i −0.377074 + 0.217704i −0.676544 0.736402i \(-0.736523\pi\)
0.299471 + 0.954106i \(0.403190\pi\)
\(390\) −394.386 + 181.694i −1.01125 + 0.465883i
\(391\) −9.00000 + 15.5885i −0.0230179 + 0.0398682i
\(392\) 21.3031 + 12.2993i 0.0543445 + 0.0313758i
\(393\) 6.22652 + 13.5153i 0.0158436 + 0.0343901i
\(394\) −113.394 196.404i −0.287802 0.498487i
\(395\) 154.546i 0.391255i
\(396\) 160.182 56.6328i 0.404499 0.143012i
\(397\) −256.272 −0.645523 −0.322761 0.946480i \(-0.604611\pi\)
−0.322761 + 0.946480i \(0.604611\pi\)
\(398\) −7.97959 + 4.60702i −0.0200492 + 0.0115754i
\(399\) 8.20766 89.0778i 0.0205706 0.223253i
\(400\) 4.00000 6.92820i 0.0100000 0.0173205i
\(401\) 226.364 + 130.691i 0.564498 + 0.325913i 0.754949 0.655784i \(-0.227662\pi\)
−0.190451 + 0.981697i \(0.560995\pi\)
\(402\) 75.8230 107.230i 0.188614 0.266741i
\(403\) 404.234 + 700.155i 1.00306 + 1.73736i
\(404\) 315.862i 0.781838i
\(405\) 415.772 65.4238i 1.02660 0.161540i
\(406\) −29.5301 −0.0727342
\(407\) 141.439 81.6600i 0.347517 0.200639i
\(408\) −13.2122 9.34247i −0.0323830 0.0228982i
\(409\) 221.894 384.331i 0.542528 0.939686i −0.456230 0.889862i \(-0.650801\pi\)
0.998758 0.0498240i \(-0.0158660\pi\)
\(410\) −393.477 227.174i −0.959699 0.554083i
\(411\) 701.082 + 64.5980i 1.70580 + 0.157173i
\(412\) 29.1362 + 50.4654i 0.0707190 + 0.122489i
\(413\) 581.059i 1.40692i
\(414\) −40.0454 113.266i −0.0967280 0.273588i
\(415\) 456.773 1.10066
\(416\) −96.4949 + 55.7114i −0.231959 + 0.133922i
\(417\) −290.267 + 133.727i −0.696085 + 0.320688i
\(418\) −31.3485 + 54.2971i −0.0749963 + 0.129897i
\(419\) 9.32525 + 5.38394i 0.0222560 + 0.0128495i 0.511087 0.859529i \(-0.329243\pi\)
−0.488831 + 0.872379i \(0.662576\pi\)
\(420\) 82.8184 + 179.766i 0.197187 + 0.428013i
\(421\) −127.152 220.233i −0.302023 0.523119i 0.674571 0.738210i \(-0.264328\pi\)
−0.976594 + 0.215091i \(0.930995\pi\)
\(422\) 218.410i 0.517560i
\(423\) −96.5227 82.5221i −0.228186 0.195088i
\(424\) −26.9694 −0.0636070
\(425\) −3.30306 + 1.90702i −0.00777191 + 0.00448711i
\(426\) −33.4393 + 362.917i −0.0784960 + 0.851917i
\(427\) 238.356 412.844i 0.558210 0.966849i
\(428\) −297.576 171.805i −0.695270 0.401414i
\(429\) −322.015 + 455.398i −0.750617 + 1.06153i
\(430\) −3.50740 6.07499i −0.00815674 0.0141279i
\(431\) 698.663i 1.62103i 0.585719 + 0.810514i \(0.300812\pi\)
−0.585719 + 0.810514i \(0.699188\pi\)
\(432\) 104.697 26.5057i 0.242354 0.0613557i
\(433\) 211.728 0.488978 0.244489 0.969652i \(-0.421380\pi\)
0.244489 + 0.969652i \(0.421380\pi\)
\(434\) 319.139 184.255i 0.735342 0.424550i
\(435\) 41.8638 + 29.6022i 0.0962386 + 0.0680509i
\(436\) 116.272 201.390i 0.266680 0.461903i
\(437\) 38.3939 + 22.1667i 0.0878578 + 0.0507247i
\(438\) 405.959 + 37.4052i 0.926847 + 0.0854001i
\(439\) −139.931 242.368i −0.318750 0.552092i 0.661477 0.749965i \(-0.269930\pi\)
−0.980228 + 0.197874i \(0.936596\pi\)
\(440\) 138.721i 0.315276i
\(441\) 76.9546 + 14.3027i 0.174500 + 0.0324324i
\(442\) 53.1214 0.120184
\(443\) −477.400 + 275.627i −1.07765 + 0.622183i −0.930262 0.366895i \(-0.880421\pi\)
−0.147391 + 0.989078i \(0.547087\pi\)
\(444\) 94.2929 43.4409i 0.212371 0.0978398i
\(445\) 107.499 186.195i 0.241572 0.418415i
\(446\) 113.623 + 65.6004i 0.254761 + 0.147086i
\(447\) −131.947 286.405i −0.295184 0.640727i
\(448\) 25.3939 + 43.9835i 0.0566828 + 0.0981774i
\(449\) 542.865i 1.20905i 0.796585 + 0.604527i \(0.206638\pi\)
−0.796585 + 0.604527i \(0.793362\pi\)
\(450\) 4.65153 25.0273i 0.0103367 0.0556161i
\(451\) −583.590 −1.29399
\(452\) 350.333 202.265i 0.775072 0.447488i
\(453\) −78.5102 + 852.072i −0.173312 + 1.88095i
\(454\) −120.068 + 207.964i −0.264467 + 0.458071i
\(455\) −562.704 324.877i −1.23671 0.714016i
\(456\) −23.0102 + 32.5413i −0.0504610 + 0.0713626i
\(457\) −46.1821 79.9898i −0.101055 0.175032i 0.811065 0.584957i \(-0.198888\pi\)
−0.912120 + 0.409924i \(0.865555\pi\)
\(458\) 576.356i 1.25842i
\(459\) −49.5459 14.0137i −0.107943 0.0305309i
\(460\) −98.0908 −0.213241
\(461\) −199.030 + 114.910i −0.431736 + 0.249263i −0.700086 0.714059i \(-0.746855\pi\)
0.268350 + 0.963321i \(0.413522\pi\)
\(462\) 207.576 + 146.778i 0.449298 + 0.317701i
\(463\) 255.401 442.368i 0.551623 0.955438i −0.446535 0.894766i \(-0.647342\pi\)
0.998158 0.0606723i \(-0.0193245\pi\)
\(464\) 11.3939 + 6.57826i 0.0245558 + 0.0141773i
\(465\) −637.136 58.7059i −1.37018 0.126249i
\(466\) −10.7878 18.6849i −0.0231497 0.0400964i
\(467\) 833.657i 1.78513i −0.450915 0.892567i \(-0.648902\pi\)
0.450915 0.892567i \(-0.351098\pi\)
\(468\) −230.394 + 269.482i −0.492295 + 0.575817i
\(469\) 196.514 0.419007
\(470\) −89.7957 + 51.8436i −0.191055 + 0.110305i
\(471\) 537.270 247.521i 1.14070 0.525523i
\(472\) −129.439 + 224.195i −0.274236 + 0.474990i
\(473\) −7.80306 4.50510i −0.0164970 0.00952452i
\(474\) 52.8003 + 114.608i 0.111393 + 0.241790i
\(475\) 4.69694 + 8.13534i 0.00988829 + 0.0171270i
\(476\) 24.2134i 0.0508684i
\(477\) −80.9082 + 28.6054i −0.169619 + 0.0599693i
\(478\) −79.9546 −0.167269
\(479\) 569.144 328.595i 1.18819 0.686003i 0.230296 0.973121i \(-0.426031\pi\)
0.957895 + 0.287118i \(0.0926972\pi\)
\(480\) 8.09082 87.8097i 0.0168559 0.182937i
\(481\) −170.409 + 295.156i −0.354280 + 0.613631i
\(482\) 103.139 + 59.5471i 0.213980 + 0.123542i
\(483\) 103.788 146.778i 0.214881 0.303888i
\(484\) 31.9092 + 55.2683i 0.0659281 + 0.114191i
\(485\) 498.200i 1.02722i
\(486\) 285.977 190.565i 0.588431 0.392109i
\(487\) −351.666 −0.722107 −0.361054 0.932545i \(-0.617583\pi\)
−0.361054 + 0.932545i \(0.617583\pi\)
\(488\) −183.934 + 106.194i −0.376914 + 0.217612i
\(489\) −610.070 431.385i −1.24759 0.882178i
\(490\) 31.9546 55.3470i 0.0652135 0.112953i
\(491\) 212.539 + 122.709i 0.432869 + 0.249917i 0.700568 0.713586i \(-0.252930\pi\)
−0.267699 + 0.963503i \(0.586263\pi\)
\(492\) −369.409 34.0374i −0.750831 0.0691818i
\(493\) −3.13622 5.43210i −0.00636151 0.0110185i
\(494\) 130.836i 0.264851i
\(495\) −147.136 416.164i −0.297245 0.840736i
\(496\) −164.182 −0.331011
\(497\) −472.287 + 272.675i −0.950276 + 0.548642i
\(498\) 338.734 156.056i 0.680190 0.313365i
\(499\) −315.113 + 545.792i −0.631489 + 1.09377i 0.355758 + 0.934578i \(0.384223\pi\)
−0.987247 + 0.159193i \(0.949111\pi\)
\(500\) 207.000 + 119.512i 0.414000 + 0.239023i
\(501\) −60.8020 131.977i −0.121361 0.263427i
\(502\) −154.788 268.100i −0.308342 0.534064i
\(503\) 286.891i 0.570360i 0.958474 + 0.285180i \(0.0920534\pi\)
−0.958474 + 0.285180i \(0.907947\pi\)
\(504\) 122.833 + 105.016i 0.243717 + 0.208365i
\(505\) 820.635 1.62502
\(506\) −109.114 + 62.9967i −0.215639 + 0.124499i
\(507\) 60.2724 654.137i 0.118881 1.29021i
\(508\) 10.0908 17.4778i 0.0198638 0.0344051i
\(509\) 755.454 + 436.161i 1.48419 + 0.856898i 0.999838 0.0179741i \(-0.00572163\pi\)
0.484353 + 0.874873i \(0.339055\pi\)
\(510\) −24.2724 + 34.3264i −0.0475930 + 0.0673067i
\(511\) 305.015 + 528.301i 0.596898 + 1.03386i
\(512\) 22.6274i 0.0441942i
\(513\) −34.5153 + 122.030i −0.0672813 + 0.237875i
\(514\) 18.1362 0.0352845
\(515\) 131.113 75.6981i 0.254588 0.146987i
\(516\) −4.67653 3.30680i −0.00906304 0.00640854i
\(517\) −66.5908 + 115.339i −0.128802 + 0.223092i
\(518\) 134.536 + 77.6742i 0.259721 + 0.149950i
\(519\) 300.053 + 27.6470i 0.578136 + 0.0532697i
\(520\) 144.742 + 250.701i 0.278351 + 0.482117i
\(521\) 206.132i 0.395646i 0.980238 + 0.197823i \(0.0633872\pi\)
−0.980238 + 0.197823i \(0.936613\pi\)
\(522\) 41.1589 + 7.64974i 0.0788485 + 0.0146547i
\(523\) 884.817 1.69181 0.845906 0.533333i \(-0.179061\pi\)
0.845906 + 0.533333i \(0.179061\pi\)
\(524\) 8.59133 4.96021i 0.0163957 0.00946604i
\(525\) 34.5959 15.9384i 0.0658970 0.0303589i
\(526\) −237.916 + 412.083i −0.452312 + 0.783427i
\(527\) 67.7878 + 39.1373i 0.128630 + 0.0742643i
\(528\) −47.3939 102.873i −0.0897611 0.194836i
\(529\) −219.955 380.973i −0.415793 0.720175i
\(530\) 70.0685i 0.132205i
\(531\) −150.523 + 809.877i −0.283470 + 1.52519i
\(532\) −59.6367 −0.112099
\(533\) 1054.68 608.920i 1.97876 1.14244i
\(534\) 16.1066 174.805i 0.0301622 0.327351i
\(535\) −446.363 + 773.124i −0.834324 + 1.44509i
\(536\) −75.8230 43.7764i −0.141461 0.0816724i
\(537\) 493.757 698.278i 0.919473 1.30033i
\(538\) −42.7423 74.0319i −0.0794467 0.137606i
\(539\) 82.0886i 0.152298i
\(540\) −68.8638 272.011i −0.127526 0.503723i
\(541\) −509.151 −0.941129 −0.470565 0.882365i \(-0.655950\pi\)
−0.470565 + 0.882365i \(0.655950\pi\)
\(542\) −336.359 + 194.197i −0.620588 + 0.358297i
\(543\) 90.9286 + 64.2962i 0.167456 + 0.118409i
\(544\) −5.39388 + 9.34247i −0.00991521 + 0.0171737i
\(545\) −523.226 302.085i −0.960048 0.554284i
\(546\) −528.285 48.6764i −0.967555 0.0891509i
\(547\) −274.022 474.620i −0.500955 0.867679i −0.999999 0.00110267i \(-0.999649\pi\)
0.499045 0.866576i \(-0.333684\pi\)
\(548\) 469.368i 0.856511i
\(549\) −439.166 + 513.675i −0.799939 + 0.935656i
\(550\) −26.6969 −0.0485399
\(551\) −13.3791 + 7.72442i −0.0242815 + 0.0140189i
\(552\) −72.7423 + 33.5125i −0.131780 + 0.0607111i
\(553\) −94.4092 + 163.522i −0.170722 + 0.295699i
\(554\) −60.0125 34.6482i −0.108326 0.0625419i
\(555\) −112.863 244.980i −0.203356 0.441405i
\(556\) 106.530 + 184.516i 0.191601 + 0.331862i
\(557\) 406.542i 0.729879i −0.931031 0.364939i \(-0.881090\pi\)
0.931031 0.364939i \(-0.118910\pi\)
\(558\) −492.545 + 174.141i −0.882697 + 0.312080i
\(559\) 18.8025 0.0336360
\(560\) 114.272 65.9752i 0.204058 0.117813i
\(561\) −4.95459 + 53.7722i −0.00883172 + 0.0958507i
\(562\) 242.598 420.192i 0.431669 0.747673i
\(563\) −525.220 303.236i −0.932895 0.538607i −0.0451687 0.998979i \(-0.514383\pi\)
−0.887726 + 0.460372i \(0.847716\pi\)
\(564\) −48.8786 + 69.1247i −0.0866641 + 0.122562i
\(565\) −525.499 910.191i −0.930087 1.61096i
\(566\) 485.653i 0.858045i
\(567\) 479.886 + 184.764i 0.846360 + 0.325863i
\(568\) 242.969 0.427763
\(569\) −224.954 + 129.877i −0.395350 + 0.228255i −0.684476 0.729036i \(-0.739969\pi\)
0.289126 + 0.957291i \(0.406635\pi\)
\(570\) 84.5449 + 59.7823i 0.148324 + 0.104881i
\(571\) 43.9166 76.0657i 0.0769117 0.133215i −0.825004 0.565126i \(-0.808827\pi\)
0.901916 + 0.431911i \(0.142161\pi\)
\(572\) 322.015 + 185.915i 0.562963 + 0.325027i
\(573\) −53.5454 4.93369i −0.0934475 0.00861029i
\(574\) −277.553 480.736i −0.483541 0.837518i
\(575\) 18.8776i 0.0328306i
\(576\) −24.0000 67.8823i −0.0416667 0.117851i
\(577\) −132.091 −0.228927 −0.114463 0.993427i \(-0.536515\pi\)
−0.114463 + 0.993427i \(0.536515\pi\)
\(578\) −349.497 + 201.782i −0.604666 + 0.349104i
\(579\) 260.088 119.823i 0.449202 0.206948i
\(580\) 17.0908 29.6022i 0.0294669 0.0510382i
\(581\) 483.302 + 279.034i 0.831844 + 0.480266i
\(582\) 170.209 + 369.456i 0.292455 + 0.634804i
\(583\) 45.0000 + 77.9423i 0.0771870 + 0.133692i
\(584\) 271.786i 0.465387i
\(585\) 700.136 + 598.581i 1.19681 + 1.02322i
\(586\) 405.106 0.691306
\(587\) −491.614 + 283.833i −0.837502 + 0.483532i −0.856414 0.516289i \(-0.827313\pi\)
0.0189125 + 0.999821i \(0.493980\pi\)
\(588\) 4.78775 51.9615i 0.00814244 0.0883699i
\(589\) 96.3939 166.959i 0.163657 0.283462i
\(590\) 582.477 + 336.293i 0.987249 + 0.569988i
\(591\) −277.757 + 392.808i −0.469978 + 0.664650i
\(592\) −34.6061 59.9396i −0.0584563 0.101249i
\(593\) 77.0321i 0.129902i −0.997888 0.0649512i \(-0.979311\pi\)
0.997888 0.0649512i \(-0.0206892\pi\)
\(594\) −251.295 258.351i −0.423056 0.434934i
\(595\) −62.9082 −0.105728
\(596\) −182.060 + 105.113i −0.305470 + 0.176363i
\(597\) 15.9592 + 11.2848i 0.0267323 + 0.0189026i
\(598\) 131.462 227.699i 0.219836 0.380767i
\(599\) −764.917 441.625i −1.27699 0.737270i −0.300696 0.953720i \(-0.597219\pi\)
−0.976294 + 0.216450i \(0.930552\pi\)
\(600\) −16.8990 1.55708i −0.0281650 0.00259513i
\(601\) 397.545 + 688.569i 0.661473 + 1.14571i 0.980229 + 0.197868i \(0.0634018\pi\)
−0.318755 + 0.947837i \(0.603265\pi\)
\(602\) 8.57042i 0.0142366i
\(603\) −273.901 50.9068i −0.454230 0.0844226i
\(604\) 570.454 0.944460
\(605\) 143.591 82.9025i 0.237341 0.137029i
\(606\) 608.568 280.368i 1.00424 0.462654i
\(607\) 148.372 256.987i 0.244434 0.423373i −0.717538 0.696519i \(-0.754731\pi\)
0.961972 + 0.273147i \(0.0880644\pi\)
\(608\) 23.0102 + 13.2849i 0.0378457 + 0.0218502i
\(609\) 26.2117 + 56.8952i 0.0430406 + 0.0934240i
\(610\) 275.901 + 477.875i 0.452297 + 0.783402i
\(611\) 277.924i 0.454868i
\(612\) −6.27245 + 33.7485i −0.0102491 + 0.0551446i
\(613\) −517.181 −0.843688 −0.421844 0.906668i \(-0.638617\pi\)
−0.421844 + 0.906668i \(0.638617\pi\)
\(614\) −188.722 + 108.959i −0.307365 + 0.177457i
\(615\) −88.4319 + 959.752i −0.143792 + 1.56057i
\(616\) 84.7423 146.778i 0.137569 0.238276i
\(617\) −229.909 132.738i −0.372623 0.215134i 0.301981 0.953314i \(-0.402352\pi\)
−0.674604 + 0.738180i \(0.735686\pi\)
\(618\) 71.3689 100.931i 0.115484 0.163319i
\(619\) 98.5227 + 170.646i 0.159164 + 0.275681i 0.934568 0.355786i \(-0.115787\pi\)
−0.775403 + 0.631466i \(0.782453\pi\)
\(620\) 426.556i 0.687994i
\(621\) −182.682 + 177.693i −0.294173 + 0.286139i
\(622\) 101.803 0.163670
\(623\) 227.486 131.339i 0.365146 0.210817i
\(624\) 192.990 + 136.464i 0.309279 + 0.218693i
\(625\) 335.500 581.103i 0.536800 0.929765i
\(626\) −450.224 259.937i −0.719207 0.415234i
\(627\) 132.439 + 12.2030i 0.211227 + 0.0194625i
\(628\) −197.182 341.529i −0.313983 0.543835i
\(629\) 32.9973i 0.0524600i
\(630\) 272.840 319.130i 0.433079 0.506555i
\(631\) −160.879 −0.254958 −0.127479 0.991841i \(-0.540689\pi\)
−0.127479 + 0.991841i \(0.540689\pi\)
\(632\) 72.8536 42.0620i 0.115275 0.0665538i
\(633\) 420.808 193.867i 0.664783 0.306267i
\(634\) 76.0829 131.779i 0.120005 0.207854i
\(635\) −45.4087 26.2167i −0.0715097 0.0412862i
\(636\) 23.9388 + 51.9615i 0.0376396 + 0.0817005i
\(637\) 85.6515 + 148.353i 0.134461 + 0.232893i
\(638\) 43.9048i 0.0688164i
\(639\) 728.908 257.708i 1.14070 0.403299i
\(640\) −58.7878 −0.0918559
\(641\) −267.894 + 154.669i −0.417931 + 0.241293i −0.694192 0.719790i \(-0.744238\pi\)
0.276261 + 0.961083i \(0.410905\pi\)
\(642\) −66.8786 + 725.834i −0.104172 + 1.13058i
\(643\) −197.296 + 341.726i −0.306836 + 0.531456i −0.977668 0.210153i \(-0.932604\pi\)
0.670832 + 0.741609i \(0.265937\pi\)
\(644\) −103.788 59.9219i −0.161161 0.0930464i
\(645\) −8.59133 + 12.1500i −0.0133199 + 0.0188372i
\(646\) −6.33368 10.9703i −0.00980445 0.0169818i
\(647\) 418.736i 0.647196i 0.946195 + 0.323598i \(0.104892\pi\)
−0.946195 + 0.323598i \(0.895108\pi\)
\(648\) −144.000 178.191i −0.222222 0.274986i
\(649\) 863.908 1.33114
\(650\) 48.2474 27.8557i 0.0742268 0.0428549i
\(651\) −638.277 451.330i −0.980456 0.693287i
\(652\) −249.060 + 431.385i −0.381994 + 0.661633i
\(653\) −459.621 265.363i −0.703861 0.406375i 0.104923 0.994480i \(-0.466540\pi\)
−0.808784 + 0.588106i \(0.799874\pi\)
\(654\) −491.221 45.2613i −0.751103 0.0692069i
\(655\) −12.8870 22.3209i −0.0196748 0.0340778i
\(656\) 247.316i 0.377006i
\(657\) −288.272 815.358i −0.438771 1.24103i
\(658\) −126.681 −0.192524
\(659\) 310.204 179.096i 0.470719 0.271770i −0.245822 0.969315i \(-0.579058\pi\)
0.716541 + 0.697545i \(0.245724\pi\)
\(660\) −267.272 + 123.133i −0.404958 + 0.186565i
\(661\) 111.136 192.493i 0.168133 0.291214i −0.769631 0.638489i \(-0.779560\pi\)
0.937763 + 0.347275i \(0.112893\pi\)
\(662\) 21.0625 + 12.1604i 0.0318165 + 0.0183692i
\(663\) −47.1520 102.348i −0.0711192 0.154371i
\(664\) −124.318 215.325i −0.187226 0.324284i
\(665\) 154.941i 0.232994i
\(666\) −167.394 143.113i −0.251342 0.214885i
\(667\) −31.0454 −0.0465448
\(668\) −83.8944 + 48.4365i −0.125590 + 0.0725097i
\(669\) 25.5362 277.145i 0.0381708 0.414267i
\(670\) −113.734 + 196.994i −0.169753 + 0.294021i
\(671\) 613.810 + 354.383i 0.914769 + 0.528142i
\(672\) 62.2020 87.9670i 0.0925626 0.130903i
\(673\) 144.606 + 250.464i 0.214867 + 0.372161i 0.953231 0.302241i \(-0.0977348\pi\)
−0.738364 + 0.674402i \(0.764401\pi\)
\(674\) 515.331i 0.764586i
\(675\) −52.3485 + 13.2528i −0.0775533 + 0.0196338i
\(676\) −437.939 −0.647838
\(677\) 402.227 232.226i 0.594131 0.343022i −0.172598 0.984992i \(-0.555216\pi\)
0.766729 + 0.641971i \(0.221883\pi\)
\(678\) −700.665 495.445i −1.03343 0.730745i
\(679\) −304.341 + 527.134i −0.448220 + 0.776339i
\(680\) 24.2724 + 14.0137i 0.0356948 + 0.0206084i
\(681\) 507.257 + 46.7389i 0.744871 + 0.0686327i
\(682\) 273.947 + 474.490i 0.401681 + 0.695733i
\(683\) 1126.36i 1.64913i 0.565767 + 0.824565i \(0.308580\pi\)
−0.565767 + 0.824565i \(0.691420\pi\)
\(684\) 83.1214 + 15.4488i 0.121523 + 0.0225860i
\(685\) −1219.45 −1.78022
\(686\) 448.608 259.004i 0.653948 0.377557i
\(687\) −1110.46 + 511.589i −1.61638 + 0.744671i
\(688\) −1.90918 + 3.30680i −0.00277498 + 0.00480640i
\(689\) −162.650 93.9063i −0.236067 0.136294i
\(690\) 87.0681 + 188.990i 0.126186 + 0.273899i
\(691\) −518.841 898.658i −0.750855 1.30052i −0.947409 0.320025i \(-0.896309\pi\)
0.196554 0.980493i \(-0.437025\pi\)
\(692\) 200.883i 0.290293i
\(693\) 98.5454 530.217i 0.142201 0.765104i
\(694\) −825.044 −1.18882
\(695\) 479.385 276.773i 0.689763 0.398235i
\(696\) 2.56072 27.7915i 0.00367919 0.0399303i
\(697\) 58.9546 102.112i 0.0845833 0.146503i
\(698\) 383.048 + 221.153i 0.548779 + 0.316838i
\(699\) −26.4245 + 37.3699i −0.0378033 + 0.0534619i
\(700\) −12.6969 21.9917i −0.0181385 0.0314168i
\(701\) 778.180i 1.11010i −0.831817 0.555050i \(-0.812699\pi\)
0.831817 0.555050i \(-0.187301\pi\)
\(702\) 723.712 + 204.697i 1.03093 + 0.291591i
\(703\) 81.2714 0.115607
\(704\) −65.3939 + 37.7552i −0.0928890 + 0.0536295i
\(705\) 179.591 + 126.990i 0.254739 + 0.180128i
\(706\) 26.5982 46.0695i 0.0376745 0.0652542i
\(707\) 868.296 + 501.311i 1.22814 + 0.709068i
\(708\) 546.848 + 50.3868i 0.772384 + 0.0711678i
\(709\) 586.014 + 1015.01i 0.826536 + 1.43160i 0.900739 + 0.434360i \(0.143025\pi\)
−0.0742031 + 0.997243i \(0.523641\pi\)
\(710\) 631.253i 0.889089i
\(711\) 173.947 203.459i 0.244651 0.286159i
\(712\) −117.031 −0.164369
\(713\) 335.515 193.710i 0.470568 0.271682i
\(714\) −46.6515 + 21.4924i −0.0653383 + 0.0301015i
\(715\) 483.022 836.619i 0.675556 1.17010i
\(716\) −493.757 285.071i −0.689605 0.398144i
\(717\) 70.9699 + 154.047i 0.0989817 + 0.214850i
\(718\) 207.909 + 360.109i 0.289567 + 0.501545i
\(719\) 515.416i 0.716851i 0.933558 + 0.358426i \(0.116686\pi\)
−0.933558 + 0.358426i \(0.883314\pi\)
\(720\) −176.363 + 62.3538i −0.244949 + 0.0866025i
\(721\) 184.970 0.256547
\(722\) 415.114 239.666i 0.574949 0.331947i
\(723\) 23.1799 251.571i 0.0320607 0.347954i
\(724\) 37.1214 64.2962i 0.0512727 0.0888069i
\(725\) −5.69694 3.28913i −0.00785785 0.00453673i
\(726\) 78.1612 110.537i 0.107660 0.152254i
\(727\) 420.704 + 728.681i 0.578685 + 1.00231i 0.995630 + 0.0933809i \(0.0297674\pi\)
−0.416945 + 0.908932i \(0.636899\pi\)
\(728\) 353.682i 0.485827i
\(729\) −621.000 381.838i −0.851852 0.523783i
\(730\) −706.120 −0.967288
\(731\) 1.57654 0.910215i 0.00215669 0.00124516i
\(732\) 367.868 + 260.122i 0.502552 + 0.355358i
\(733\) −303.181 + 525.125i −0.413617 + 0.716405i −0.995282 0.0970229i \(-0.969068\pi\)
0.581665 + 0.813428i \(0.302401\pi\)
\(734\) −40.6946 23.4951i −0.0554423 0.0320096i
\(735\) −135.000 12.4389i −0.183673 0.0169237i
\(736\) 26.6969 + 46.2405i 0.0362730 + 0.0628267i
\(737\) 292.174i 0.396437i
\(738\) 262.318 + 741.947i 0.355444 + 1.00535i
\(739\) −389.362 −0.526877 −0.263439 0.964676i \(-0.584857\pi\)
−0.263439 + 0.964676i \(0.584857\pi\)
\(740\) −155.728 + 89.9093i −0.210443 + 0.121499i
\(741\) −252.081 + 116.134i −0.340190 + 0.156726i
\(742\) −42.8036 + 74.1380i −0.0576868 + 0.0999164i
\(743\) 904.779 + 522.375i 1.21774 + 0.703061i 0.964434 0.264325i \(-0.0851492\pi\)
0.253304 + 0.967387i \(0.418483\pi\)
\(744\) 145.732 + 316.326i 0.195877 + 0.425170i
\(745\) 273.090 + 473.006i 0.366564 + 0.634908i
\(746\) 318.240i 0.426595i
\(747\) −601.340 514.116i −0.805007 0.688240i
\(748\) 36.0000 0.0481283
\(749\) −944.574 + 545.350i −1.26111 + 0.728105i
\(750\) 46.5222 504.906i 0.0620296 0.673207i
\(751\) 645.916 1118.76i 0.860074 1.48969i −0.0117826 0.999931i \(-0.503751\pi\)
0.871857 0.489761i \(-0.162916\pi\)
\(752\) 48.8786 + 28.2201i 0.0649981 + 0.0375267i
\(753\) −379.151 + 536.201i −0.503521 + 0.712086i
\(754\) 45.8105 + 79.3460i 0.0607566 + 0.105233i
\(755\) 1482.08i 1.96302i
\(756\) 93.3031 329.876i 0.123417 0.436344i
\(757\) 1042.36 1.37697 0.688483 0.725252i \(-0.258277\pi\)
0.688483 + 0.725252i \(0.258277\pi\)
\(758\) 203.716 117.616i 0.268755 0.155166i
\(759\) 218.227 + 154.310i 0.287519 + 0.203307i
\(760\) 34.5153 59.7823i 0.0454149 0.0786609i
\(761\) −281.607 162.586i −0.370048 0.213647i 0.303431 0.952853i \(-0.401868\pi\)
−0.673479 + 0.739206i \(0.735201\pi\)
\(762\) −42.6311 3.92805i −0.0559464 0.00515492i
\(763\) −369.076 639.258i −0.483717 0.837822i
\(764\) 35.8481i 0.0469217i
\(765\) 87.6811 + 16.2963i 0.114616 + 0.0213023i
\(766\) 1042.26 1.36065
\(767\) −1561.28 + 901.405i −2.03557 + 1.17523i
\(768\) −43.5959 + 20.0847i −0.0567655 + 0.0261520i
\(769\) −171.348 + 296.783i −0.222819 + 0.385934i −0.955663